UHPLC-MS/MS-Based Metabolomics Identifies Freshness Biomarkers and Temporal Spoilage Threshold in Refrigerated Goose Meat
Abstract
1. Introduction
2. Materials and Methods
2.1. Bird Handling
2.2. Meat Sampling and Storage
2.3. Meat Quality Measurements
2.4. Metabolite Extraction
2.5. Ultra Performance Liquid Chromatography Conditions
2.6. ESI-QTRAP-MS/MS
2.7. Metabolite Identification and Classification of Targeted Classes
2.8. Statistical Analysis
3. Results and Discussion
3.1. Meat Quality Attributes
3.2. Quality Control and PCA of Components in Refrigerated Goose Meat
3.3. Screening and Identifying Differential Metabolites
3.4. Screening Biomarkers Related to Freshness in Refrigerated Goose Meat
3.5. Evolution of the Differential Metabolites During the Refrigeration of Goose Meat
3.5.1. Animo Acids and Their Metabolomics
3.5.2. Nucleotides and Their Metabolites
3.5.3. Lipid Metabolites
3.5.4. Carboxylic Acids and Organic Acids
3.5.5. Bioamines, Coenzymes and Vitamins
3.5.6. The Potential Metabolism Process of Goose Meat During Refrigeration
3.5.7. Practical Implications and Future Perspectives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, L.; Du, L.; Sun, Y.; Fan, X.; Zhou, C.; He, J.; Pan, D. Effect of Lentinan on Lipid Oxidation and Quality Change in Goose Meatballs during Cold Storage. Foods 2022, 11, 1055. [Google Scholar] [CrossRef]
- Orkusz, A.; Wolańska, W.; Krajinska, U. The Assessment of Changes in the Fatty Acid Profile and Dietary Indicators Depending on the Storage Conditions of Goose Meat. Molecules 2021, 26, 5122. [Google Scholar] [CrossRef]
- Casaburi, A.; Piombino, P.; Nychas, G.J.; Villani, F.; Ercolini, D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. 2015, 45, 83–102. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Zhang, L.; Chen, A.; Yang, S.; Xu, Z. Identification of novel biomarkers in chilled and frozen chicken using metabolomics profiling and its application. Food Chem. 2022, 393, 133334. [Google Scholar] [CrossRef]
- Arshad, M.S.; Sohaib, M.; Ahmad, R.S.; Nadeem, M.T.; Imran, A.; Arshad, M.U.; Amjad, Z. Ruminant meat flavor influenced by different factors with special reference to fatty acids. Lipids Health Dis. 2018, 17, 223. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, Z.; Weng, K.; Zhang, Y.; Zhang, Y.; Chen, G.; Xu, Q. Effect of chilled storage period on the volatile organic compounds and bacterial community in goose meat. Food Chem. X 2024, 23, 101685. [Google Scholar] [CrossRef] [PubMed]
- Durak-Dados, A.; Michalski, M.; Osek, J. Histamine and Other Biogenic Amines in Food. J. Vet. Res. 2020, 64, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.; Zhang, M.; Shan, Y.; Liu, Y.; Tu, Y.; Ji, G.; Shu, J. A comprehensive analysis of meat quality degradation and identification of spoilage markers in chicken during refrigerated storage using multi-method approach. Food Chem. 2025, 483, 144316. [Google Scholar] [CrossRef] [PubMed]
- Dadáková, E.; Pelikánová, T.; Kalač, P. Contents of biologically active polyamines in duck meat and giblets after slaughter and their changes during meat storage and cooking. Food Res. Int. 2012, 48, 28–33. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Role of Lipids in Food Flavor Generation. Molecules 2022, 27, 5014. [Google Scholar] [CrossRef]
- GB/T 36784-2018; Yangzhou Goose. State Administration for Market Regulation: Beijing, China, 2018.
