Glycitin in Soy Beans: A Mine of Their Structures, Functions, and Potential Applications
Abstract
1. Introduction
2. Bibliometric Analysis
3. Extraction and Purification of Glycitin
4. Structure and Physical Properties of Glycitin
5. Pharmacokinetics in the Body
6. Biological Activities of Glycitin
6.1. Estrogenic and Anti-Estrogenic Activities
6.2. Protection of the Human Intestinal System
6.3. Antioxidant Activity
6.4. Skin Anti-Aging Activity
6.5. Anti-Osteoporosis, Prevention of Osteonecrosis Activity
6.6. Hypoglycemic and Hypolipidemic Activity
6.7. Antitumor Activity
6.8. Protection of the Human Nervous System
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nakai, S.; Fujita, M.; Kamei, Y. Health Promotion Effects of Soy Isoflavones. J. Nutr. Sci. Vitaminol. 2020, 66, 502–507. [Google Scholar] [CrossRef]
- Kulprachakarn, K.; Chaipoot, S.; Phongphisutthinant, R.; Paradee, N.; Prommaban, A.; Ounjaijean, S.; Rerkasem, K.; Parklak, W.; Prakit, K.; Saengsitthisak, B.; et al. Antioxidant Potential and Cytotoxic Effect of Isoflavones Extract from Thai Fermented Soybean (Thua-Nao). Molecules 2020, 26, 7432. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.J.; Zhao, L.C.; Ma, Y.H.; Liang, W.O.; Fang, X.; Liao, Z.L.; Zhong, Q.; Wang, J.; Wang, L. Analysis of the biotransformation mechanism of soy isoflavones via equol-producing HMA mice model. J. Funct. Foods 2022, 98, 105274. [Google Scholar] [CrossRef]
- Sekikawa, A.; Wharton, W.; Butts, B.; Veliky, C.V.; Garfein, J.; Li, J.; Goon, S.; Fort, A.; Li, M.; Hughes, T.M. Potential Protective Mechanisms of S-equol, a Metabolite of Soy Isoflavone by the Gut Microbiome, on Cognitive Decline and Dementia. Int. J. Mol. Sci. 2022, 23, 11921. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, Z.; Liu, G.; Hu, S.; Chang, J. The Potential Mechanism of Soy Isoflavones in Treating Osteoporosis: Focusing on Bone Metabolism and Oxidative Stress. Phytother. Res. 2025, 39, 1645–1658. [Google Scholar] [CrossRef]
- Ohishi, T.; Miyoshi, N.; Mori, M.; Sagara, M.; Yamori, Y. Health Effects of Soy Isoflavones and Green Tea Catechins on Cancer and Cardiovascular Diseases Based on Urinary Biomarker Levels. Molecules 2022, 27, 8899. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, H.; Tan, F.; Yi, R.; Zhou, C.; Deng, Y.; Mu, J.; Zhao, X. Anti-aging effect of Lactobacillus plantarum HFY09-fermented soymilk on D-galactose-induced oxidative aging in mice through modulation of the Nrf2 signaling pathway. J. Funct. Foods 2021, 78, 104386. [Google Scholar] [CrossRef]
- Van der Eecken, H.; Joniau, S.; Berghen, C.; Rans, K.; De Meerleer, G. The Use of Soy Isoflavones in the Treatment of Prostate Cancer: A Focus on the Cellular Effects. Nutrients 2023, 15, 4856. [Google Scholar] [CrossRef]
- Santos Filho, L.E.D.; Santos, G.P.L.D.; Silva, J.A.; Silva, F.A.; Silva, M.N.; Almeida, A.A.; Coqueiro, R.D.S.; Coimbra, C.C.; Soares, T.J.; Magalhães, A.C.M. Dietary Soy Isoflavones Prevent Metabolic Disturbs Associated with a Deleterious Combination of Obesity and Menopause. J. Med. Food 2022, 26, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Huang, L.; Chen, J.; Ou, Y.; Wu, J.; Bodjrenou, D.M.; Hu, J.; Zhang, Y.; Farag, M.A.; Guo, Z.; et al. Marine glycoproteins: A mine of their structures, functions and potential applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 9191–9209. [Google Scholar] [CrossRef] [PubMed]
