Nanostructure-Engineered Optical and Electrochemical Biosensing Toward Food Safety Assurance
Abstract
1. Introduction
2. Fluorescence Sensing
2.1. Signal Output Behavior
2.2. Fluorescence Sensing Leverages Diverse Nanomaterials
2.3. Fundamental Recognition Principles
3. Raman Sensing
3.1. Signal Output Behavior
3.2. Raman Sensing Leverages Diverse Nanomaterials
3.3. Fundamental Recognition Principles
4. Colorimetric Sensing
4.1. Signal Output Behavior
4.2. Colorimetric Sensing Leverages Diverse Nanomaterials
4.3. Fundamental Recognition Principles
5. Electrochemical Sensing
5.1. Signal Output Behavior
5.2. Electrochemical Sensing Leverages Diverse Nanomaterials
5.3. Fundamental Recognition Principles
6. Pretreatment and Analytical Procedures Prior to Sample Detection Across Four Sensing Modalities
7. Biosensing Application
8. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuhnlein, H.V.; Chan, H.M. Environment and contaminants in traditional food systems of northern indigenous peoples. Annu. Rev. Nutr. 2000, 20, 595–626. [Google Scholar] [CrossRef]
- Leskovac, A.; Petrovic, S. Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives. Foods 2023, 12, 2709. [Google Scholar] [CrossRef]
- Abreu, R.; Semedo-Lemsaddek, T.; Cunha, E.; Tavares, L.; Oliveira, M. Antimicrobial Drug Resistance in Poultry Production: Current Status and Innovative Strategies for Bacterial Control. Microorganisms 2023, 11, 953. [Google Scholar] [CrossRef]
- Chen, J.; Ying, G.G.; Deng, W.J. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef] [PubMed]
- Machado-Moreira, B.; Richards, K.; Brennan, F.; Abram, F.; Burgess, C.M. Microbial Contamination of Fresh Produce: What, Where, and How? Compr. Rev. Food Sci. Food Saf. 2019, 18, 1727–1750. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.G.; Rosario, D.K.A.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.S.; Conte-Junior, C.A. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: A Meta-analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef]
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria monocytogenes—How This Pathogen Survives in Food-Production Environments? Front. Microbiol. 2022, 13, 866462. [Google Scholar] [CrossRef]
- Li, B.; Xie, X.; Meng, T.; Guo, X.; Li, Q.; Yang, Y.; Jin, H.; Jin, C.; Meng, X.; Pang, H. Recent advance of nanomaterials modified electrochemical sensors in the detection of heavy metal ions in food and water. Food Chem. 2024, 440, 138213. [Google Scholar] [CrossRef]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Mueller, J.; Vanlauwe, B.; Bandyopadhyay, R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application—A review. Food Control 2017, 76, 127–138. [Google Scholar] [CrossRef]
- Namli, H.; Bisgin, A.T. Simultaneous deep eutectic solvent based microextraction for monitoring Brilliant blue and rhodamine B in foodstuff and industrial samples. J. Food Compos. Anal. 2024, 127, 105980. [Google Scholar] [CrossRef]
- Beitollahi, H.; Shahsavari, M.; Sheikhshoaie, I.; Tajik, S.; Jahani, P.M.; Mohammadi, S.Z.; Afshar, A.A. Amplified electrochemical sensor employing screen-printed electrode modified with Ni-ZIF-67 nanocomposite for high sensitive analysis of Sudan I in present bisphenol A. Food Chem. Toxicol. 2022, 161, 112824. [Google Scholar] [CrossRef]
- Sun, Y.; Waterhouse, G.I.N.; Qiao, X.; Xiao, J.; Xu, Z. Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review. Food Chem. 2023, 410, 135434. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity. Food Chem. 2022, 367, 130743. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, J.; Soon, W.L.; Kutzli, I.; Moliere, A.; Diedrich, S.; Radiom, M.; Handschin, S.; Li, B.; Li, L.; et al. Food amyloid fibrils are safe nutrition ingredients based on in-vitro and in-vivo assessment. Nat. Commun. 2023, 14, 6806. [Google Scholar] [CrossRef]
- Brown, A.R.; Lilley, M.; Shutler, J.; Lowe, C.; Artioli, Y.; Torres, R.; Berdalet, E.; Tyler, C.R. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev. Aquac. 2020, 12, 1663–1688. [Google Scholar] [CrossRef]
- Okechukwu, V.O.; Adelusi, O.A.; Kappo, A.P.; Njobeh, P.B.; Mamo, M.A. Aflatoxins: Occurrence, biosynthesis, mechanism of action and effects, conventional/emerging detection techniques. Food Chem. 2024, 436, 137775. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Sun, D.-W.; Pu, H.; Wei, Q. Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci. Technol. 2018, 75, 10–22. [Google Scholar] [CrossRef]
- Wang, L.; Peng, X.; Fu, H.; Huang, C.; Li, Y.; Liu, Z. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens. Bioelectron. 2020, 147, 111777. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Majidi, M.R.; Khaki, P.; Jahanban-Esfahlan, A.; de la Guardia, M.; Mokhtarzadeh, A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1868–1912. [Google Scholar] [CrossRef]