- Xing, T.; Wang, C.; Zhao, X.; Dai, C.; Zhou, G.; Xu, X. Proteome Analysis Using Isobaric Tags for Relative and Absolute Analysis Quantitation (iTRAQ) Reveals Alterations in Stress-Induced Dysfunctional Chicken Muscle. J. Agric. Food Chem. 2017, 65, 2913–2922. [Google Scholar] [CrossRef]
- Anderson, S. Determination of fat, moisture, and protein in meat and meat products by using the FOSS FoodScan Near-Infrared Spectrophotometer with FOSS Artificial Neural Network Calibration Model and Associated Database: Collaborative study. J. AOAC Int. 2007, 90, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- GB 5009.228-2016; National Food Safety Standard—Determination of Volatile Basic Nitrogen in Foods. China Standards Press: Beijing, China, 2016.
- Calnan, H.B.; Jacob, R.H.; Pethick, D.W.; Gardner, G.E. Selection for intramuscular fat and lean meat yield will improve the bloomed colour of Australian lamb loin meat. Meat Sci. 2017, 131, 187–195. [Google Scholar] [CrossRef]
- Nastiti, P.W.; Bintoro, N.; Karyadi, J.N.W.; Rahayoe, S. Kinetics Study of Chicken Breast Meat (Pectoralis major) Color Changes Measured Using the TCS 3200 Color Sensor during Storage at Room Temperature. Key Eng. Mater. 2022, 928, 103–110. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, J.; Zhou, H.; Lu, A.; Xu, B. A comprehensive insight into the effects of microbial spoilage, myoglobin autoxidation, lipid oxidation, and protein oxidation on the discoloration of rabbit meat during retail display. Meat Sci. 2021, 172, 108359. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Dai, C.; Bassey, A.P.; Tang, C.; Han, Y.; Wang, C.; Zhou, G. Identification of Potential Peptide Marker(s) for Evaluating Pork Meat Freshness via Mass Spectrometry-Based Peptidomics during Storage under Different Temperatures. Foods 2022, 11, 1144. [Google Scholar] [CrossRef]
- Alarcon-Rojo, A.D.; Carrillo-Lopez, L.M.; Reyes-Villagrana, R.; Huerta-Jiménez, M.; Garcia-Galicia, I.A. Ultrasound and meat quality: A review. Ultrason. Sonochem. 2019, 55, 369–382. [Google Scholar] [CrossRef]
- Calo-Mata, P.; Arlindo, S.; Boehme, K.; Miguel, T.D.; Pascoal, A.; Barros-Velazquez, J. Current Applications and Future Trends of Lactic Acid Bacteria and their Bacteriocins for the Biopreservation of Aquatic Food Products. Food Bioprocess Technol. 2008, 1, 43–63. [Google Scholar] [CrossRef]
- Li, O.; Li, D.; Oin, N.; Hong, H.; Luo, Y. Comparative studies of quality changes in white and dark muscles from common carp (Cyprinus carpio) during refrigerated (4°C) storage. Int. J. Food Sci. Technol. 2016, 51, 1130–1139. [Google Scholar] [CrossRef]
- Swatland, H.J. How pH causes paleness or darkness in chicken breast meat. Meat Sci. 2008, 80, 396–400. [Google Scholar] [CrossRef]
- Alvarado, C.Z.; Sams, A.R. Turkey carcass chilling and protein denaturation in the development of pale, soft, and exudative meat. Poult. Sci. 2004, 83, 1039–1046. [Google Scholar] [CrossRef]
- GB 2710-1996; National Hygienic Standard for Fresh (Frozen) Poultry Meat. China Standards Press: Beijing, China, 1996.
- GB 10148-88; Hygienic Standard for Fresh (Frozen) Duck and Goose Meat. China Standards Press: Beijing, China, 1988.