- Đurović, S.; Nikolić, B.; Pisinov, B.; Mijin, D.; Knežević-Jugović, Z. Microwave Irradiation as a Powerful Tool for Isolating Isoflavones from Soybean Flour. Molecules 2024, 29, 4685. [Google Scholar] [CrossRef]
- Valls, J.; Millán, S.; Martí, M.P.; Borràs, E.; Arola, L. Advanced separation methods of food anthocyanins, isoflavones and flavanols. J. Chromatogr. 2009, 1216, 7143–7172. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Pan, Y.; Qi, Y.; Li, Y.; Li, S. Ultrasound-assisted dynamic extraction coupled with parallel countercurrent chromatography for simultaneous extraction, purification, and isolation of phytochemicals: Application to isoflavones from red clover. Anal. Bioanal. Chem. 2015, 407, 4597–4606. [Google Scholar] [CrossRef] [PubMed]
- An, J.H.; Ko, M.J.; Chung, M.S. Thermal conversion kinetics and solubility of soy isoflavones in subcritical water extraction. Food Chem. 2023, 424, 136430. [Google Scholar] [CrossRef] [PubMed]
- Dhaubhadel, S.; Farhangkhoee, M.; Chapman, R. Identification and characterization of isoflavonoid specific glycosyltransferase and malonyltransferase from soybean seeds. J. Exp. Bot. 2008, 59, 981–994. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Y.; Jin, H.; Liu, S.; Fang, S.; Wang, C.; Xia, C. Separation of vitexin-4″-O-glucoside and vitexin-2″-O-rhamnoside from hawthorn leaves extracts using macroporous resins. J. Chromatogr. B 2015, 1007, 23–29. [Google Scholar] [CrossRef]
- Terigar, B.G.; Balasubramanian, S.; Boldor, D.; Xu, Z.; Lima, M.; Sabliov, C.M. Continuous microwave-assisted isoflavone extraction system: Design and performance evaluation. Bioresour. Technol. 2010, 101, 2466–2471. [Google Scholar] [CrossRef]
- Kim, D.H.; Yang, W.T.; Cho, K.M.; Lee, J.H. Comparative analysis of isoflavone aglycones using microwave-assisted acid hydrolysis from soybean organs at different growth times and screening for their digestive enzyme inhibition and antioxidant properties. Food Chem. 2020, 305, 125462. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Palma, M.; Barroso, C.G. Ultrasound-assisted extraction of soy isoflavones. J. Chromatogr. 2023, 1012, 119–128. [Google Scholar] [CrossRef]
- Cordisco, E.; Haidar, C.N.; Coscueta, E.R.; Nerli, B.B.; Malpiedi, L.P. Integrated extraction and purification of soy isoflavones by using aqueous micellar systems. Food Chem. 2016, 213, 514–520. [Google Scholar] [CrossRef]
- Jung, Y.S.; Rha, C.S.; Baik, M.Y.; Baek, N.I.; Kim, D.O. A brief history and spectroscopic analysis of soy isoflavones. Food Sci. Biotechnol. 2020, 29, 1605–1617. [Google Scholar] [CrossRef]
- Pereira, G.M.; Jun, S.; Li, Q.X.; Wall, M.M.; Ho, K.K.H.Y. Formation and physical characterization of soy protein-isoflavone dispersions and emulsions. LWT 2023, 176, 11451. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, J.; Wu, S.; Fang, S.; Bilal, M.; Xie, C.; Wang, P.; Yin, Y.; Yang, R. Novel strategy to raise the content of aglycone isoflavones in soymilk and gel: Effect of germination on the physicochemical properties. Food Res. Int. 2024, 186, 114335. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, K.; Humayoun Akhtar, M. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 1280–1293. [Google Scholar] [CrossRef]