- Li, Q.; Dou, L.; Zhang, Y.; Luo, L.; Yang, H.; Wen, K.; Yu, X.; Shen, J.; Wang, Z. A comprehensive review on the detection of Staphylococcus aureus enterotoxins in food samples. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13264. [Google Scholar] [CrossRef]
- Mao, Z.; Chen, R.; Wang, X.; Zhou, Z.; Peng, Y.; Li, S.; Han, D.; Li, S.; Wang, Y.; Han, T.; et al. CRISPR/Cas12a-based technology: A powerful tool for biosensing in food safety. Trends Food Sci. Technol. 2022, 122, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Tian, D.; Yang, Y.; Cui, H.; Li, Y.; Ren, S.; Han, T.; Gao, Z. Machine learning assisted biosensing technology: An emerging powerful tool for improving the intelligence of food safety detection. Curr. Res. Food Sci. 2024, 8, 100679. [Google Scholar] [CrossRef] [PubMed]
- Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liang, N.; Hu, X.; Li, W.; Guo, Z.; Zhang, X.; Huang, X.; Li, Z.; Zou, X.; Shi, J. Carbon dots and covalent organic frameworks based FRET immunosensor for sensitive detection of Escherichia coli O157:H7. Food Chem. 2024, 447, 138663. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, F.; Sang, Y.; Katouzian, I.; Mahdi Jafari, S.; Wang, X.; Li, W.; Wang, J.; Mohammadi, Z. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci. Technol. 2022, 123, 355–375. [Google Scholar] [CrossRef]
- Basak, S.; Venkatram, R.; Singhal, R.S. Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 2022, 139, 109074. [Google Scholar] [CrossRef]
- Hu, Y.; Badar, I.H.; Liu, Y.; Zhu, Y.; Yang, L.; Kong, B.; Xu, B. Advancements in production, assessment, and food applications of salty and saltiness-enhancing peptides: A review. Food Chem. 2024, 453, 139664. [Google Scholar] [CrossRef]
- Min, T.; Zhou, L.; Sun, X.; Du, H.; Zhu, Z.; Wen, Y. Electrospun functional polymeric nanofibers for active food packaging: A review. Food Chem. 2022, 391, 133239. [Google Scholar] [CrossRef]
- Xu, Y.; Kutsanedzie, F.Y.H.; Hassan, M.; Zhu, J.; Ahmad, W.; Li, H.; Chen, Q. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem. 2020, 315, 126300. [Google Scholar] [CrossRef]
- Wang, C.; Gu, C.; Zhao, X.; Yu, S.; Zhang, X.; Xu, F.; Ding, L.; Huang, X.; Qian, J. Self-designed portable dual-mode fluorescence device with custom python-based analysis software for rapid detection via dual-color FRET aptasensor with IoT capabilities. Food Chem. 2024, 457, 140190. [Google Scholar] [CrossRef]
- Kumar, G.S.; Prasanna, S.B.; Marenahalli, B.L.; Shadakshari, S.; Shivamurthy, S.A.; Rajabathar, J.R.; Shanthakumar, K.C.; Han, Y.-K. Flake-like structure of SrTiO3 nanoparticles dispersed on graphene oxide: A selective and sensitive electrochemical sensor for determination of chloramphenicol in milk and honey samples. Food Chem. 2024, 444, 138637. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Jayan, H.; Gao, S.; Zhou, R.; Yosri, N.; Zou, X.; Guo, Z. Recent and emerging trends of metal-organic frameworks (MOFs)-based sensors for detecting food contaminants: A critical and comprehensive review. Food Chem. 2024, 448, 139051. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Zhang, W.; Liu, X.; Zhang, B.; Kumar, S. WaveFlex Biosensor: MXene-Immobilized W-shaped Fiber-Based LSPR sensor for highly selective tyramine detection. Opt. Laser Technol. 2024, 171, 110357. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Wang, Z.; Zhang, Y.; Huang, X.; Li, Z.; Daglia, M.; Xiao, J.; Shi, J.; Zou, X. Bioinspired nanozyme enabling glucometer readout for portable monitoring of pesticide under resource-scarce environments. Chem. Eng. J. 2022, 429, 132243. [Google Scholar] [CrossRef]
- Sun, R.; Li, Y.; Du, T.; Qi, Y. Recent advances in integrated dual-mode optical sensors for food safety detection. Trends Food Sci. Technol. 2023, 135, 14–31. [Google Scholar] [CrossRef]
- Jiang, Y.; Sima, Y.; Liu, L.; Zhou, C.; Shi, S.; Wan, K.; Chen, A.; Tang, N.; He, Q.; Liu, J. Research progress on portable electrochemical sensors for detection of mycotoxins in food and environmental samples. Chem. Eng. J. 2024, 485, 149860. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Wang, X.; Jing, X.; Yu, L.; Bai, B.; Bo, T.; Zhang, J.; Qian, H.; Gu, Y. Self-powered molecularly imprinted photoelectrochemical sensor based on Ppy/QD/HOF heterojunction for the detection of bisphenol A. Food Chem. 2024, 443, 138499. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Xue, Z.; Peng, B.; Kou, X.; Gao, Z. Research progress of dual-mode sensing technology strategy based on SERS and its application in the detection of harmful substances in foods. Trends Food Sci. Technol. 2024, 148, 104487. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, C.; Chang, X.; Jia, X.; Liu, Z.; Liu, B.; Gao, Z.; Zhou, H. Development of a colorimetric/fluorescence dual-mode immunoassay for aflatoxin B1 based on streptavidin-induced gold nanoparticle aggregation. Microchim. Acta 2025, 192, 11. [Google Scholar] [CrossRef]
