Development of Fermentation Strategies for Quality Mild Coffee Production (Coffea arabica L.) Based on Oxygen Availability and Processing Time
Abstract
1. Introduction
2. Materials and Methods
2.1. Coffee Processing
2.2. Monitoring of Fermentation Processes
2.3. Microbiological Analysis
2.4. Physical Quality of Green Coffee Beans
2.5. Determination of Sensorial Quality of the Coffee Beverage
2.6. Statistical Analysis
3. Results
3.1. Fermentation Processes Behavior
3.2. Bacterial and Fungal Populations Identified
3.3. Physicochemical Quality of Green Coffee Beans
3.4. Sensorial Quality of the Coffee Beverage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.; Brinkley, S.; Smith, E.; Sela, A.; Theisen, M.; Thibodeau, C.; Warne, T.; Anderson, E.; Van Dusen, N.; Giuliano, P.; et al. Climate Change and Coffee Quality: Systematic Review on the Effects of Environmental and Management Variation on Secondary Metabolites and Sensory Attributes of Coffea Arabica and Coffea Canephora. Front. Plant Sci. 2021, 12, 708013. [Google Scholar] [CrossRef]
- Da Silva Oliveira, E.C.; da Luz, J.M.R.; de Castro, M.G.; Filgueiras, P.R.; Guarçoni, R.C.; de Castro, E.V.R.; da Silva, M.D.C.S.; Pereira, L.L. Chemical and Sensory Discrimination of Coffee: Impacts of the Planting Altitude and Fermentation. Eur. Food Res. Technol. 2022, 248, 659–669. [Google Scholar] [CrossRef]
- Getachew, M.; Tolassa, K.; De Frenne, P.; Verheyen, K.; Tack, A.J.M.; Hylander, K.; Ayalew, B.; Boeckx, P. The Relationship between Elevation, Soil Temperatures, Soil Chemical Characteristics, and Green Coffee Bean Quality and Biochemistry in Southwest Ethiopia. Agron. Sustain. Dev. 2022, 42, 61. [Google Scholar] [CrossRef]
- Velásquez, S.; Banchón, C. Influence of Pre-and Post-Harvest Factors on the Organoleptic and Physicochemical Quality of Coffee: A Short Review. J. Food Sci. Technol. 2023, 60, 2526–2538. [Google Scholar] [CrossRef]
- Urugo, M.M.; Tola, Y.B.; Kebede, B.T.; Ogah, O.; Urugo, M.M.; Tola, Y.B.; Kebede, B.T.; Ogah, O. Insight into the Effects of Environmental Variables on the Physicochemical Characteristics and Biochemical Composition of Green Arabica Coffee. Beverage Plant Res. 2024, 4, e021. [Google Scholar] [CrossRef]
- Cortés-Macías, E.T.; López, C.F.; Gentile, P.; Girón-Hernández, J.; López, A.F. Impact of Post-Harvest Treatments on Physicochemical and Sensory Characteristics of Coffee Beans in Huila, Colombia. Postharvest Biol. Technol. 2022, 187, 111852. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Zhao, J. Coffee Fermentation: Expedition from Traditional to Controlled Process and Perspectives for Industrialization. Appl. Food Res. 2023, 3, 100253. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Luiz Lima Bertarini, P.; Rodrigues do Amaral, L.; de Souza Gomes, M.; Maciel de Oliveira, L.; Diniz Santos, L. Coinoculation of Saccharomyces cerevisiae and Bacillus amyloliquefaciens in Solid-State and Submerged Coffee Fermentation: Influences on Chemical and Sensory Compositions. LWT 2024, 202, 116299. [Google Scholar] [CrossRef]
- Cortés, V.H.; Bahamón Monje, A.F.; Bustos Vanegas, J.D.; Guzmán, N.G. Challenges in Coffee Fermentation Technologies: Bibliometric Analysis and Critical Review. J. Food Sci. Technol. 2024, 61, 2223–2234. [Google Scholar] [CrossRef]