- Ma, F.; Li, Z.; Liu, H.; Chen, S.; Zheng, S.; Zhu, J.; Shi, H.; Ye, H.; Qiu, Z.; Gao, L.; et al. Dietary-timing-induced gut microbiota diurnal oscillations modulate inflammatory rhythms in rheumatoid arthritis. Cell Metab. 2024, 36, 2367–2382.e5. [Google Scholar] [CrossRef]
- Shinkaruk, S.; Durand, M.; Lamothe, V.; Carpaye, A.; Martinet, A.; Chantre, P.; Vergne, S.; Nogues, X.; Moore, N.; Bennetau-Pelissero, C. Bioavailability of glycitein relatively to other soy isoflavones in healthy young Caucasian men. Food Chem. 2012, 135, 1104–1111. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Y.; Cheng, X.; Wei, H.; Li, P.; Fan, L.; Liu, K.; Zhang, S.; Wang, H. The antioxidant Glycitin protects against intervertebral disc degeneration through antagonizing inflammation and oxidative stress in nucleus pulposus cells. Aging 2023, 15, 13693–13709. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Punt, A.; Spenkelink, B.; Murk, A.J.; Rolaf van Leeuwen, F.X.; Rietjens, I.M. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models. Mol. Nutr. Food Res. 2014, 58, 503–515. [Google Scholar] [CrossRef]
- Rüfer, C.E.; Kulling, S.E. Antioxidant Activity of Isoflavones and Their Major Metabolites Using Different in Vitro Assays. J. Agric. Food Chem. 2016, 54, 2926–2931. [Google Scholar] [CrossRef]
- Cai, Y.-Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872. [Google Scholar] [CrossRef]
- Setchell, K.D.; Brown, N.M.; Zimmer-Nechemias, L.; Brashear, W.T.; Wolfe, B.E.; Kirschner, A.S.; Heubi, J.E. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 2022, 76, 447–453. [Google Scholar] [CrossRef]
- Masilamani, M.; Wei, J.; Sampson, H.A. Regulation of the immune response by soybean isoflavones. Immunol. Res. 2012, 54, 95–110. [Google Scholar] [CrossRef]
- Sandini, T.M.; Reis-Silva, T.M.; Moreira, N.; Bernardi, M.M.; Lebrun, I.; Spinosa, H.S. Effects of isoflavones on behavior, estradiol, glutamate, and GABA levels in intact middle-aged female rats. Nutr. Neurosci. 2019, 22, 805–816. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, J.; Yang, Y.; Ye, D.; Li, Y.; Li, D.; Wang, J. Estradiol metabolism by gut microbiota in women’s depression pathogenesis: Inspiration from nature. Front. Psychiatry 2025, 16, 1505991. [Google Scholar] [CrossRef]
- Rasbach, K.A.; Schnellmann, R.G. Isoflavones promote mitochondrial biogenesis. J. Pharmacol. Exp. Ther. 2018, 325, 536–543. [Google Scholar] [CrossRef]
- Yoshino, M.; Naka, A.; Sakamoto, Y.; Shibasaki, A.; Toh, M.; Tsukamoto, S.; Kondo, K.; Iida, K. Dietary isoflavone daidzein promotes Tfam expression that increases mitochondrial biogenesis in C2C12 muscle cells. J. Nutr. Biochem. 2015, 26, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Choi, J.S.; Kim, M.H.; Jung, M.H.; Lee, Y.S.; Song, J. Effects of dietary genistein on hepatic lipid metabolism and mitochondrial function in mice fed high-fat diets. Nutrition 2006, 22, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Pinkerton, J.V.; Conner, E.A. Beyond estrogen: Advances in tissue selective estrogen complexes and selective estrogen receptor modulators. Climacteric 2019, 22, 140–147. [Google Scholar] [CrossRef]