- Hosseinikebria, S.; Khazaei, M.; Dervisevic, M.; Judicpa, M.A.; Tian, J.; Razal, J.M.; Voelcker, N.H.; Nilghaz, A. Electrochemical biosensors: The beacon for food safety and quality. Food Chem. 2025, 475, 143284. [Google Scholar] [CrossRef]
- Xia, N.; Gao, F.; Zhang, J.; Wang, J.; Huang, Y. Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling. Molecules 2024, 29, 2796. [Google Scholar] [CrossRef]
- Sun, W.; Chu, H.; Zha, X.; Lu, S.; Wang, Y. Enhanced Electrochemical Sensing of Butylated Hydroxy Anisole through Hollow Metal-Organic Frameworks with Gold Nanoparticles and Enzymes. Acs Appl. Nano Mater. 2023, 6, 15183–15192. [Google Scholar] [CrossRef]
- Yi, Z.; Zhang, Y.; Guo, M.; Li, H.; Liu, Y.; Ding, L.; Xiong, C.; Huang, G.; Zhang, J. Label-free electrochemical immunosensor based on an internal and external dual-signal synergistic strategy for the sensitive detection of Salmonella in food. Food Biosci. 2024, 61, 105006. [Google Scholar] [CrossRef]
- Yan, R.; Shou, Z.X.; Chen, J.; Wu, H.; Zhao, Y.; Qiu, L.; Jiang, P.J.; Mou, X.Z.; Wang, J.H.; Li, Y.Q. On-Off-On Gold Nanocluster-Based Fluorescent Probe for Rapid Escherichia coli Differentiation, Detection and Bactericide Screening. Acs Sustain. Chem. Eng. 2018, 6, 4504–4509. [Google Scholar] [CrossRef]
- Lu, M.C.; Pan, C.J.; Qin, X.Z.; Wu, M.X. Silicon Nanoparticle-Based Ratiometric Fluorescence Probes for Highly Sensitive and Visual Detection of VB2. Acs Omega 2023, 8, 14499–14508. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, T.; Yang, Q.; Guo, Y.; Tao, T. One-step hydrothermal synthesis of fluorescent silicon nanoparticles for sensing sulfide ions and cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 273, 121048. [Google Scholar] [CrossRef]
- Cheng, C.M.; Yang, H.; Huang, Y.; Wang, J.; Gu, M.; Liu, Y.; Wang, N.; Wang, J.; Hu, S.; Deng, R.J. A smart DNAzyme/graphene oxide nanosystem for fluorescent sensing of uranyl ion with high sensitivity and selectivity. Microchem. J. 2022, 180, 107596. [Google Scholar] [CrossRef]
- Yuan, P.X.; Wang, Y.P.; Du, F.F.; Yang, L.P.; Wang, L.L. Ratiometric fluorescence sensing and discrimination of tetracycline analogs by using coumarin-embedded Eu-MOF nanosensor. Talanta 2025, 281, 126914. [Google Scholar] [CrossRef]
- Kabak, B.; Soyuçok, A. Fe-MOF based turn-on fluorescence sensor for the rapid detection of foodborne pathogens in multiple matrices. Food Biosci. 2025, 69, 106910. [Google Scholar] [CrossRef]
- Cong, T.; Wang, J.; Zhao, Y.; Zhang, D.; Fan, Z.; Pan, L. Tip-to-tip assembly of urchin-like Au nanostar at water-oil interface for surface-enhanced Raman spectroscopy detection. Anal. Chim. Acta 2021, 1154, 338323. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Z.; Lin, X. An ultrafast electrochemical synthesis of Au@Ag core-shell nanoflowers as a SERS substrate for thiram detection in milk and juice. Food Chem. 2023, 402, 134433. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, Y.; Lin, C.; Xu, M.; Zhao, S.; Li, D.; Yang, Y.; Yang, Y. A novel ultra-sensitive semiconductor SERS substrate V5S4 nanopompons for the specific detection of antibiotics with AI technology. Chem. Eng. J. 2024, 502, 157907. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Y.; Wang, W.; Yu, D.; Yang, L.; Jiang, X.; Song, W.; Zhao, B. A new semiconductor heterojunction SERS substrate for ultra-sensitive detection of antibiotic residues in egg. Food Chem. 2024, 431, 137163. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; He, X.; Xiong, H.; Liu, A.; Shi, H.; Wang, L.; Huang, Y. Optoplasmonic MOF film for SERS-AI detection of flavor from Baijiu. Microchem. J. 2025, 214, 114049. [Google Scholar] [CrossRef]
- Fu, L.; Du, Y.; Zhou, J.; Li, H.; Wang, M.; Wang, Y. A novel AgNPs/MOF substrate-based SERS sensor for high-sensitive on-site detection of wheat gluten. Food Sci. Hum. Wellness 2024, 13, 681–687. [Google Scholar] [CrossRef]
- Thi Linh, D.; Mai, Q.-D.; Thi Hanh Trang, D.; Anh, N.T.; Vu, X.H.; Le, A.-T. Ultrasensitive detection of carbendazim pesticide in tea leaves using a green Ag/CuO(Cu2O) nanocomposite-based SERS sensor: Role of metal/semiconductor transition in sensing performance. RSC Adv. 2025, 15, 17635–17647. [Google Scholar] [CrossRef]
- Wang, X.; Chen, M.; Zhao, L. Development of a colorimetric sensing assay for ascorbic acid and sarcosine utilizing the dual-class enzyme activity of Fe3O4@SiO2@NiCo2S4. Chem. Eng. J. 2023, 468, 143612. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, M.; Chen, J.; Su, X. Cascade reaction biosensor based on Cu/N co-doped two-dimensional carbon-based nanozyme for the detection of lactose and β-galactosidase. Talanta 2022, 245, 123451. [Google Scholar] [CrossRef]