- Rocha, R.A.R.; da Cruz, M.A.D.; Silva, L.C.F.; Costa, G.X.R.; Amaral, L.R.; Bertarini, P.L.L.; Gomes, M.S.; Santos, L.D. Evaluation of Arabica Coffee Fermentation Using Machine Learning. Foods 2024, 13, 454. [Google Scholar] [CrossRef]
- Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Contreras, G.F.; Cai, Z.; Moccand, C.; Weckx, S.; De Vuyst, L. Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality During Wet Coffee Processing. Front. Microbiol. 2019, 10, 2621. [Google Scholar] [CrossRef]
- Pothakos, V.; De Vuyst, L.; Zhang, S.J.; De Bruyn, F.; Verce, M.; Torres, J.; Callanan, M.; Moccand, C.; Weckx, S. Temporal Shotgun Metagenomics of an Ecuadorian Coffee Fermentation Process Highlights the Predominance of Lactic Acid Bacteria. Curr. Res. Biotechnol. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- Haile, M.; Kang, W.H. The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality. J. Food Qual. 2019, 2019, 4836709. [Google Scholar] [CrossRef]
- Azmi, N.; Abubakar, Y.; Widayat, H.; Nilda, C.; Yunika, M.; Andini, S.; Rahmi, F.; Muzaifa, M. What Is Carbonic Maceration Coffee? A Mini Review on Production and Quality. IOP Conf. Ser. Earth Environ. Sci. 2024, 1356, 012007. [Google Scholar] [CrossRef]
- Mahingsapun, R.; Tantayotai, P.; Panyachanakul, T.; Samosorn, S.; Dolsophon, K.; Jiamjariyatam, R.; Lorliam, W.; Srisuk, N.; Krajangsang, S. Enhancement of Arabica Coffee Quality with Selected Potential Microbial Starter Culture under Controlled Fermentation in Wet Process. Food Biosci. 2022, 48, 101819. [Google Scholar] [CrossRef]
- da Silva Vale, A.; Balla, G.; Rodrigues, L.R.S.; de Carvalho Neto, D.P.; Soccol, C.R.; de Melo Pereira, G.V. Understanding the Effects of Self-Induced Anaerobic Fermentation on Coffee Beans Quality: Microbiological, Metabolic, and Sensory Studies. Foods 2023, 12, 37. [Google Scholar] [CrossRef]
- Da Mota, M.C.B.; Batista, N.N.; Rabelo, M.H.S.; Ribeiro, D.E.; Borém, F.M.; Schwan, R.F. Influence of Fermentation Conditions on the Sensorial Quality of Coffee Inoculated with Yeast. Food Res. Int. 2020, 136, 109482. [Google Scholar] [CrossRef]
- Martins, P.M.M.; Batista, N.N.; da Cruz Pedrozo Miguel, M.G.; Simão, J.B.P.; Soares, J.R.; Schwan, R.F. Coffee Growing Altitude Influences the Microbiota, Chemical Compounds and the Quality of Fermented Coffees. Food Res. Int. 2020, 129, 108872. [Google Scholar] [CrossRef]
- Batista da Mota, M.C.; Batista, N.N.; Dias, D.R.; Schwan, R.F. Impact of Microbial Self-Induced Anaerobiosis Fermentation (SIAF) on Coffee Quality. Food Biosci. 2022, 47, 101640. [Google Scholar] [CrossRef]
- Braga, A.V.U.; Miranda, M.A.; Aoyama, H.; Schmidt, F.L. Study on Coffee Quality Improvement by Self-Induced Anaerobic Fermentation: Microbial Diversity and Enzymatic Activity. Food Res. Int. 2023, 165, 112528. [Google Scholar] [CrossRef]
- de Jesus Cassimiro, D.M.; Batista, N.N.; Fonseca, H.C.; Oliveira Naves, J.A.; Coelho, J.M.; Bernardes, P.C.; Dias, D.R.; Schwan, R.F. Wet Fermentation of Coffea canephora by Lactic Acid Bacteria and Yeasts Using the Self-Induced Anaerobic Fermentation (SIAF) Method Enhances the Coffee Quality. Food Microbiol. 2023, 110, 104161. [Google Scholar] [CrossRef]
- Ameca, G.M.; Cerrilla, M.E.O.; Córdoba, P.Z.; Cruz, A.D.; Hernández, M.S.; Haro, J.H. Chemical Composition and Antioxidant Capacity of Coffee Pulp. Ciênc. E Agrotecnologia 2018, 42, 307–313. [Google Scholar] [CrossRef]