- Zhan, F.; Li, Z.; Pan, D.; Benjakul, S.; Li, X.; Zhang, B. Investigating the migration hypothesis: Effects of trypsin-like protease on the quality of muscle proteins of red shrimp (Solenocera crassicornis) during cold storage. Food Chem. X 2023, 20, 100906. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Ma, D.; Kim, Y.H.B. Proteolytic changes of myofibrillar and small heat shock proteins in different bovine muscles during aging: Their relevance to tenderness and water-holding capacity. Meat Sci. 2020, 163, 108090. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wang, X.; Yang, H.; Lin, R.; Wang, H.; Tan, M. Characterization of moisture migration of beef during refrigeration storage by low-field NMR and its relationship to beef quality. J. Sci. Food Agric. 2020, 100, 1940–1948. [Google Scholar] [CrossRef]
- Manheem, K.; Adiamo, O.; Roobab, U.; Mohteshamuddin, K.; Hassan, H.M.; Nirmal, N.P.; Maqsood, S. A Comparative Study on Changes in Protein, Lipid and Meat-Quality Attributes of Camel Meat, Beef and Sheep Meat (Mutton) during Refrigerated Storage. Animals 2023, 13, 904. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.C.; Lin, D.; Cao, K.Y.; Sun, L.C.; Chen, Y.L.; Weng, L.; Zhang, L.J.; Cao, M.J. Properties of Pacific white shrimp (Litopenaeus vannamei) collagen and its degradation by endogenous proteinases during cold storage. Food Chem. 2023, 419, 136071. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Y.; Liu, S. Effect of refrigeration on the collagen and texture characteristics of yak meat. Can. J. Anim. Sci. 2021, 102, 175–183. [Google Scholar] [CrossRef]
- Ellies-Oury, M.P.; Chavent, M.; Conanec, A.; Bonnet, M.; Picard, B.; Saracco, J. Statistical model choice including variable selection based on variable importance: A relevant way for biomarkers selection to predict meat tenderness. Sci. Rep. 2019, 9, 10014. [Google Scholar] [CrossRef]
- Díaz-Uriarte, R.; de Andrés, S.A. Gene selection and classification of microarray data using random forest. BMC Bioinform. 2006, 7, 3. [Google Scholar] [CrossRef]
- Wagner, J.R.; Hu, C.C.; Ames, B.N. Endogenous oxidative damage of deoxycytidine in DNA. Proc. Natl. Acad. Sci. USA 1992, 89, 3380–3384. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, H.; Chen, L.; Zhang, S.; Wu, P.; Xie, K.; Pan, Z.; Zhang, G.; Dai, G.; Wu, H.; et al. Characterization of chilled chicken spoilage using an integrated microbiome and metabolomics analysis. Food Res. Int. 2021, 144, 110328. [Google Scholar] [CrossRef]
- Dervisevic, M.; Custiuc, E.; Çevik, E.; Şenel, M. Construction of novel xanthine biosensor by using polymeric media-tor/MWCNT nanocomposite layer for fish freshness detection. Food Chem. 2015, 181, 277–283. [Google Scholar] [CrossRef]
- Miao, D.; Wu, X.; Zuo, K.; Chen, J.; Yang, Y.; Pu, J.; Yang, H.; Wang, Z. Non-Targeted Metabolomics Analysis of Small Molecular Metabolites in Refrigerated Goose Breast Meat. Vet. Sci. 2024, 11, 637. [Google Scholar] [CrossRef]
- Hernández-Cázares, A.S.; Aristoy, M.C.; Toldrá, F. Hypoxanthine-based enzymatic sensor for determination of pork meat freshness. Food Chem. 2010, 123, 949–954. [Google Scholar] [CrossRef]
- Boughattas, F.; Vilkova, D.; Kondratenko, E.; Karoui, R. Targeted and untargeted techniques coupled with chemometric tools for the evaluation of sturgeon (Acipenser gueldenstaedtii) freshness during storage at 4 °C. Food Chem. 2020, 312, 126000. [Google Scholar] [CrossRef] [PubMed]
