Optimization, Structural Characterization, and Bioactivities of Polysaccharides from Rosa roxburghii Tratt Fruit Using Enzyme-Assisted Extraction
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Single-Factor Experimental Design
2.3. Response Surface Optimization
2.4. Enzyme-Assisted Extraction of Polysaccharides from R. roxburghii Fruit (RTFPs)
2.5. Hot Water Extraction of Polysaccharides from R. roxburghii Fruit (W-RTFPs)
2.6. Structural Characterization
2.6.1. Chemical Composition Analysis
2.6.2. Molecular Weight Distribution Analysis
2.6.3. Monosaccharide Composition Analysis
2.6.4. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
2.6.5. Iodine–Potassium Iodide (I2/KI) Binding Assay
2.7. Antioxidant Capacity Assessment
2.7.1. DPPH Radical Scavenging Activity Assay
2.7.2. ABTS Radical Scavenging Assay
2.8. Immunomodulatory Activity Analysis
2.8.1. Cell Culture
2.8.2. Cytotoxicity Assay
2.8.3. Phagocytic Capacity Assay
2.8.4. Measurement of Cytokines
2.9. Data Analysis
3. Results and Discussion
3.1. Effect of Extraction Conditions on the Yield of RTFPs
3.2. Optimization of the Extraction Process
3.2.1. Statistical Analysis and Model Fitting
3.2.2. Response Surface Analysis
3.2.3. Optimization and Validation of the Model
3.3. Chemical Composition
3.4. Structural Characterization of RTFPs and W-RTFPs
3.4.1. Mw Distribution Profiles
3.4.2. I2-KI Analysis
3.4.3. FT-IR Spectroscopy
3.4.4. Monosaccharide Composition
3.5. Antioxidant Activities of RTFPs and W-RTFPs in Vitro
3.6. Cytotoxicities of RTFPs and W-RTFPs
3.7. Effects of RTFPs and W-RTFPs on Macrophage Phagocytic Activity
3.8. Effects of RTFPs and W-RTFPs on the Production of Cytokines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, Y.L.; Li, Y.H.; Wang, L.; Fu, X.; Li, C. Physicochemical characterization of a polysaccharide from Rosa roxburghii Tratt fruit and its antitumor activity by activating ROS mediated pathways. Curr. Res. Food Sci. 2022, 5, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Zhang, B.; Fu, X.; Huang, Q.; Li, C.; Liu, G.; Liu, R.H. Recent advances in polysaccharides from Rose roxburghii Tratt fruits: Isolation, structural characterization, and bioactivities. Food Funct. 2022, 13, 12561–12571. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, P.; Chen, J.; Li, C.; Tian, Y.; Xu, F. Prebiotic properties of the polysaccharide from Rosa roxburghii Tratt fruit and its protective effects in high-fat diet-induced intestinal barrier dysfunction: A fecal microbiota transplantation study. Food Res. Int. 2022, 164, 112400. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Duan, X.; Cui, J.; Song, X.; Ma, W.; Zhang, W.; Liu, Y.; Fan, Y. Research progress on the extraction technology and activity study of Epimedium polysaccharides. Carbohydr. Polym. 2023, 306, 120602. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Huang, G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed. Pharmacother. 2022, 150, 113015. [Google Scholar] [CrossRef]
- Wang, X.; Su, Y.; Su, J.; Xue, J.; Zhang, R.; Li, X.; Li, Y.; Ding, Y.; Chu, X. Optimization of enzyme-assisted aqueous extraction of polysaccharide from Acanthopanax senticosus and comparison of physicochemical properties and bioactivities of polysaccharides with different molecular weights. Molecules 2023, 28, 6585. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.Y.; Li, F.; Liu, Y.; Ren, H.T.; Gong, G.L.; Wang, Y.Y.; Wu, S.H. Effects of extraction methods on the antioxidant activities of polysaccharides from Agaricus blazei Murrill. Int. J. Biol. Macromol. 2013, 62, 66–69. [Google Scholar] [CrossRef]