- Mudrikatin, S. The in silico study of phytoestrogenic activity of soy in substitution of estrogen function. J. Complement. Med. Res. 2018, 8, 11. [Google Scholar] [CrossRef]
- Gray, S.L.; Lackey, B.R. Optimizing a recombinant estrogen receptor binding assay for analysis of herbal extracts. J. Herbal. Med. 2018, 15, 100252. [Google Scholar] [CrossRef]
- Srivastava, D.P.; Woolfrey, K.M.; Liu, F.; Brandon, N.J.; Penzes, P. Estrogen Receptor β Activity Modulates Synaptic Signaling and Structure. J. Neurosci. 2010, 30, 13454–13460. [Google Scholar] [CrossRef]
- Gui, Z.; Shi, W.; Zhou, F.; Yan, Y.; Li, Y.; Xu, Y. The role of estrogen receptors in intracellular estrogen signaling pathways, an overview. J. Steroid Biochem. Mol. Biol. 2025, 245, 106632. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, M.J.; Ahn, J.; Lee, S.H.; Lee, H.; Kim, J.H.; Park, S.H.; Jang, Y.J.; Ha, T.Y.; Jung, C.H. Nutrikinetics of Isoflavone Metabolites After Fermented Soybean Product (Cheonggukjang) Ingestion in Ovariectomized Mice. Mol. Nutr. Food Res. 2017, 61, 1700322. [Google Scholar] [CrossRef] [PubMed]
- Mayo, B.; Vázquez, L.; Flórez, A.B. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019, 11, 2231. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chen, H.B.; Li, S.L. Understanding the Molecular Mechanisms of the Interplay Between Herbal Medicines and Gut Microbiota. Med. Res. Rev. 2017, 37, 1140–1185. [Google Scholar] [CrossRef]
- Kawada, Y.; Yokoyama, S.; Yanase, E.; Niwa, T.; Suzuki, T. The production of S-equol from daidzein is associated with a cluster of three genes in Eggerthella sp. YY7918. Biosci. Microbiota Food Health 2016, 35, 113–121. [Google Scholar] [CrossRef]
- Li, M.; Han, X.; Sun, L.; Liu, X.; Zhang, W.; Hao, J. Indole-3-acetic acid alleviates DSS-induced colitis by promoting the production of R-equol from Bifidobacterium pseudolongum. Gut Microbes 2024, 16, 2329147. [Google Scholar] [CrossRef] [PubMed]
- Schröder, C.; Matthies, A.; Engst, W.; Blaut, M.; Braune, A. Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens. Appl. Environ. Microbiol. 2023, 79, 3494–3502. [Google Scholar] [CrossRef]
- Gaya, P.; Peirotén, Á.; Medina, M.; Landete, J.M. Isoflavone metabolism by a collection of lactic acid bacteria and bifidobacteria with biotechnological interest. Int. J. Food Sci. Nutr. 2016, 67, 117–124. [Google Scholar] [CrossRef]
- Zheng, C.; Su, Y.; Huang, X. Isolation and identification of antioxidant components in ethanol extract of black beans. Food Sci. 2015, 36, 155–160. [Google Scholar] [CrossRef]
- Kang, K.A.; Zhang, R.; Piao, M.J.; Lee, K.H.; Kim, B.J.; Kim, S.Y.; Kim, H.S.; Kim, D.H.; You, H.J.; Hyun, J.W. Inhibitory effects of glycitein on hydrogen peroxide induced cell damage by scavenging reactive oxygen species and inhibiting c-Jun N-terminal kinase. Free Radic. Res. 2007, 41, 720–729. [Google Scholar] [CrossRef]
- Arifin, H.A.; Hashiguchi, T.; Nagahama, K.; Hashiguchi, M.; Muguerza, M.; Sakakibara, Y.; Tanaka, H.; Akashi, R. Varietal differences in flavonoid and antioxidant activity in Japanese soybean accessions. Biosci. Biotechnol. Biochem. 2021, 85, 916–922. [Google Scholar] [CrossRef]
- Wang, F.; Yang, X.; Zhang, H.; Zhu, C.; Li, L.; Wang, F. In vitro Antioxidant Capacities of Isoflavones and Polyphenols in Three Bean Sprouts and Their Effects on Activities of SOD and GSH-Px in Drosophila melanogaster. J. Chin. Inst. Food Sci. Technol. 2018, 18, 57–64. [Google Scholar] [CrossRef]