- Karami, Z.; Jeibar, A.; Sohrabi, N.; Badoei-dalfard, A.; Sargazi, G. A Porous Tantalum-Based Metal-Organic Framework (Tα-MOF) as a Novel and Highly Efficient Peroxidase Mimic for Colorimetric Evaluation of the Antioxidant Capacity. Catal. Lett. 2020, 150, 2167–2179. [Google Scholar] [CrossRef]
- Wang, S. Innovative colorimetric sensor for detection of nandrolone as a doping agent in sports using MOF nanostructures. Alex. Eng. J. 2025, 122, 605–614. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, D.; Zhao, J.; Chen, Y.; Tan, M. Kojic acid-modulated anthocyanin/ hydroxypropyl methylcellulose-sodium alginate colorimetric sensors for real-time freshness monitoring of salmon. Food Biosci. 2025, 71, 107098. [Google Scholar] [CrossRef]
- Er, X.; Gu, Q.; Niu, Z.; Sun, J.; Ding, Z.; Liang, S.; Jin, H. CD-LRH@MnO2 fluorescent / colorimetric dual-mode sensor for the detection of ascorbic acid. Inorg. Chem. Commun. 2025, 179, 114880. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, H.; Xia, X.; Fu, H.; Guo, M.; Hou, C.; Huo, D. A colorimetric sensor array based on Ag deposition on the surface of Au/Ag nanoparticles for accurately discrimination of Baijiu. J. Food Compos. Anal. 2025, 146, 107903. [Google Scholar] [CrossRef]
- Jiang, W.; Zheng, J.; Su, J.; Tang, Y.; Wu, Y.; Cao, Y.; Cao, W. Bimetallic Ag2CrO4 nanoparticles with dual-enzyme-mimic activities in colorimetric sensor for sensitive and highly selective detection of dimethoate in vegetables. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 332, 125841. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, T.; Gopalram, K.; Nagashree, K.; Venkatesan, S. Electrochemical sensing of nitrite by Cu and Zn based metal-organic frameworks—A green synthesis approach. J. Mol. Struct. 2025, 1343, 142801. [Google Scholar] [CrossRef]
- Gowthaman, N.S.K.; Farithkhan, A.; Narayanamoorthi, E.; Arul, P.; Nandhini, C.; Balakumar, V.; Selvarajan, S. Sustainable flower-like Cu-Ni metal-organic frameworks catalyst for enhanced electrochemical sensing and photocatalytic degradation of antibiotic pollutants. Microchem. J. 2025, 214, 114115. [Google Scholar] [CrossRef]
- Lipińska, W.; Łepek, A.; Wolff, S.; Ryl, J.; Nowak, A.P.; Siuzdak, K. Transforming organic waste: Cabbage-derived carbon containing copper for electrochemical sensing of ascorbic acid. Sustain. Mater. Technol. 2025, 45, e01434. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, L.; Guo, J.; Yuan, X.; Li, S.; Xiong, X. ZIF derived coral-like hierarchically structured CoO@CoMn-LDH nanoarray self-supported electrocatalyst for enhanced formaldehyde electrochemical sensing in food samples. Sens. Actuators B Chem. 2025, 441, 137969. [Google Scholar] [CrossRef]
- Abbar, J.C.; Rangappa, R.; Yallur, B.C.; Patil, A.R.; M, N. Ultra-sensitive platform for the detection of a psychostimulant drug using a nanostructured titanium carbide/carbon matrix: Insights into electrochemical sensing mechanism. Mater. Chem. Phys. 2025, 339, 130797. [Google Scholar] [CrossRef]
- Yang, K.; Li, Y.; Zheng, Y.; Zhou, X.; Yang, X.; Wang, Y. Fabrication of cobalt single-atom catalyst supported on multiwalled carbon nanotubes for enhanced electrochemical sensing of caffeic acid in food samples. Microchem. J. 2025, 213, 113744. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, J.; Yan, F.; Li, H.; Xie, L.; Tang, L.; Ning, D.; Jiang, C.; Li, T.; Huang, X.; et al. Electrochemical synthesis of mesoporous silica/graphene nanocomposite and its application in enhanced strategy for sensing of tannins. J. Food Compos. Anal. 2025, 140, 107244. [Google Scholar] [CrossRef]
- Song, Y.; Wu, G.; Zhang, E.; Feng, G.; Lei, S.; Wu, L. Photoelectric Multi-Signal Output Sensor Based on Two-Dimensional Covalent Organic Polymer Film Modified by Novel Aggregation-Induced Emission Probes. Biosensors 2024, 14, 312. [Google Scholar] [CrossRef]
- Grabenhorst, L.; Pfeiffer, M.; Schinkel, T.; Kuemmerlin, M.; Brueggenthies, G.A.; Maglic, J.B.; Selbach, F.; Murr, A.T.; Tinnefeld, P.; Glembockyte, V. Engineering modular and tunable single-molecule sensors by decoupling sensing from signal output. Nat. Nanotechnol. 2025, 20, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Arai, S.; Okada, Y. Development of fluorescence lifetime biosensors for ATP, cAMP, citrate, and glucose using the mTurquoise2-based platform. Cell Rep. Methods 2024, 4, 100902. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, M.; Jin, X.-T.; Zhao, J.; Luo, Y.-H. Wavelength-Based luminescence sensing via Turn-On responses for acid detection in complex Environments. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2025, 326, 125187. [Google Scholar] [CrossRef] [PubMed]
- Shradha, V.T.K.; Das, S.; Patra, A. Endoplasmic Reticulum-Targeting Delayed Fluorescent Probe for Dual-mode Nitroreductase Sensing. Chem.-Asian J. 2025, 20, e202401226. [Google Scholar] [CrossRef]