- Fujii, J.; Ito, J.I.; Zhang, X.; Kurahashi, T. Unveiling the roles of the glutathione redox system in vivo by analyzing genetically modified mice. J. Clin. Biochem. Nutr. 2011, 49, 70–78. [Google Scholar] [CrossRef]
- Michiels, J.; Tagliabue, M.M.; Akbarian, A.; Ovyn, A.; De Smet, S. Oxidative status, meat quality and fatty acid profile of broiler chickens reared under free-range and severely feed-restricted conditions compared with conventional indoor rearing. Avian Biol. Res. 2014, 7, 74–82. [Google Scholar] [CrossRef]
- Wen, D.; Liu, Y.; Yu, Q. Metabolomic approach to measuring quality of chilled chicken meat during storage. Poult. Sci. 2020, 99, 2543–2554. [Google Scholar] [CrossRef]
- Abdullah, A.Y.; Al-Nabulsi, A.; Jamama’h, M.; Khataybeh, B.; Al-Ghadi, M. Microbial Shelf Life and Quality Assessment of Broiler Breast Meat: The Role of Cold Storage and Carcass Weight. Foods 2025, 14, 640. [Google Scholar] [CrossRef] [PubMed]
- Triki, M.; Herrero, A.M.; Jiménez-Colmenero, F.; Ruiz-Capillas, C. Quality Assessment of Fresh Meat from Several Species Based on Free Amino Acid and Biogenic Amine Contents during Chilled Storage. Foods 2018, 7, 132. [Google Scholar] [CrossRef]
- Pompella, A.; Corti, A. Editorial: The changing faces of glutathione, a cellular protagonist. Front. Pharmacol. 2015, 6, 98. [Google Scholar] [CrossRef]
- Utrera, M.; Estévez, M. Oxidation of myofibrillar proteins and impaired functionality: Underlying mechanisms of the carbonylation pathway. J. Agric. Food Chem. 2012, 60, 8002–8011. [Google Scholar] [CrossRef]
- Cho, S.; Seol, K.; Kang, S.; Kim, Y.; Seo, H.; Lee, W.; Kim, J.; Van Ba, H. Comparison of Tastes-Related Components and Eating Quality between Hanwoo Steer and Cow Longissimus thoracis Muscles. Food Sci. Anim. Resour. 2020, 40, 908–923. [Google Scholar] [CrossRef]
- Roncalés, P.; Ceña, P.; Beltrán, J.A.; Jaime, I. Ultrasonication of lamb skeletal muscle fibers enhances postmortem proteolysis. Z. Lebensm. Unters. Forsch. 1993, 196, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.S.; Wu, S.Y.; Stromer, M.H.; Chou, R.R. Calpain activation and proteolysis in postmortem goose muscles. Anim. Sci. J. 2020, 91, 13423. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Regenstein, J.M.; Luo, Y. The importance of ATP-related compounds for the freshness and flavor of post-mortem fish and shellfish muscle: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1787–1798. [Google Scholar] [CrossRef]
- Howgate, P. A review of the kinetics of degradation of inosine monophosphate in some species of fish during chilled storage. Int. J. Food Sci. Technol. 2006, 41, 341–353. [Google Scholar] [CrossRef]
- Hou, W.; Yue, Q.; Liu, W.; Wu, J.; Yi, Y.; Wang, H. Characterization of spoilage bacterial communities in chilled duck meat treated by kojic acid. Food Sci. Hum. Wellness 2021, 10, 72–77. [Google Scholar] [CrossRef]
- Wazir, H.; Chay, S.Y.; Ibadullah, W.Z.W.; Zarei, M.; Mustapha, N.A.; Saari, N. Lipid oxidation and protein co-oxidation in ready-to-eat meat products as affected by temperature, antioxidant, and packaging material during 6 months of storage. RSC Adv. 2021, 11, 38565–38577. [Google Scholar] [CrossRef]
- Tian, H.X.; Zhang, Y.J.; Chen, C.; Qin, L.; Xiao, L.Z.; Fei, Y.G.; Yu, H.Y. Assessment of main factor causing sensory quality defects in chicken seasoning during storage. J. Sci. Food Agric. 2018, 98, 5807–5815. [Google Scholar] [CrossRef]