- Ho, M.T.; Koh, D.; Cho, M. The mixture of glycitin and TDB (3-(2,4,6-trimethoxyphenyl)-2,3-dihydro-1H-benzo[f]chromen-1-one) could ameliorate skin ageing by anti-wrinkle and anti-melanogenesis effects in dermal fibroblasts and melanocytes. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 835–842. [Google Scholar] [CrossRef]
- Kim, Y.M.; Huh, J.S.; Lim, Y.; Cho, M. Soy Isoflavone Glycitin (4′-Hydroxy-6-Methoxyisoflavone-7-D-Glucoside) Promotes Human Dermal Fibroblast Cell Proliferation and Migration via TGF-β Signaling. Phytother. Res. 2015, 29, 757. [Google Scholar] [CrossRef] [PubMed]
- Seo, G.Y.; Park, S.; Huh, J.-S.; Cho, M. The protective effect of glycitin on UV-induced skin photoaging in human primary dermal fibroblast. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 463–468. [Google Scholar] [CrossRef]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecule 2022, 27, 6613. [Google Scholar] [CrossRef]
- Morris, G.; Talaulikar, V. Hormone replacement therapy in women with history of thrombosis or a thrombophilia. Post. Reprod. Health 2023, 29, 33–41. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, T.; Zhang, M. Determination of Isoflavone Content in Light Soy Bean and Study on Its Inhibition of Acetylcholinesterase Activity. Nat. Product. Res. Dev. 2017, 2, 310–315. [Google Scholar]
- Lin, C.-C.; Chen, T.-S.; Lin, Y.-M.; Yeh, Y.-L.; Li, Y.-H.; Kuo, W.-W.; Tsai, F.-J.; Tsai, T.-H.; Yen, S.-K.; Huang, C.-Y. The p38 and NFκB signaling protein activation involved in glycitein protective effects on isoproterenol-treated H9c2 cardiomyoblast cells. J. Funct. Foods 2013, 5, 460–465. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Chang, H.; Gao, X.; Dong, C.; Li, Z.; Hao, J.; Wang, J.; Fan, Q. Mongolian Medicine echinops prevented postmenopausal osteoporosis and induced ER/AKT/ERK pathway in BMSCs. Biosci. Trends 2018, 12, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Jiang, J.; Wang, Q.; Zong, J.; Zhang, L.; Ma, T.; Xu, Y.; Zhang, L. Associations between ERα/β gene polymorphisms and osteoporosis susceptibility and bone mineral density in postmenopausal women: A systematic review and meta-analysis. BMC Endocr. Disord. 2018, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Choi, Y.Y.; Han, J.M.; Lee, H.S.; Hong, S.B.; Lee, S.G.; Yang, W.M. Ameliorative effects of Schizandra chinensis on osteoporosis via activation of estrogen receptor (ER)-α/-β. Food Funct. 2024, 5, 1594–1601. [Google Scholar] [CrossRef] [PubMed]
- Winzer, M.; Rauner, M.; Pietschmann, P. Glycitein decreases the generation of murine osteoclasts and increases apoptosis. Wien. Med. Wochenschr. 2010, 160, 446–451. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Chai, W.; Ni, M.; Sun, X.; Tian, D. Glycitin regulates osteoblasts through TGF-β or AKT signaling pathways in bone marrow stem cells. Exp. Ther. Med. 2016, 12, 3063. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Sui, S.; Yang, M. Effects of genistein, daidzein and glycitein on the osteogenic and adipogenic differentiation of bone marrow stromal cells and on the adipogenic trans-differentiation of osteoblasts. Progress. Nat. Sci. Mater. Int. 2005, 15, 993–999. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Pan, M.H.; Ho, C.T. Anti-obesity molecular mechanism of soy isoflavones: Weaving the way to new therapeutic routes. Food Funct. 2017, 8, 3831–3846. [Google Scholar] [CrossRef]