- Song, Y.-R.; Han, A.-R.; Park, S.-G.; Cho, C.-W.; Rhee, Y.-K.; Hong, H.-D. Effect of enzyme-assisted extraction on the physicochemical properties and bioactive potential of lotus leaf polysaccharides. Int. J. Biol. Macromol. 2020, 153, 169–179. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.S.; Guo, K.; Jia, A.R.; Shi, Y.P.; Gao, G.L.; Sun, Z.L.; Liu, C.H. Cellulase-assisted extraction, characterization, and bioactivity of polysaccharides from Polygonatum odoratum. Int. J. Biol. Macromol. 2015, 75, 258–265. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.; Hamilton, J.K.; Rebers, P.A.; Smith, F. A colorimetric method for the determination of sugars. Nature 1951, 168, 167. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Zhang, Y.H. Ultrasound-assisted polysaccharide extraction from Cercis chinensis and properites, antioxidant activity of polysaccharide. Ultrason. Sonochem. 2023, 96, 106422. [Google Scholar] [CrossRef] [PubMed]
- Quan, N.; Wang, Y.D.; Li, G.R.; Liu, Z.Q.; Feng, J.; Qiao, C.L.; Zhang, H.F. Ultrasound-microwave combined extraction of novel polysaccharide fractions from Lycium barbarum Leaves and their in vitro hypoglycemic and antioxidant activities. Molecules 2023, 28, 3880. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, M.; Qing, Y.; Luo, Y.; Xia, G.; Li, Y. Study on immunostimulatory activity and extraction process optimization of polysaccharides from Caulerpa lentillifera. Int. J. Biol. Macromol. 2020, 143, 677–684. [Google Scholar] [CrossRef]
- Lv, T.; Liu, X.; Tao, J.; Zhang, Y.; Xie, Q.; Meng, X.; Liu, X. Ultrasound-assisted enzymatic extraction of polysaccharides from Paulownia flowers: Process optimization, structural characterization, antioxidant and hypoglycemic activities. Microchem. J. 2024, 199, 109940. [Google Scholar] [CrossRef]
- Chen, W.W.; Jia, Z.B.; Zhu, J.J.; Zou, Y.R.; Huang, G.R.; Hong, Y. Optimization of ultrasonic-assisted enzymatic extraction of polysaccharides from thick-shell mussel (Mytilus coruscus) and their antioxidant activities. Int. J. Biol. Macromol. 2019, 140, 1116–1125. [Google Scholar] [CrossRef]
- Wang, S.; Dong, X.; Tong, J. Optimization of enzyme-assisted extraction of polysaccharides from alfalfa and its antioxidant activity. Int. J. Biol. Macromol. 2013, 62, 387–396. [Google Scholar] [CrossRef]
- Zhan, Q.; Zhong, H.; Yin, M.; Peng, J.; Chen, M. Optimization of the polysaccharide extraction process from Rosa roxburghii Tratt using Box-Behnken response surface methodology and monosaccharide composition analysis. Food Sci. Technol. 2022, 42, e86322. [Google Scholar] [CrossRef]
- Tian, S.; Hao, C.; Xu, G.; Yang, J.; Sun, R. Optimization conditions for extracting polysaccharide from Angelica sinensis and its antioxidant activities. J. Food Drug Anal. 2017, 25, 766–775. [Google Scholar] [CrossRef]