- Da Silveira, J.S.; Mertz, C.; Morel, G.; Lacour, S.; Belleville, M.-P.; Durand, N.; Dornier, M. Alcoholic Fermentation as a Potential Tool for Coffee Pulp Detoxification and Reuse: Analysis of Phenolic Composition and Caffeine Content by HPLC-DAD-MS/MS. Food Chem. 2020, 319, 126600. [Google Scholar] [CrossRef] [PubMed]
- Tsigkou, K.; Demissie, B.A.; Hashim, S.; Ghofrani-Isfahani, P.; Thomas, R.; Mapinga, K.F.; Kassahun, S.K.; Angelidaki, I. Coffee Processing Waste: Unlocking Opportunities for Sustainable Development. Renew. Sustain. Energy Rev. 2025, 210, 115263. [Google Scholar] [CrossRef]
- Palumbo, J.M.C.; Martins, P.M.M.; Salvio, L.G.A.; Batista, N.N.; Ribeiro, L.S.; Borém, F.M.; Dias, D.R.; Schwan, R.F. Impact of Different Fermentation Times on the Microbiological, Chemical, and Sensorial Profile of Coffees Processed by Self-Induced Anaerobiosis Fermentation. Braz. J. Microbiol. 2024, 55, 2253–2266. [Google Scholar] [CrossRef]
- Borém, F.M.; Salvio, L.G.A.; Correa, J.L.G.; Alves, A.P.C.; Santos, C.M.D.; Haeberlin, L.; Cirillo, M.A.; Schwan, R.F. Influence of Fermentation Time and Inoculation of Starter Culture on the Chemical Composition of Fermented Natural Coffee Followed by Depulping. An. Acad. Bras. Ciênc. 2024, 96, e20240083. [Google Scholar]
- De Melo Pereira, G.V.; de Mello Sampaio, V.; Wiele, N.; da Silva Vale, A.; de Carvalho Neto, D.P.; de Souza, A.D.F.D.; Nogueira dos Santos, D.V.; Ruiz, I.R.; Rogez, H.; Soccol, C.R. How Yeast Has Transformed the Coffee Market by Creating New Flavors and Aromas through Modern Post-Harvest Fermentation Systems. Trends Food Sci. Technol. 2024, 151, 104641. [Google Scholar] [CrossRef]
- Jimenez, E.J.M.; Martins, P.M.M.; de Assis, J.G.R.; Batista, N.N.; de Oliveira Vilela, A.L.; da Rosa, S.D.V.F.; Dias, D.R.; Schwan, R.F. Self-Induced Anaerobiosis Fermentation in Coffees Inoculated with Yeast: Effect on Key Enzymes of the Germination Process and Its Relationship with the Decrease in Seed Germination. Food Res. Int. 2025, 199, 115376. [Google Scholar] [CrossRef]
- Revelo-Romo, D.M.; Hurtado Gutiérrez, N.H.; Hidalgo Troya, A.; Amaya-Gómez, C.V.; Flórez-Martínez, D.H.; Overmann, J.; Villegas Torres, M.F.; González Barrios, A.F. Omics Approaches to Explore the Coffee Fermentation Microecosystem and Its Effects on Cup Quality. Food Res. Int. 2025, 206, 116035. [Google Scholar] [CrossRef]
- Peñuela-Martínez, A.-E.; Tibaduiza-Vianchá, C.-A.; Morcillo, C.-A.; Restrepo-Rivera, M.-V. Enzymatic Mucilage Degradation from Coffea arabica L., for Washed Coffee Production. Biotecnol. Sect. Agropecu. Agroind. 2021, 19, 170–183. [Google Scholar] [CrossRef]
- Peñuela-Martínez, A.E.; Pabón, J.; Sanz-Uribe, J.R. Método fermaestro: Para determinar la finalización de la fermentación del mucílago de café. Av. Téc. Cenicafé 2013, 431, 1–8. [Google Scholar] [CrossRef]
- Peñuela-Martínez, A.E.; García-Duque, J.F.; Sanz-Uribe, J.R. Characterization of Fermentations with Controlled Temperature with Three Varieties of Coffee (Coffea arabica L.). Fermentation 2023, 9, 976. [Google Scholar] [CrossRef]
- DNeasy® PowerLyzer® PowerSoil® Kit Handbook, 2020. Available online: https://www.qiagen.com/at/resources/resourcedetail?id=329362e4-03e6-4ae1-9e4e-bbce41abe4b7&lang=en (accessed on 28 May 2025).