- Lakowicz, J.R.; Gryczynski, I.; Gryczynski, Z.; Tolosa, L.; Dattelbaum, J.D.; Rao, G. Polarization-Based Sensing with a Self-Referenced Sample. Appl. Spectrosc. 1999, 53, 1149–1157. [Google Scholar] [CrossRef]
- Wu, L.; Huang, C.; Emery, B.P.; Sedgwick, A.C.; Bull, S.D.; He, X.-P.; Tian, H.; Yoon, J.; Sessler, J.L.; James, T.D. Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110–5139. [Google Scholar] [CrossRef]
- Fu, W.; Fu, X.; Li, Z.; Liu, Z.; Li, X. Advances in smartphone assisted sensors for on-site detection of food safety based on fluorescence on-off-on mode: A review. Chem. Eng. J. 2024, 489, 151225. [Google Scholar] [CrossRef]
- Huang, R.-W.; Wei, Y.-S.; Dong, X.-Y.; Wu, X.-H.; Du, C.-X.; Zang, S.-Q.; Mak, T.C.W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697. [Google Scholar] [CrossRef]
- Yan, X.; Song, Y.; Zhu, C.; Li, H.; Du, D.; Su, X.; Lin, Y. MnO2 Nanosheet-Carbon Dots Sensing Platform for Sensitive Detection of Organophosphorus Pesticides. Anal. Chem. 2018, 90, 2618–2624. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Li, Z.; Li, K.; Yu, X.-Q. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord. Chem. Rev. 2021, 429, 213691. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Jiang, F.; Li, M.; Xu, Z. A dual-function [Ru(bpy)3]2+ encapsulated metal organic framework for ratiometric Al3+ detection and anticounterfeiting application. Dalton Trans. 2023, 52, 3846–3854. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-B.; Liu, M.-L.; Gao, Y.-T.; Chang, S.; Qian, R.-C.; Li, D.-W. Design and applications of carbon dots-based ratiometric fluorescent probes: A review. Nano Res. 2023, 16, 1064–1083. [Google Scholar] [CrossRef]
- Granados-Oliveros, G.; Gomez Pineros, B.S.; Ortiz Calderon, F.G. CdSe/ZnS quantum dots capped with oleic acid and L-glutathione: Structural properties and application in detection of Hg2+. J. Mol. Struct. 2022, 1254, 132293. [Google Scholar] [CrossRef]
- Liu, L.; Hu, R.; Xu, C.; Xu, C.; Li, Y. Preparation of Molecularly Imprinted Polymer Fluorescence Probe Modified by Lanthanide Eu~(3+) Complex and Hemoglobin Sensing Detection. Chin. J. Lumin. 2022, 43, 944–951. [Google Scholar] [CrossRef]
- Liu, W.; Song, X.; Hou, X.; Ren, Y.; Wang, J. A multifunctional Eu-organic framework for fluorescence sensing properties and the detection of pyrimethanil in real samples. Microchem. J. 2024, 207, 111974. [Google Scholar] [CrossRef]
- Alizadeh Sani, M.; Jahed-Khaniki, G.; Ehsani, A.; Shariatifar, N.; Dehghani, M.H.; Hashemi, M.; Hosseini, H.; Abdollahi, M.; Hassani, S.; Bayrami, Z.; et al. Metal-Organic Framework Fluorescence Sensors for Rapid and Accurate Detection of Melamine in Milk Powder. Biosensors 2023, 13, 94. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, B. Smart Multiple Photoresponsive Tongue for Sensing Umami, Sour and Bitter Tastes Based on Tb3+ Functionalized Hydrogen-Bonded Organic Frameworks. Adv. Funct. Mater. 2024, 34, 2316195. [Google Scholar] [CrossRef]
- Madanan, A.S.; Varghese, S.; Abraham, M.K.; Shkhair, A.I.; Rajeevan, G.; Indongo, G.; Arathy, B.K.; George, S. Fluorescence anisotropic probe for sensing cardiac troponin-I antigen through target-specific antibody-conjugated gold nanoclusters. Anal. Methods 2024, 16, 6899–6906. [Google Scholar] [CrossRef]
- Sanjayan, C.G.; Balakrishna, R.G. Ratiometric probe of PQDs/R6G: Achieving high sensitivity and precision in contaminant detection. Sens. Actuators B-Chem. 2023, 397, 134626. [Google Scholar] [CrossRef]
- Deka, M.J.; Chowdhury, D.; Nath, B.K. Recent development of modified fluorescent carbon quantum dots-based fluorescence sensors for food quality assessment. Carbon Lett. 2022, 32, 1131–1149. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, J.; Jiang, T.; Wang, J.; Zhao, Y. Ratiometric Fluorescence Optical Fiber Sensing for On-Site Ferric Ions Detection Using Single-Emission Carbon Quantum Dots. IEEE Trans. Instrum. Meas. 2023, 72, 9508008. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Y.; He, Z.; Wang, X.; Wang, S.; Zhang, F. Molecular-Based FRET Nanosensor with Dynamic Ratiometric NIR-IIb Fluorescence for Real-Time In Vivo Imaging and Sensing. Nano Lett. 2023, 23, 4548–4556. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shi, L.; Wang, X.; Zhou, W.; Shuang, S. Lysosome-targeted dual-emissive carbon dots for ratiometric optical dual-readout and smartphone-assisted visual determination of Hg2+ and SO32−. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2024, 306, 123573. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, Y.; Zhu, T.; Xu, J. Study on visual multicolor intelligent detection of tetracycline antibiotics in various environmental samples by palygorskite-based fluorescent nano-probe. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 642, 128690. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, X.; Fan, J.; Luo, L.; Zhang, X.; Li, R.; Feng, X. An intelligent smartphone-test strip detection platform for rapid and on-site sensing of benzoyl peroxide in flour samples. Talanta 2023, 265, 124877. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, X.; Zhao, B.; Liu, X.; Yang, X.; Zhang, X.; Feng, X. A smartphone-integrated test paper sensing platform for visual and intelligent detection of nitrofurantoin in honey samples. Food Chem. 2024, 445, 138783. [Google Scholar] [CrossRef]