- Jha, N.; Madasamy, S.; Prasad, P.; Lakra, A.K.; Esakkiraj, P.; Tilwani, Y.M.; Arul, V. Optimization and physicochemical characterization of polysaccharide purified from sonneratia caseolaris mangrove leaves: A potential antioxidant and antibiofilm agent. Appl. Biochem. Biotechnol. 2023, 195, 7832–7858. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Kan, J. Ultrasound-assisted extraction, characterization, and antioxidant activity in vitro and in vivo of polysaccharides from Chestnut rose (Rosa roxburghii tratt) fruit. J. Food Sci. Technol. 2018, 55, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.R.; Sung, S.K.; Jang, M.; Lim, T.G.; Cho, C.W.; Han, C.J.; Hong, H.D. Enzyme-assisted extraction, chemical characteristics, and immunostimulatory activity of polysaccharides from Korean ginseng (Panax ginseng Meyer). Int. J. Biol. Macromol. 2018, 116, 1089–1097. [Google Scholar] [CrossRef]
- Zhu, J.X.; Yu, C.; Han, Z.; Chen, Z.Y.; Wei, X.L.; Wang, Y.F. Comparative analysis of existence form for selenium and structural characteristics in artificial selenium-enriched and synthetic selenized green tea polysaccharides. Int. J. Biol. Macromol. 2020, 154, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, J.; Lin, L.; Li, J.; Zheng, G. Structural characterization, antioxidant and antimicrobial activities of polysaccharide from Akebia trifoliata (Thunb.) Koidz stem. Colloids Surf. B Biointerfaces 2023, 231, 113573. [Google Scholar] [CrossRef]
- Li, P.; Li, C.; Fu, X.; Huang, Q.; Chen, Q. Physicochemical, functional and biological properties of soluble dietary fibers obtained from Rosa roxburghii Tratt pomace using different extraction methods. Process Biochem. 2023, 128, 40–48. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, P.; Zhao, S.; Nie, C.; Wang, N.; Du, X.; Zhou, Y. Characterization, antioxidant activity and immunomodulatory activity of polysaccharides from the swollen culms of Zizania latifolia. Int. J. Biol. Macromol. 2017, 95, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Cao, S.; Wang, M.; Sun, Y. Optimizing extraction, structural characterization, and in vitro hypoglycemic activity of a novel polysaccharide component from Lentinus edodes. Food Biosci. 2023, 55, 103007. [Google Scholar] [CrossRef]
- Ma, R.J.; Cao, T.Q.; An, H.X.; Yu, S.S.; Ji, H.Y.; Liu, A.J. Extraction, purification, structure, and antioxidant activity of polysaccharide from Rhodiola rosea. J. Mol. Struct. 2023, 1283, 135310. [Google Scholar] [CrossRef]
- Suja, K.P.; Jayalekshmy, A.; Arumughan, C. Free radical scavenging behavior of antioxidant compounds of sesame (sesamum indicum L.) in DPPH(*) system. J. Agric. Food Chem. 2004, 52, 912–915. [Google Scholar] [CrossRef]
- Foti, M.C.; Daquino, C.; Geraci, C. Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH(*) radical in alcoholic solutions. J. Org. Chem. 2004, 69, 2309–2314. [Google Scholar] [CrossRef] [PubMed]
- Soares, D.G.; Andreazza, A.C.; Salvador, M. Sequestering ability of butylated hydroxytoluene, propyl gallate, resveratrol, and vitamins C and E against ABTS, DPPH, and hydroxyl free radicals in chemical and biological systems. J. Agric. Food Chem. 2003, 51, 1077–1080. [Google Scholar] [CrossRef] [PubMed]
- Bandoniene, D.; Murkovic, M. On-line HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from apples (Malus domestica L.). J. Agric. Food Chem. 2002, 50, 2482–2487. [Google Scholar] [CrossRef]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; dos Santos, T.C.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef]