- Herlemann, D.P.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in Bacterial Communities along the 2000 Km Salinity Gradient of the Baltic Sea. ISME J. 2011, 5, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Peñuela-Martínez, A.E.; Velasquez-Emiliani, A.V.; Angel, C.A. Microbial Diversity Using a Metataxonomic Approach, Associated with Coffee Fermentation Processes in the Department of Quindío, Colombia. Fermentation 2023, 9, 343. [Google Scholar] [CrossRef]
- ISO 1446:2001; Green Coffee—Determination of Water Content—Basic Reference Method. Swizerland Institute for Standardization: Geneva, Swizerland, 2001. Available online: https://standards.iteh.ai/catalog/standards/iso/07fcf5b6-81bd-4d19-be30-fd2d3d7f96e1/iso-1446-2001 (accessed on 20 February 2025).
- AOAC 923.03; Official Methods of Analysis of Ash. Association of Official Analytical Chemists International Publisher: Gaithersburg, MD, USA, 1990.
- AOAC 942.15; Official Methods of Analysis of Titratable Acidity. Association of Official Analytical Chemists: Washington, DC, USA, 1990.
- De Freitas, M.N.; da Rosa, S.D.V.F.; Pereira, C.C.; Malta, M.R.; dos Santos Dias, C.T. Identification of Physiological Analysis Parameters Associated with Coffee Beverage Quality. Ciênc. E Agrotecnologia 2020, 44, e031019. [Google Scholar] [CrossRef]
- SCAA Protocols. Cupping Specialty Coffee; Specialty Coffee Association of America: Long Beach, CA, USA, 2015. [Google Scholar]
- SAS 9.4 Software Overview for the Customer. Available online: https://support.sas.com/software/94/ (accessed on 19 June 2025).