- Li, C.; Liu, H.; Yang, J.; Mu, J.; Wang, R.; Zhao, X. Effect of soybean milk fermented withLactobacillus plantarumHFY01 isolated from yak yogurt on weight loss and lipid reduction in mice with obesity induced by a high-fat diet. RSC Adv. 2020, 10, 34276–34289. [Google Scholar] [CrossRef]
- Lee, S.-O.; Renouf, M.; Ye, Z.; Murphy, P.A.; Hendrich, S. Isoflavone Glycitein Diminished Plasma Cholesterol in Female Golden Syrian Hamsters. J. Agric. Food Chem. 2007, 55, 11063–11067. [Google Scholar] [CrossRef]
- Zang, Y.; Igarashi, K.; Yu, C. Anti-obese and anti-diabetic effects of a mixture of daidzin and glycitin on C57BL/6J mice fed with a high-fat diet. Biosci. Biotechnol. Biochem. 2015, 79, 117–123. [Google Scholar] [CrossRef]
- Wu, J.Y.; Wang, T.Y.; Ding, H.Y.; Lee, C.C.; Chang, T.S. A Novel Soy Isoflavone Derivative, 3′-Hydroxyglycitin, with Potent Antioxidant and Anti-α-Glucosidase Activity. Plants 2022, 11, 2202. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Gotto, A.M., Jr.; Atkin, S.L.; Banach, M.; Pirro, M.; Sahebkar, A. Effect of soy isoflavone supplementation on plasma lipoprotein(a) concentrations: A meta-analysis. J. Clin. Lipidol. 2018, 12, 16–24. [Google Scholar] [CrossRef]
- Marc-Olivier, T.; Nicholas, J.S.P.; George, P. DNA Damage, Repair, and Cancer Metabolism. Front. Oncol. 2018, 8, 15. [Google Scholar] [CrossRef]
- Kubatka, P.; Mojžiš, J.; Pilátová, M.; Péč, M.; Kruzliak, P. Soy Isoflavones in the Breast Cancer Risk: From Preclinical Findings to Clinical Strategy. In Critical Dietary Factors in Cancer Chemoprevention; Ullah, M.F., Ahmad, A., Eds.; Springer: Cham, Switzerland, 2016; pp. 213–238. [Google Scholar] [CrossRef]
- Zang, Y.; Feng, Y.; Luo, Y.; Zhai, Y.; Ju, X.; Feng, Y.; Wang, J.; Yu, C.; Jin, C. Glycitein induces reactive oxygen species-dependent apoptosis and G0/G1 cell cycle arrest through the MAPK/STAT3/NF-κB pathway in human gastric cancer cells. Drug Dev. Res. 2019, 80, 573–584. [Google Scholar] [CrossRef]
- Patel, D.K. Therapeutic Potential of a Bioactive Flavonoids Glycitin from Glycine max: A Review on Medicinal Importance, Pharmacological Activities and Analytical Aspects. Curr. Tradit. Med. 2023, 9, E130522204766. [Google Scholar] [CrossRef]
- Cayetano-Salazar, L.; Olea-Flores, M.; Zuñiga-Eulogio, M.D.; Weinstein-Oppenheimer, C.; Fernández-Tilapa, G.; Mendoza-Catalán, M.A.; Zacapala-Gómez, A.E.; Ortiz-Ortiz, J.; Ortuño-Pineda, C.; Navarro-Tito, N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother. Res. PTR 2021, 35, 4092–4110. [Google Scholar] [CrossRef] [PubMed]
- Kaufman-Szymczyk, A.; Jalmuzna, J.; Lubecka-Gajewska, K. Soy-derived isoflavones as chemo-preventive agents targeting multiple signalling pathways for cancer prevention and therapy. Br. J. Pharmacol. 2025, 182, 2259–2286. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, S.Y.; Hyun, J.W.; Min, S.W.; Kim, D.H.; Kim, H.S. Glycitein inhibits glioma cell invasion through down-regulation of MMP-3 and MMP-9 gene expression. Chem.-Biol. Interact. 2010, 185, 18–24. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Liu, C.; Liu, C.; Zhang, Y. Extraction and isolation of potential anti-stroke compounds from black soybean (Glycine max, L. Merrill) guided by in vitro, PC12 cell model. J. Funct. Foods 2017, 31, 295–303. [Google Scholar] [CrossRef]