- Ghamgui, H.; Jarboui, R.; Jeddou, K.; Torchi, A.; Mariam, S.; Cherif, S.; Trigui, M. Polysaccharide from Thymelaea hirsuta L. leaves: Structural characterization, functional properties and antioxidant evaluation. Int. J. Biol. Macromol. 2024, 262, 129244. [Google Scholar] [CrossRef]
- Chen, N.; Jiang, T.Y.; Xu, J.X.; Xi, W.J.; Shang, E.; Xiao, P.; Duan, J.A. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int. J. Biol. Macromol. 2024, 270, 132391. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Zhao, C.H.; Fu, X. Physicochemical characterization, antioxidative and immunoregulatory activity of polysaccharides from the flower of Hylocereus undatus (Haw.) Britton et Rose. Int. J. Biol. Macromol. 2023, 251, 126408. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Dong, Z.P.; Zhang, B.; Huang, Q.; Liu, G.; Fu, X. Structural characterization and immune enhancement activity of a novel polysaccharide from Moringa oleifera leaves. Carbohydr. Polym. 2020, 234, 115897. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Cao, Y.; Shi, F.; Shang, L. The role of nitric oxide synthase/nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189156. [Google Scholar] [CrossRef]
- Panda, S.; Tiwari, A.; Luthra, K.; Kumar, K.; Singh, A. Nitric oxide brings innate immune resistance to M. tuberculosis infection among high-risk household contacts of pulmonary tuberculosis patients. J. Biosci. 2024, 49, 73. [Google Scholar] [CrossRef]
- Scheurich, P.; Thoma, B.; Ucer, U.; Pfizenmaier, K. Immunoregulatory activity of recombinant human tumor necrosis factor (TNF)-alpha: Induction of TNF receptors on human T cells and TNF-alpha-mediated enhancement of T cell responses. J. Immunol. 1987, 138, 1786–1790. [Google Scholar] [CrossRef] [PubMed]
- Nedospasov, S.A.; Hirt, B.; Shakhov, A.N.; Dobrynin, V.N.; Kawashima, E.; Accolla, R.S.; Jongeneel, C.V. The genes for tumor necrosis factor (TNF-alpha) and lymphotoxin (TNF-beta) are tandemly arranged on chromosome 17 of the mouse. Nucleic Acids Res. 1986, 14, 7713–7725. [Google Scholar] [CrossRef] [PubMed]
- Israel, S.; Hahn, T.; Holtmann, H.; Wallach, D. Binding of human TNF-alpha to high-affinity cell surface receptors: Effect of IFN. Immunol. Lett. 1986, 12, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Tabarsa, M.; Jafari, A.; You, S.; Cao, R.A. Immunostimulatory effects of a polysaccharide from Pimpinella anisum seeds on RAW264.7 and NK-92 cells. Int. J. Biol. Macromol. 2022, 213, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Xie, J.; Luo, Z.; Li, S.P.; Zhao, J. Synergistic immunomodulatory effect of complex polysaccharides from seven herbs and their major active fractions. Int. J. Biol. Macromol. 2020, 165, 530–541. [Google Scholar] [CrossRef]
- Wu, Z.-W.; Peng, X.-R.; Liu, X.-C.; Wen, L.; Tao, X.-Y.; Al-Romaima, A.; Wu, M.-Y.; Qiu, M.-H. The structures of two polysaccharides from Lepidium meyenii and their immunomodulatory effects via activating NF-κB signaling pathway. Int. J. Biol. Macromol. 2024, 269, 131761. [Google Scholar] [CrossRef]
- Dong, Z.P.; Li, C.; Huang, Q.; Zhang, B.; Fu, X.; Liu, R.H. Characterization of a novel polysaccharide from the leaves of Moringa oleifera and its immunostimulatory activity. J. Funct. 2018, 49, 391–400. [Google Scholar] [CrossRef]