- Zhang, M.; Su, R.; Corazzin, M.; Hou, R.; Zhang, Y.; Sun, L.; Hu, G.; Dou, l.; Guo, Y.; Su, L.; et al. Lipid transformation during postmortem chilled aging in Mongolian sheep using lipidomics. Food Chem. 2023, 405, 134882. [Google Scholar] [CrossRef]
- Williamson, J.; Ryland, D.; Suh, M.; Aliani, M. The effect of chilled conditioning at 4°C on selected water and lipid-soluble flavor precursors in Bison bison longissimus dorsi muscle and their impact on sensory characteristics. Meat Sci. 2014, 96, 136–146. [Google Scholar] [CrossRef]
- Tatiyaborworntham, N.; Oz, F.; Richards, M.P.; Wu, H. Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products. Food Chem. X 2022, 14, 100317. [Google Scholar] [CrossRef]
- Refsgaard, H.H.; Brockhoff, P.M.; Jensen, B. Free polyunsaturated fatty acids cause taste deterioration of salmon during frozen storage. J. Agric. Food Chem. 2000, 48, 3280–3285. [Google Scholar] [CrossRef]
- Johnson, D.R.; Decker, E.A. The role of oxygen in lipid oxidation reactions: A review. Annu. Rev. Food Sci. Technol. 2015, 6, 171–190. [Google Scholar] [CrossRef] [PubMed]
- Subbaraj, A.K.; Kim, Y.H.; Fraser, K.; Farouk, M.M. A hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) based metabolomics study on colour stability of ovine meat. Meat Sci. 2016, 117, 163–172. [Google Scholar] [CrossRef]
- Liu, H.; Wei, B.; Tang, Q.; Chen, C.; Li, Y.; Yang, Q.; Wang, J.; Li, J.; Qi, J.; Xi, Y.; et al. Non-target metabolomics reveals the changes of small molecular substances in duck breast meat under different preservation time. Food Res. Int. 2022, 161, 111859. [Google Scholar] [CrossRef]
- Shi, L.; Yang, L.; You, J.; Wu, W.; Xiong, G.; Wang, L.; Yin, T. Integrated Microbiome and Metabolomics Insights into Meat Quality Changes in Rice-Field Eel Slices During Refrigeration Storage: Effects of ε-Polylysine, Vitamin C, Epigallocatechin Gallate, and Phloretin. Foods 2025, 14, 2236. [Google Scholar] [CrossRef] [PubMed]
- Heir, E.; Solberg, L.E.; Jensen, M.R.; Skaret, J.; Grøvlen, M.S.; Holck, A.L. Improved microbial and sensory quality of chicken meat by treatment with lactic acid, organic acid salts and modified atmosphere packaging. Int. J. Food Microbiol. 2022, 362, 109498. [Google Scholar] [CrossRef] [PubMed]
- Ueda, S.; Yoshida, Y.; Kebede, B.; Kitamura, C.; Sasaki, R.; Shinohara, M.; Fukuda, I.; Shirai, Y. New Implications of Metabolites and Free Fatty Acids in Quality Control of Crossbred Wagyu Beef during Wet Aging Cold Storage. Metabolites 2024, 14, 95. [Google Scholar] [CrossRef]
- Shi, Y.; Pu, D.; Zhou, X.; Zhang, Y. Recent Progress in the Study of Taste Characteristics and the Nutrition and Health Properties of Organic Acids in Foods. Foods 2022, 11, 3408. [Google Scholar] [CrossRef]
- Tze-Kuei, C.; Lin, J.F.; Shiau, C.Y. Changes in Extractive Components and Glycogen in the Edible Meat of Hard Clam Meretrix lusoria During Storage at Different Temperatures. Fish. Sci. 2011, 64, 115–120. [Google Scholar] [CrossRef]