- Pregolini, V.B.; de Melo Pereira, G.V.; da Silva Vale, A.; de Carvalho Neto, D.P.; Soccol, C.R. Influence of Environmental Microbiota on the Activity and Metabolism of Starter Cultures Used in Coffee Beans Fermentation. Fermentation 2021, 7, 278. [Google Scholar] [CrossRef]
- Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Torres, J.; Falconi, C.; Moccand, C.; Weckx, S.; De Vuyst, L. Following Coffee Production from Cherries to Cup: Microbiological and Metabolomic Analysis of Wet Processing of Coffea Arabica. Appl. Environ. Microbiol. 2019, 85, e02635-18. [Google Scholar] [CrossRef]
- Cruz-O’Byrne, R.; Gamez-Guzman, A.; Piraneque-Gambasica, N.; Aguirre-Forero, S. Genomic Sequencing in Colombian Coffee Fermentation Reveals New Records of Yeast Species. Food Biosci. 2023, 52, 102415. [Google Scholar] [CrossRef]
- Lee, B.-H.; Huang, C.-H.; Liu, T.-Y.; Liou, J.-S.; Hou, C.-Y.; Hsu, W.-H. Microbial Diversity of Anaerobic-Fermented Coffee and Potential for Inhibiting Ochratoxin-Produced Aspergillus Niger. Foods 2023, 12, 2967. [Google Scholar] [CrossRef]
- Peñuela-Martínez, A.E.; Moreno-Riascos, S.; Medina-Rivera, R. Influence of Temperature-Controlled Fermentation on the Quality of Mild Coffee (Coffea arabica L.) Cultivated at Different Elevations. Agriculture 2023, 13, 1132. [Google Scholar] [CrossRef]
- Sulaiman, I.; Hasni, D. Microorganism Growth Profiles during Fermentation of Gayo Arabica Wine Coffee. IOP Conf. Ser. Earth Environ. Sci. 2022, 951, 012076. [Google Scholar] [CrossRef]
- Da Silva, M.D.C.S.; Veloso, T.G.R.; Brioschi Junior, D.; Bullergahn, V.B.; da Luz, J.M.R.; Menezes, K.M.S.; Guarçoni, R.C.; Kasuya, M.C.M.; Pereira, L.L. Bacterial Community and Sensory Quality from Coffee Are Affected along Fermentation under Carbonic Maceration. Food Chem. Adv. 2023, 3, 100554. [Google Scholar] [CrossRef]
- Cooney, C.L.; Wang, D.I.; Mateles, R.I. Measurement of Heat Evolution and Correlation with Oxygen Consumption During Microbial Growth. Biotechnol. Bioeng. 2000, 67, 691–703, reprinted in Biotechnol. Bioeng. 2000, 6, 269–281. [Google Scholar] [CrossRef]
- Hagman, A.; Piškur, J. A Study on the Fundamental Mechanism and the Evolutionary Driving Forces behind Aerobic Fermentation in Yeast. PLoS ONE 2015, 10, e0116942. [Google Scholar] [CrossRef]
- Cardoso, W.S.; Agnoletti, B.Z.; de Freitas, R.; de Abreu Pinheiro, F.; Pereira, L.L. Biochemical Aspects of Coffee Fermentation. In Quality Determinants in Coffee Production; Louzada Pereira, L., Rizzo Moreira, T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 149–208. [Google Scholar] [CrossRef]
- Cruz-O’Byrne, R.; Piraneque-Gambasica, N.; Aguirre-Forero, S. Lactic Acid Bacteria Diversity and Dynamics in Colombian Coffee Fermentation. Coffee Sci. 2023, 18, e182141. [Google Scholar] [CrossRef]