- Rani, R.; Kumar, V. Recent Update on Human Lactate Dehydrogenase Enzyme 5 (hLDH5) Inhibitors: A Promising Approach for Cancer Chemotherapy. J. Med. Chem. 2015, 59, 487. [Google Scholar] [CrossRef]
- Valachovicova, T.; Slivova, V.; Bergman, H.; Shuherk, J.; Sliva, D. Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways. Int. J. Oncol. 2004, 25, 1389–1395. [Google Scholar]
- Zhang, B.; Su, J.; Bai, Y.; Li, J.; Liu, Y. Inhibitory effects of O-methylated isoflavone glycitein on human breast cancer SKBR-3 cells. Int. J. Clin. Exp. Pathol. 2015, 8, 7809–7817. [Google Scholar]
- Boutas, I.; Kontogeorgi, A.; Dimitrakakis, C.; Kalantaridou, S.N. Soy Isoflavones and Breast Cancer Risk: A Meta-analysis. Vivo 2022, 36, 556–562. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, J.; Liu, J.; Wang, Y. Innovating non-small cell lung cancer treatment with novel TM-GL/NPs nanoparticles for Glycitin delivery. Cell Biol. Toxicol. 2025, 41, 41. [Google Scholar] [CrossRef]
- Smeriglio, A.; Calderaro, A.; Denaro, M.; Laganà, G.; Bellocco, E. Effects of Isolated Isoflavones Intake on Health. Curr. Med. Chem. 2019, 26, 5094–5107. [Google Scholar] [CrossRef]
- Li, R.; Robinson, M.; Ding, X.; Geetha, T.; Al-Nakkash, L.; Broderick, T.L.; Babu, J.R. Genistein: A focus on several neurodegenerative diseases. J. Food Biochem. 2022, 46, e14155. [Google Scholar] [CrossRef]
- Gleason, C.E.; Fischer, B.L.; Dowling, N.M.; Setchell, K.D.; Atwood, C.S.; Carlsson, C.M.; Asthana, S. Cognitive Effects of Soy Isoflavones in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2015, 47, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Gao, R.; Lv, J.; Chen, Y.; Li, S.; Zhang, L.; Zhang, N.; Wang, Y.; Fan, B.; Liu, X.; et al. Neuroprotective effects of soy isoflavones on chronic ethanol-induced dementia in male ICR mice. Food Funct. 2020, 11, 10011–10021. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wang, Y.; Wang, D.; Zhang, L.; Lv, J.; Jiang, N.; Fan, B.; Liu, X.; Wang, F. Neuroprotective Effects of Soy Isoflavones on Scopolamine-Induced Amnesia in Mice. Nutrients 2018, 10, 853. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.J.; Huang, Z.P.; Yang, W.J.; Zou, Y.X.; Cai, J.P. Effect of Daidzein intravitreal injection on optic nerve injury in rats. Int. Eye Sci. 2014, 14, 1378–1381. [Google Scholar] [CrossRef]
- Prajapati, R.; Park, S.E.; Park, H.J.; Jung, H.A.; Choi, J.S. Identification of a Potent and Selective Human Monoamine Oxidase-A Inhibitor, Glycitein, an Isoflavone Isolated from Pueraria lobata Flowers. ACS Food Sci. Technol. 2021, 1, 538–550. [Google Scholar] [CrossRef]
- Zielonka, J.; Gebicki, J.; Grynkiewicz, G. Radical scavenging properties of genistein. Free Radic. Biol. Med. 2003, 35, 958–965. [Google Scholar] [CrossRef]
- Dong, N.; Yang, Z.L. Glycitein exerts neuroprotective effects in Rotenone-triggered oxidative stress and apoptotic cell death in the cellular model of Parkinson’s disease. Acta Biochim. Pol. 2022, 69, 447–452. [Google Scholar] [CrossRef]