- Huang, Z.; Zeng, Y.J.; Chen, X.; Luo, S.Y.; Pu, L.; Li, F.Z.; Zong, M.H.; Lou, W.Y. A novel polysaccharide from the roots of Millettia Speciosa Champ: Preparation, structural characterization and immunomodulatory activity. Int. J. Biol. Macromol. 2020, 145, 547–557. [Google Scholar] [CrossRef]
- Zeng, Y.J.; Yang, H.R.; Wang, H.F.; Zong, M.H.; Lou, W.Y. Immune enhancement activity of a novel polysaccharide produced by Dendrobium officinale endophytic fungus Fusarium solani DO7. J. Funct. 2019, 53, 266–275. [Google Scholar] [CrossRef]
Factors | Symbol | Coding and Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Liquid–solid ratio (mL/g) | A | 30 | 40 | 50 |
Extraction pH | B | 5 | 6 | 7 |
Extraction temperature (°C) | C | 40 | 50 | 60 |
Run | A | B | C | Yield (%) |
---|---|---|---|---|
1 | 40 | 5 | 60 | 8.77 |
2 | 40 | 7 | 60 | 8.94 |
3 | 50 | 6 | 60 | 8.25 |
4 | 30 | 6 | 60 | 9.49 |
5 | 40 | 6 | 50 | 14.33 |
6 | 40 | 6 | 50 | 13.09 |
7 | 30 | 5 | 50 | 11.28 |
8 | 40 | 6 | 50 | 13.45 |
9 | 50 | 7 | 50 | 8.53 |
10 | 40 | 6 | 50 | 13.94 |
11 | 40 | 6 | 50 | 13.42 |
12 | 30 | 7 | 50 | 9.65 |
13 | 50 | 5 | 50 | 8.75 |
14 | 50 | 6 | 40 | 11.55 |
15 | 30 | 6 | 40 | 11.03 |
16 | 40 | 5 | 40 | 12.57 |
17 | 40 | 7 | 40 | 8.66 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | p Value | Significance |
---|---|---|---|---|---|---|
Model | 73.54 | 9 | 8.17 | 21.26 | 0.0003 | ** |
A | 2.39 | 1 | 2.39 | 6.21 | 0.0415 | * |
B | 3.91 | 1 | 3.91 | 10.16 | 0.0153 | * |
C | 8.74 | 1 | 8.74 | 22.73 | 0.0020 | ** |
AB | 0.4970 | 1 | 0.4970 | 1.29 | 0.2929 | |
AC | 0.7744 | 1 | 0.7744 | 2.01 | 0.1987 | |
BC | 4.16 | 1 | 4.16 | 10.83 | 0.0133 | * |
A2 | 14.79 | 1 | 14.79 | 38.48 | 0.0004 | ** |
B2 | 20.74 | 1 | 20.74 | 53.96 | 0.0002 | ** |
C2 | 12.05 | 1 | 12.05 | 31.35 | 0.0008 | ** |
Residual | 2.69 | 7 | 0.3843 | |||
Lack-of-fit | 1.74 | 3 | 0.5791 | 2.43 | 0.2053 | |
Pure Error | 0.9529 | 4 | 0.2382 |
Fraction | RTFPs | W-RTFPs |
Sugar content (%) | 36.38 ± 0.45 | 50.45 ± 0.84% |
Uronic acid content (%) | 48.83 ± 0.53 | 39.19 ± 1.03 |
Protein content (%) | 7.29 ± 0.38 | 6.58 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Zhang, Y.; Zheng, S.; Zhu, S.; Li, C. Optimization, Structural Characterization, and Bioactivities of Polysaccharides from Rosa roxburghii Tratt Fruit Using Enzyme-Assisted Extraction. Foods 2025, 14, 2423. https://doi.org/10.3390/foods14142423
Chen Q, Zhang Y, Zheng S, Zhu S, Li C. Optimization, Structural Characterization, and Bioactivities of Polysaccharides from Rosa roxburghii Tratt Fruit Using Enzyme-Assisted Extraction. Foods. 2025; 14(14):2423. https://doi.org/10.3390/foods14142423
Chicago/Turabian StyleChen, Qing, Yue Zhang, Siyuan Zheng, Siming Zhu, and Chao Li. 2025. "Optimization, Structural Characterization, and Bioactivities of Polysaccharides from Rosa roxburghii Tratt Fruit Using Enzyme-Assisted Extraction" Foods 14, no. 14: 2423. https://doi.org/10.3390/foods14142423
APA StyleChen, Q., Zhang, Y., Zheng, S., Zhu, S., & Li, C. (2025). Optimization, Structural Characterization, and Bioactivities of Polysaccharides from Rosa roxburghii Tratt Fruit Using Enzyme-Assisted Extraction. Foods, 14(14), 2423. https://doi.org/10.3390/foods14142423