- Zhou, Z.; Ren, F.; Huang, Q.; Cheng, H.; Cun, Y.; Ni, Y.; Wu, W.; Xu, B.; Yang, Q.; Yang, L. Characterization and interactions of spoilage of Pseudomonas fragi C6 and Brochothrix thermosphacta S5 in chilled pork based on LC-MS/MS and screening of potential spoilage biomarkers. Food Chem. 2024, 444, 138562. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, M.; Roszko, M.; Hać-Szymańczuk, E.; Cegiełka, A.; Adamczak, L.; Florowski, T.; Pietrzak, D.; Bryła, M.; Świder, O. Changes in the microbiological quality and content of biogenic amines in chicken fillets packed using various techniques and stored under different conditions. Food Microbiol. 2022, 102, 103920. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of Biogenic Amines on Food Quality and Safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, W.; Łukasiewicz-Mierzejewska, M.; Damaziak, K.; Bień, D. Biogenic Amines in Poultry Meat and Poultry Products: Formation, Appearance, and Methods of Reduction. Animals 2022, 12, 1577. [Google Scholar] [CrossRef]
- Naquet, P.; Kerr, E.W.; Vickers, S.D.; Leonardi, R. Regulation of coenzyme A levels by degradation: The ‘Ins and Outs’. Prog. Lipid Res. 2020, 78, 101028. [Google Scholar] [CrossRef]
- El-Nour, K.M.A.; Salam, E.T.A.; Soliman, H.M.; Orabi, A.S. Gold Nanoparticles as a Direct and Rapid Sensor for Sensitive Analytical Detection of Biogenic Amines. Nanoscale Res. Lett. 2017, 12, 231. [Google Scholar] [CrossRef]
- Dong, W.; Feng, R.; Pang, J.; Wei, K.; Li, J.; Sun, J.; Wang, S.; Mao, X. An intelligent colorimetric paper-based hypoxanthine biosensor enabled by smartphone and dual-enzyme system for efficient shrimp freshness monitoring. Food Chem. 2025, 491, 145112. [Google Scholar] [CrossRef]
- Wang, G.; Sun, J.; Yao, Y.; An, X.; Zhang, H.; Chu, G.; Jiang, S.; Guo, Y.; Sun, X.; Liu, Y. Detection of Inosine Monophosphate (IMP) in Meat Using Double-Enzyme Sensor. Food Anal. Methods 2020, 13, 420–430. [Google Scholar] [CrossRef]
- Pandey, G.; Joshi, A. Riboflavin as an internal marker for spoilage and adulteration detection in milk. Food Chem. 2021, 357, 129742. [Google Scholar] [CrossRef] [PubMed]
Item | 1~28 d | 29~70 d |
---|---|---|
Ingredients, % | ||
Corn | 64.0 | 61.5 |
Soybean meal | 27.0 | 13.6 |
Fish meal | 3.0 | 3.0 |
Alfalfa meal | 2.0 | 16.0 |
Soybean oil | 0.0 | 2.0 |
Dicalcium phosphate | 1.8 | 1.9 |
Limestone | 0.9 | 0.8 |
Salt | 0.3 | 0.2 |
Vitamin and trace mineral mix | 1.0 | 1.0 |
Nutrient levels | ||
Apparent ME, KJ/kg | 11.2 | 10.85 |
Crude protein, % | 18.0 | 15.75 |
Calcium, % | 0.8 | 0.8 |
Total phosphorus, % | 0.42 | 0.37 |
Crude fiber, % | 4.85 | 6.0 |
Lys, % | 0.9 | 0.65 |
Met, % | 0.4 | 0.33 |
Sulphur-amino acid, % | 0.79 | 0.56 |
Trp, % | 0.17 | 0.13 |
Thr, % | 0.8 | 0.8 |
Na, % | 0.3 | 0.3 |
Cl, % | 0.25 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Cao, Z.; Bao, Q.; Tang, Q.; Bu, Z.; Chen, G.; Li, B.; Xu, Q. UHPLC-MS/MS-Based Metabolomics Identifies Freshness Biomarkers and Temporal Spoilage Threshold in Refrigerated Goose Meat. Foods 2025, 14, 2950. https://doi.org/10.3390/foods14172950
Gao W, Cao Z, Bao Q, Tang Q, Bu Z, Chen G, Li B, Xu Q. UHPLC-MS/MS-Based Metabolomics Identifies Freshness Biomarkers and Temporal Spoilage Threshold in Refrigerated Goose Meat. Foods. 2025; 14(17):2950. https://doi.org/10.3390/foods14172950
Chicago/Turabian StyleGao, Wen, Zhengfeng Cao, Qiang Bao, Qingping Tang, Zhu Bu, Guohong Chen, Bichun Li, and Qi Xu. 2025. "UHPLC-MS/MS-Based Metabolomics Identifies Freshness Biomarkers and Temporal Spoilage Threshold in Refrigerated Goose Meat" Foods 14, no. 17: 2950. https://doi.org/10.3390/foods14172950
APA StyleGao, W., Cao, Z., Bao, Q., Tang, Q., Bu, Z., Chen, G., Li, B., & Xu, Q. (2025). UHPLC-MS/MS-Based Metabolomics Identifies Freshness Biomarkers and Temporal Spoilage Threshold in Refrigerated Goose Meat. Foods, 14(17), 2950. https://doi.org/10.3390/foods14172950