- Diksha; Singh, L. Glycitein prevents reserpine-induced depression and associated comorbidities in mice: Modulation of lipid peroxidation and TNF-α levels. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 6153–6163. [Google Scholar] [CrossRef]
- Viña, J.; Borrás, C.; Mas-Bargues, C. Genistein, A Phytoestrogen, Delays the Transition to Dementia in Prodromal Alzheimer’s Disease Patients. J. Alzheimer’s Dis. 2024, 101, S275–S283. [Google Scholar] [CrossRef] [PubMed]
- Bax, E.N.; Cochran, K.E.; Mao, J.; Wiedmeyer, C.E.; Rosenfeld, C.S. Opposing effects of S-equol supplementation on metabolic and behavioral parameters in mice fed a high-fat diet. Nutr. Res. 2019, 64, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Xicoy, H.; Wieringa, B.; Martens, G.J. The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Mol. Neurodegener. 2017, 12, 10. [Google Scholar] [CrossRef] [PubMed]
Pre-Extraction Methods | Extraction Methods | Extraction Conditions | Purification Methods | Reference |
---|---|---|---|---|
- | Extracted with hot water | 110 °C and 641 psig (4520 kPa) over 2.3 h of extraction | Solid-phase Amberlite XAD16-HP resin adsorption | [14] |
Sonication- assisted extraction | Extracted with hot water | Methanol/water (9:1, v/v) using sonication for 60 min at room temperature | Acquity UPLC BEH C18 column and methanol containing 0.25% (v/v) acetic acid | [15] |
- | Extracted with organic solvent | Methanol/water (6:1, v/v) using sonication | D101 resin-packed column was selected at the bed volume (BV) of 200 mL, feed volume of 3.75 BV, flow rate of 1.5 BV/h | [16] |
Microwave- assisted extraction | Extracted with microwave assisted | ACN/water (4:1, v/v), microwave power of 600 W, extraction time of 1 min | C18 high-speed column under isocratic conditions | [17] |
- | Extracted with ultrasonic assisted | Solvent: 10 mL 80% EtOH Temperature: 22 °C 80% MeOH, 80% MeOH and 80% EtOH | - | [18] |
Ultrasound- assisted extraction | Extracted with ultrasonic assisted | 50% ethanol at 60 degrees C using ultrasound-assisted extraction in 20 min. | - | [19] |
Pressurize- assisted extraction | Extracted with pressurized solution | methanol (MeOH)/water (80:20, v/v) in a 75 °C oven for 2 h, and hydrolysis with pressurized solution at room temperature for 10 min | Integration of solid–liquid and liquid–liquid extractions by using aqueous micellar two-phase systems | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Feng, Y.; Xie, X.; Zhang, Y. Glycitin in Soy Beans: A Mine of Their Structures, Functions, and Potential Applications. Foods 2025, 14, 2940. https://doi.org/10.3390/foods14172940
Wu H, Feng Y, Xie X, Zhang Y. Glycitin in Soy Beans: A Mine of Their Structures, Functions, and Potential Applications. Foods. 2025; 14(17):2940. https://doi.org/10.3390/foods14172940
Chicago/Turabian StyleWu, Hongqiang, Yanyu Feng, Xianyang Xie, and Yi Zhang. 2025. "Glycitin in Soy Beans: A Mine of Their Structures, Functions, and Potential Applications" Foods 14, no. 17: 2940. https://doi.org/10.3390/foods14172940
APA StyleWu, H., Feng, Y., Xie, X., & Zhang, Y. (2025). Glycitin in Soy Beans: A Mine of Their Structures, Functions, and Potential Applications. Foods, 14(17), 2940. https://doi.org/10.3390/foods14172940