- Bag, S.S.; Gogoi, H.; Roy, S.; Pradhan, M.K.; Talukdar, S. Fluorescent tetrazolylpyrene unnatural nucleoside in sensing BSA protein. J. Photochem. Photobiol. A-Chem. 2025, 463, 116290. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Jiang, Y.; Wu, Z.; Yang, J.; Wei, S.; Wang, Z.; Sun, G. Green-emitting carbon dots-protein fluorescence sensing system for specific and sensitive detection of trypsin in urine. Colloids Surf. A-Physicochem. Eng. Asp. 2025, 708, 136037. [Google Scholar] [CrossRef]
- Tan, K.; Ma, H.; Mu, X.; Wang, Z.; Wang, Q.; Wang, H.; Zhang, X.-D. Application of gold nanoclusters in fluorescence sensing and biological detection. Anal. Bioanal. Chem. 2024, 416, 5871–5891. [Google Scholar] [CrossRef]
- Pan, C.; Wen, Q.; Ma, L.; Qin, X.; Feng, S. Green-emitting silicon nanoparticles as a fluorescent probe for highly-sensitive crocin detection and pH sensing. New J. Chem. 2022, 46, 12729–12738. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, S.; Yuan, Z.; Yang, R.; Zhang, X.; El-Mesery, H.S.; Dai, X.; Lu, W.; Xu, R. Exploring Formation and Control of Hazards in Thermal Processing for Food Safety. Foods 2025, 14, 2168. [Google Scholar] [CrossRef]
- Wei, N.; Yan, Y.; Sun, N.; Huang, Y.; Liu, Y.; Dong, W.; Gong, X.; Zhao, J.; Wang, R.; Song, S.; et al. B and N Co-doped carbon dots for the ratiometric fluorescence detection of riboflavin and information security with room temperature phosphorescence. J. Lumin. 2024, 269, 120456. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.H.; Liu, Q.Y.; Liu, G.H.; Yue, G.Z.; Yang, Z.P.; Wang, Y.Y.; Rao, H.B.; Chen, Y.Y.; Lu, C.F.; et al. Nitrogen-doped carbon dots from rhizobium as fluorescence probes for chlortetracycline hydrochloride. Nanotechnology 2020, 31, 445501. [Google Scholar] [CrossRef] [PubMed]
- Selva Sharma, A.; Marimuthu, M.; Varghese, A.W.; Wu, J.; Xu, J.; Luo, X.; Devaraj, S.; Lan, Y.; Li, H.; Chen, Q. A review of biomolecules conjugated lanthanide up-conversion nanoparticles-based fluorescence probes in food safety and quality monitoring applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 6129–6159. [Google Scholar] [CrossRef]
- Wang, K.; Li, S.; Jing, X.; Shang, W.; Yan, T.; Bai, X.; Zhao, R.; Ma, Y. Highly sensitive fluorescence detection of chlortetracycline and tetracycline residues in food samples based on a Zn(II) coordination polymer. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2025, 343, 126587. [Google Scholar] [CrossRef]
- Kathiravan, A.; Narayanan, M.; Jhonsi, M.A.; Anbazhagan, V. Receptor-free phenothiazine derivative as fluorescent probe for picric acid: Investigation of the inner filter effect channel. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2023, 303, 123166. [Google Scholar] [CrossRef]
- Gui, L.; Huang, R.; Liang, H.; Wang, Y.; Sun, W.; Li, L.; Teng, X. Antenna effect-modulated luminescent lanthanide complexes for biological sensing. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2025, 339, 126239. [Google Scholar] [CrossRef]
- Yin, S.; Tong, C. A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline homologues based on N-CDs-Eu3+ complex. Microchim. Acta 2025, 192, 86. [Google Scholar] [CrossRef]
- Alshareef, F.M.; Algethami, J.S.; Alhamami, M.A.M.; Alosaimi, E.H.; Al-Saidi, H.M.; Khan, S. Recent advancement in organic fluorescent and colorimetric chemosensors for the detection of Al3+ ions: A review (2019–2024). J. Environ. Chem. Eng. 2024, 12, 114110. [Google Scholar] [CrossRef]
- Sathiyan, G.; Venkatesan, G.; Ramasamy, S.K.; Lee, J.; Barathi, S. Recent progress in triazine-based fluorescent probes for detecting hazardous nitroaromatic compounds. J. Environ. Chem. Eng. 2024, 12, 112804. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, Y.; Xie, X. Design and applications of photochromic compounds for quantitative chemical analysis and sensing. Chem. Commun. 2025, 61, 8327–8338. [Google Scholar] [CrossRef] [PubMed]