- Ngamnok, T.; Nimlamool, W.; Amador-Noguez, D.; Palaga, T.; Meerak, J. Efficiency of Lactiplantibacillus Plantarum JT-PN39 and Paenibacillus Motobuensis JT-A29 for Fermented Coffee Applications and Fermented Coffee Characteristics. Foods 2023, 12, 2894. [Google Scholar] [CrossRef]
- Todhanakasem, T.; Van Tai, N.; Pornpukdeewattana, S.; Charoenrat, T.; Young, B.M.; Wattanachaisaereekul, S. The Relationship between Microbial Communities in Coffee Fermentation and Aroma with Metabolite Attributes of Finished Products. Foods 2024, 13, 2332. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Q.; Wang, H.; Fang, G.; Li, Y.; Zhang, J.; Liu, K. Microbial Characteristics and Functions in Coffee Fermentation: A Review. Fermentation 2024, 11, 5. [Google Scholar] [CrossRef]
- Kawahara, A.; Zendo, T.; Matsusaki, H. Identification and Characterization of Bacteriocin Biosynthetic Gene Clusters Found in Multiple Bacteriocins Producing Lactiplantibacillus Plantarum PUK6. J. Biosci. Bioeng. 2022, 133, 444–451. [Google Scholar] [CrossRef]
- Onyeaka, H.N.; Nwabor, O.F. Chapter 11—Lactic Acid Bacteria and Bacteriocins as Biopreservatives. In Food Preservation and Safety of Natural Products; Onyeaka, H.N., Nwabor, O.F., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 147–162. [Google Scholar] [CrossRef]
- Singh, J.K.; Devi, P.B.; Reddy, G.B.; Jaiswal, A.K.; Kavitake, D.; Shetty, P.H. Biosynthesis, Classification, Properties, and Applications of Weissella Bacteriocins. Front. Microbiol. 2024, 15, 1406904. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.X.R.; Bertarini, P.L.L.; Silva, L.C.F.; do Amaral, L.R.; de Souza Gomes, M.; de Oliveira, L.M.; Santos, L.D. The Impact of Ambient Temperature Regulation on Arabica Coffee Fermentation. Appl. Food Res. 2025, 5, 101028. [Google Scholar] [CrossRef]
- Pigozzi, M.T.; Passos, F.R.; Mendes, F.Q. Quality of Commercial Coffees: Heavy Metal and Ash Contents. J. Food Qual. 2018, 2018, 5908463. [Google Scholar] [CrossRef]
- Waters, D.M.; Arendt, E.K.; Moroni, A.V. Overview on the Mechanisms of Coffee Germination and Fermentation and Their Significance for Coffee and Coffee Beverage Quality. Crit. Rev. Food Sci. Nutr. 2017, 57, 259–274. [Google Scholar] [CrossRef]
- Jimenez, E.J.M.; Martins, P.M.M.; de Oliveira Vilela, A.L.; Batista, N.N.; da Rosa, S.D.V.F.; Dias, D.R.; Schwan, R.F. Influence of Anaerobic Fermentation and Yeast Inoculation on the Viability, Chemical Composition, and Quality of Coffee. Food Biosci. 2023, 51, 102218. [Google Scholar] [CrossRef]
- Hernández-Alcántara, G.; Alarcón-Gutiérrez, E.; Ronzón-Soto, S.; García-Pérez, J.A. Physical and Sensorial Quality of Yellow Caturra Coffee after a Carbonic Maceration Process. Coffee Sci. 2023, 18, e182134. [Google Scholar] [CrossRef]
Coffee Stage | Fermentation | Dry Matter (%) | Ash (%) | Titratable Acidity (mg Citric Acid/L) | ||||