- Duong, P.V.; Thi, L.A.; Hung, P.Q.; Toan, L.D.; Chuyen, P.T.; Hieu, D.M.; Minh, P.H.; Binh, N.T.; Cuong, T.M.; Hoa, N.M. Probing Förster Resonance Energy Transfer in Carbon Quantum Dots for High-Sensitivity Aflatoxin B1 Detection. J. Fluoresc. 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, X.; Han, J.; Fan, X.; Liu, K.; Yang, L.; Yang, H.; Chen, X.; Ma, X.; Chen, G. Precise Identification of Inhibitors for Coagulation Reactions from Complex Extracts through Monitoring of Biological Aggregates Combined with a Targeted Fishing Technique. Anal. Chem. 2025, 97, 6211–6221. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.-L.; Xu, H.; Zheng, T.-F.; Liu, S.-J.; Chen, J.-L.; Wen, H.-R. Rare Fluorescence Red-Shifted Metal-Organic Framework Sensor for Methylamine Derived from an N-Donor Ligand. Cryst. Growth Des. 2021, 21, 5765–5772. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Q.; Feng, X.; Li, R.; Zhang, X. A recycled Tb-MOF fluorescent sensing material for highly sensitive and selective detection of tetracycline in milk. Microchem. J. 2021, 170, 106714. [Google Scholar] [CrossRef]
- Xiong, L.; Liu, Y.; Jiao, Y.; Wei, G.; Xu, B.; Han, F.; Zhao, L. Fluorescence detection of α-amylase based on a host-guest complex between a pyrene-derived amphiphile and γ-cyclodextrin. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2025, 339, 126219. [Google Scholar] [CrossRef]
- Deng, Y.; Tang, Y.; Zhang, J.; Hang, X.; Wang, S.; Hu, S.; Yang, J. Designing a calixarene-based {Zn24} coordination cage as a multifunctional sensor. Polyhedron 2024, 251, 116856. [Google Scholar] [CrossRef]
- Huo, M.; Song, S.-Q.; Dai, X.-Y.; Li, F.-F.; Hu, Y.-Y.; Liu, Y. Phosphorescent acyclic cucurbituril solid supramolecular multicolour delayed fluorescence behaviour. Chem. Sci. 2024, 15, 5163–5173. [Google Scholar] [CrossRef]
- Khabir, Z.; Holmes, A.M.; Lai, Y.-J.; Liang, L.; Deva, A.; Polikarpov, M.A.; Roberts, M.S.; Zvyagin, A.V. Human Epidermal Zinc Concentrations after Topical Application of ZnO Nanoparticles in Sunscreens. Int. J. Mol. Sci. 2021, 22, 12372. [Google Scholar] [CrossRef]
- Jung, C.W.; Jalani, G.; Ko, J.; Choo, J.; Lim, D.W. Synthesis, Characterization, and Directional Binding of Anisotropic Biohybrid Microparticles for Multiplexed Biosensing. Macromol. Rapid Commun. 2014, 35, 56–65. [Google Scholar] [CrossRef]
- Ghauch, A.; Rima, J.; Fachinger, C.; Suptil, J.; Martin-Bouyer, M. Room temperature phosphorescence analyses of polycyclic aromatic hydrocarbons using an imaging sensing system combined with a bifurcated optical fiber and a cooled charge coupled device detector. Talanta 2000, 51, 807–816. [Google Scholar] [CrossRef]
- Rajbongshi, H.; Sarkar, A.; Phukan, P.; Bhattacharjee, S.; Datta, P. Ultrasensitive fluorescence detection of Fe3+ ions using fluorescein isothiocyanate functionalized Ag/SiO2/SiO2 core-shell nanocomposites. J. Mater. Sci. -Mater. Electron. 2019, 30, 5580–5597. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; Yu, X. Facile preparation of FITC-modified silicon nanodots for ratiometric pH sensing and imaging. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2020, 234, 118276. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, W.; Zhang, G.-Q.; Qiu, Y.; Li, L.; Pan, L.; Cao, N. An enzyme-activatable dual-readout probe for sensitive β-galactosidase sensing and Escherichia coli analysis. Front. Bioeng. Biotechnol. 2022, 10, 1052801. [Google Scholar] [CrossRef]
- Zhang, Z.; Lou, Y.; Guo, C.; Jia, Q.; Song, Y.; Tian, J.-Y.; Zhang, S.; Wang, M.; He, L.; Du, M. Metal-organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci. Technol. 2021, 118, 569–588. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Zhang, Y.; Li, Y.; Yao, X. Optical temperature sensing of up-conversion luminescent materials: Fundamentals and progress. J. Alloys Compd. 2020, 817, 152691. [Google Scholar] [CrossRef]
- Niu, Y.; Wu, F.; Zhang, Q.; Teng, Y.; Huang, Y.; Yang, Z.; Mu, Z. Luminescence and thermometry sensing of Sr2InTaO6: Eu3+, Mn4+phosphors in a wide temperature range. J. Lumin. 2024, 275, 120748. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Li, Y.; Liao, D.; Zhang, W.; Han, X.; Man, S. A ratiometric fluorescent biosensing platform for ultrasensitive detection of Salmonella typhimurium via CRISPR/Cas12a and silver nanoclusters. J. Hazard. Mater. 2023, 443, 130234. [Google Scholar] [CrossRef]
- Wu, Q.; Tian, F.; Chen, W.; Wang, J.; Lei, B. Specific Recognition and Adsorption of Volatile Organic Compounds by Using MIL-125-Based Porous Fluorescence Probe Material. Nanomaterials 2023, 13, 2732. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, H.; Broderick, N.; Hong, S.; Zheng, Z.; Xu, B.; Zhao, C.; Kang, J. A Fiber Sensor for VOC Gas Detection Based on Modulated Aggregation of Fluorescence Indicator. IEEE Sens. J. 2024, 24, 16162–16169. [Google Scholar] [CrossRef]