---|---|---|---|---|---|---|---|---|
Condition | Time (h) | Average | StdDev | Average | StdDev | Average | StdDev | |
Pulped coffee | SA | 24 | 48.1 | 0.9 | 3.338 | 0.415 | 2.58 | 0.20 |
48 | 47.2 | 1.8 | 3.329 | 0.399 | 2.79 | 0.27 | ||
72 | 46.9 | 2.5 | 3.374 | 0.344 | 2.59 | 0.52 | ||
96 | 45.8 | 2.4 | 3.577 | 0.089 | 2.43 | 0.47 | ||
120 | 44.1 | 6.3 | 3.539 | 0.039 | 2.56 | 0.03 | ||
144 | 44.7 | 5.2 | 3.397 | 0.029 | 2.90 | 0.62 | ||
168 | 46.6 | 2.9 | 3.570 | 0.316 | 3.04 | 0.06 | ||
192 | 46.2 | 3.4 | 3.536 | 0.260 | 2.61 | 0.07 | ||
SIAF | 24 | 46.6 | 1.4 | 3.312 | 0.441 | 2.55 | 0.35 | |
48 | 47.0 | 2.5 | 3.374 | 0.442 | 2.81 | 0.13 | ||
72 | 46.9 | 1.9 | 3.553 | 0.026 | 2.62 | 0.50 | ||
96 | 46.8 | 1.1 | 3.408 | 0.193 | 2.41 | 0.01 | ||
120 | 47.6 | 2.2 | 3.517 | 0.056 | 2.39 | 0.01 | ||
144 | 46.3 | 1.8 | 3.398 | 0.010 | 2.58 | 0.08 | ||
168 | 46.2 | 2.8 | 3.596 | 0.293 | 2.57 | 0.14 | ||
192 | 46.2 | 2.8 | 3.648 | 0.148 | 2.45 | 0.30 | ||
Coffee fruits | SA | 24 | 48.5 | 1.4 | 3.440 | 0.313 | 2.52 | 0.14 |
48 | 48.0 | 2.2 | 3.369 | 0.292 | 2.82 | 0.20 | ||
72 | 48.5 | 1.8 | 3.598 | 0.010 | 2.39 | 0.44 | ||
96 | 47.0 | 0.7 | 3.617 | 0.038 | 2.63 | 0.30 | ||
120 | 47.1 | 1.5 | 3.521 | 0.070 | 2.81 | 0.47 | ||
144 | 47.5 | 1.4 | 3.491 | 0.101 | 2.42 | 0.20 | ||
168 | 47.5 | 1.8 | 3.608 | 0.356 | 3.16 | 0.09 | ||
192 | 47.1 | 1.4 | 3.762 | 0.047 | 2.84 | 0.00 | ||
SIAF | 24 | 48.0 | 0.7 | 3.403 | 0.456 | 2.65 | 0.16 | |
48 | 48.2 | 2.8 | 3.316 | 0.201 | 2.48 | 0.40 | ||
72 | 47.8 | 2.0 | 3.623 | 0.071 | 2.46 | 0.34 | ||
96 | 46.5 | 2.0 | 3.570 | 0.030 | 2.53 | 0.30 | ||
120 | 47.9 | 2.2 | 3.484 | 0.024 | 2.33 | 0.38 | ||
144 | 48.3 | 2.6 | 3.744 | 0.276 | 2.54 | 0.03 | ||
168 | 47.8 | 1.5 | 3.683 | 0.215 | 2.46 | 0.26 | ||
192 | 47.0 | 1.5 | 3.793 | 0.101 | 2.51 | 0.32 |
Coffee Stage | Fermentation | (SCA Points) | ||||
---|---|---|---|---|---|---|
Condition | Time (h) | Average | Min | Max | StdDev | |
Pulped coffee | SA | 24 | 81.83 | 81.67 | 82.00 | 0.17 |
48 | 83.39 | 83.25 | 83.50 | 0.13 | ||
72 | 81.67 | 80.75 | 83.17 | 1.31 | ||
96 | 83.36 | 82.33 | 84.75 | 1.25 | ||
120 | 82.64 | 82.25 | 83.00 | 0.38 | ||
144 | 83.92 | 83.75 | 84.17 | 0.22 | ||
168 | 83.42 | 83.25 | 83.50 | 0.14 | ||
192 | 83.56 | 82.75 | 84.00 | 0.70 | ||
SIAF | 24 | 83.22 | 82.33 | 84.00 | 0.84 | |
48 | 82.69 | 81.42 | 83.75 | 1.18 | ||
72 | 83.22 | 82.75 | 83.67 | 0.46 | ||
96 | 82.94 | 82.75 | 83.17 | 0.21 | ||
120 | 83.50 | 82.50 | 84.08 | 0.87 | ||
144 | 82.81 | 82.25 | 83.33 | 0.54 | ||
168 | 83.00 | 82.17 | 84.42 | 1.23 | ||
192 | 83.39 | 83.00 | 83.75 | 0.38 | ||
Coffee fruits | SA | 24 | 83.03 | 82.50 | 83.75 | 0.65 |
48 | 83.47 | 83.17 | 83.75 | 0.29 | ||
72 | 83.92 | 83.67 | 84.17 | 0.35 | ||
96 | 84.11 | 83.25 | 85.00 | 0.88 | ||
120 | 83.47 | 82.83 | 83.83 | 0.55 | ||
144 | 84.19 | 83.67 | 85.00 | 0.71 | ||
168 | 83.06 | 82.92 | 83.17 | 0.13 | ||
192 | 84.11 | 83.75 | 84.50 | 0.38 | ||
SIAF | 24 | 83.33 | 83.25 | 83.50 | 0.14 | |
48 | 83.36 | 83.08 | 83.83 | 0.41 | ||
72 | 83.53 | 82.67 | 84.00 | 0.75 | ||
96 | 82.92 | 82.17 | 83.42 | 0.66 | ||
120 | 83.39 | 83.00 | 83.58 | 0.34 | ||
144 | 82.92 | 82.33 | 83.42 | 0.55 | ||
168 | 82.72 | 82.33 | 83.17 | 0.42 | ||
192 | 83.39 | 82.75 | 83.92 | 0.59 |
Coffee Stage | Fermentation | Index ICF | Classification | |||||
---|---|---|---|---|---|---|---|---|
Condition | Time (h) | Average | StdDev | P | A | G | E | |
Pulped coffee | SA | 24 | 0.887 | 0.044 | ||||
48 | 0.822 | 0.084 | ||||||
72 | 0.783 | 0.090 | ||||||
96 | 0.816 | 0.046 | ||||||
120 | 0.755 | 0.094 | ||||||
144 | 0.671 | 0.107 | ||||||
168 | 0.561 | 0.066 | ||||||
192 | 0.497 | 0.172 | ||||||
SIAF | 24 | 0.887 | 0.043 | |||||
48 | 0.851 | 0.046 | ||||||
72 | 0.871 | 0.010 | ||||||
96 | 0.789 | 0.036 | ||||||
120 | 0.815 | 0.046 | ||||||
144 | 0.771 | 0.028 | ||||||
168 | 0.728 | 0.060 | ||||||
192 | 0.662 | 0.063 | ||||||
Coffee Fruits | SA | 24 | 0.887 | 0.020 | ||||
48 | 0.822 | 0.048 | ||||||
72 | 0.685 | 0.180 | ||||||
96 | 0.718 | 0.080 | ||||||
120 | 0.673 | 0.015 | ||||||
144 | 0.430 | 0.132 | ||||||
168 | 0.457 | 0.027 | ||||||
192 | 0.369 | 0.081 | ||||||
SIAF | 24 | 0.880 | 0.049 | |||||
48 | 0.882 | 0.021 | ||||||
72 | 0.848 | 0.062 | ||||||
96 | 0.834 | 0.071 | ||||||
120 | 0.791 | 0.090 | ||||||
144 | 0.745 | 0.085 | ||||||
168 | 0.772 | 0.093 | ||||||
192 | 0.730 | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñuela-Martínez, A.E.; Osorio-Giraldo, C.V.; Buitrago-Zuluaga, C.; Medina-Rivera, R.D. Development of Fermentation Strategies for Quality Mild Coffee Production (Coffea arabica L.) Based on Oxygen Availability and Processing Time. Foods 2025, 14, 3001. https://doi.org/10.3390/foods14173001
Peñuela-Martínez AE, Osorio-Giraldo CV, Buitrago-Zuluaga C, Medina-Rivera RD. Development of Fermentation Strategies for Quality Mild Coffee Production (Coffea arabica L.) Based on Oxygen Availability and Processing Time. Foods. 2025; 14(17):3001. https://doi.org/10.3390/foods14173001
Chicago/Turabian StylePeñuela-Martínez, Aida Esther, Carol Vanessa Osorio-Giraldo, Camila Buitrago-Zuluaga, and Rubén Darío Medina-Rivera. 2025. "Development of Fermentation Strategies for Quality Mild Coffee Production (Coffea arabica L.) Based on Oxygen Availability and Processing Time" Foods 14, no. 17: 3001. https://doi.org/10.3390/foods14173001
APA StylePeñuela-Martínez, A. E., Osorio-Giraldo, C. V., Buitrago-Zuluaga, C., & Medina-Rivera, R. D. (2025). Development of Fermentation Strategies for Quality Mild Coffee Production (Coffea arabica L.) Based on Oxygen Availability and Processing Time. Foods, 14(17), 3001. https://doi.org/10.3390/foods14173001