- Li, Q.; Lu, Z.; Tan, X.; Xiao, X.; Wang, P.; Wu, L.; Shao, K.; Yin, W.; Han, H. Ultrasensitive detection of aflatoxin B1 by SERS aptasensor based on exonuclease-assisted recycling amplification. Biosens. Bioelectron. 2017, 97, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Lian, S.; Li, X.; Lv, X. Density Functional Theory Study on the Interaction between Aflatoxin B1/M1 and Gold Substrate. Langmuir 2024, 40, 1804–1816. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Sahoo, R.; Chowdhury, J.; Bhattacharya, T.S.; Agarwal, R.; Pal, T. Directional growth of Ag nanorod from polymeric silver cyanide: A potential substrate for concentration dependent SERS signal enhancement leading to melamine detection. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2017, 183, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Hlaing, M.M.; Stoddart, P.R.; Greene, G.W. Self-Assembled Lubricin (PRG-4)-Based Biomimetic Surface-Enhanced Raman Scattering Sensor for Direct Droplet Detection of Melamine in Undiluted Milk. Biosensors 2024, 14, 591. [Google Scholar] [CrossRef]
- Xu, Q.; Guo, X.; Xu, L.; Ying, Y.; Wu, Y.; Wen, Y.; Yang, H. Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues. Sens. Actuators B-Chem. 2017, 241, 1008–1013. [Google Scholar] [CrossRef]
- Chadha, R.; Das, A.; Lobo, J.; Meenu, V.O.; Paul, A.; Ballal, A.; Maiti, N. γ-Cyclodextrin capped silver and gold nanoparticles as colorimetric and Raman sensor for detecting traces of pesticide “Chlorpyrifos” in fruits and vegetables. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 641, 128558. [Google Scholar] [CrossRef]
- Patra, B.; Kafle, B.; Habteyes, T.G.G. Molecular Optomechanics Induced Hybrid Properties in Soft Materials Filled Plasmonic Nanocavities. Nano Lett. 2023, 23, 5108–5115. [Google Scholar] [CrossRef]
- Feng, Y.; He, L.; Wang, L.; Mo, R.; Zhou, C.; Hong, P.; Li, C. Detection of Aflatoxin B1 Based on a Porous Anodized Aluminum Membrane Combined with Surface-Enhanced Raman Scattering Spectroscopy. Nanomaterials 2020, 10, 1000. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, R.; Ma, Y.; Cui, H.; Lin, J.; Ren, S.; Liang, J.; Gao, Z. Programmable 3D DNA nanotweezers combined with frozen gold probes for the detection of ochratoxin A. Sens. Actuators B-Chem. 2024, 408, 135552. [Google Scholar] [CrossRef]
- Tan, R.; Zeng, M.; Huang, Q.; Zhou, N.; Deng, M.; Li, Y.; Luo, X. Dual-mode SERS/colorimetric sensing of nitrite in meat products based on multifunctional au NPs@COF composite. Food Chem. 2024, 457, 140166. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, C.; Liu, F.; Fu, X.; Wang, X.; Li, N.; Guan, M. Intelligent portable SERS-colorimetric dual-mode method based on bilayer amphiphilic-controllable surface imprinting for synergistic detection of glycoprotein disease markers. Sens. Actuators B-Chem. 2025, 439, 137829. [Google Scholar] [CrossRef]
- Niihori, M.; Foeldes, T.; Readman, C.A.; Arul, R.; Grys, D.-B.; de Nijs, B.; Rosta, E.; Baumberg, J.J. SERS Sensing of Dopamine with Fe(III)-Sensitized Nanogaps in Recleanable AuNP Monolayer Films. Small 2023, 19, 2302531. [Google Scholar] [CrossRef]
- Ye, J.; Yeh, Y.-T.; Xue, Y.; Wang, Z.; Zhang, N.; Liu, H.; Zhang, K.; Ricker, R.; Yu, Z.; Roder, A.; et al. Accurate virus identification with interpretable Raman signatures by machine learning. Proc. Natl. Acad. Sci. USA 2022, 119, e2118836119. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huang, X.; Chen, S.; Ali, S.; Chen, X.; Yuan, L.; Shi, W.; Huang, G. Alkali hydrolysis and Lewis acids assisted enhancement based highly sensitive and quantitative detection of malathion in tea using SERS and multivariate analysis. Sens. Actuators B-Chem. 2022, 359, 131584. [Google Scholar] [CrossRef]
- Li, T.-J.; Wen, B.-Y.; Zhang, Y.-J.; Zhang, L.; Li, J.-F. Au@ZrO2 core-shell nanoparticles as a surface-enhanced Raman scattering substrate for organophosphorus compounds detection. J. Raman Spectrosc. 2022, 53, 1386–1393. [Google Scholar] [CrossRef]
- Wang, X.; Du, S.; Qu, C.; Yu, F.; Zheng, L.; Su, M.; Liu, H.; Shao, B. Plasmonic nanostar@metal organic frameworks as strong adsorber, enricher, and sensor for trace nanoplastics via surface-enhanced Raman spectroscopy. Chem. Eng. J. 2024, 487, 150415. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, N.; Yan, J.; Cui, K.; Chu, Q.; Chen, X.; Luo, X.; Deng, X. A dual-signaling surface-enhanced Raman spectroscopy ratiometric strategy for ultrasensitive Hg2+detection based on Au@Ag/ COF composites. Food Chem. 2024, 456, 139998. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Zhang, W.; Li, Y.; Zhang, X.; Huang, X.; Shi, Y.; Zou, Y.; Li, Z.; Shi, J.; et al. Highly catalytic Ce-based MOF for powering electrochemical aptasensing toward evaluating dissolution rate of microelement copper from tea-leaves. J. Food Compos. Anal. 2025, 140, 107266. [Google Scholar] [CrossRef]
- Hassan, M.M.; Xu, Y.; He, P.; Zareef, M.; Li, H.; Chen, Q. Simultaneous determination of benzimidazole fungicides in food using signal optimized label-free HAu/Ag NS-SERS sensor. Food Chem. 2022, 397, 133755. [Google Scholar] [CrossRef]
- Tang, L.; Dong, J.; Xia, L.; Li, G. Space-confined growth of molecularly imprinted membrane SERS substrate for rapid sample preparation and sensitive food safety analysis all-in-one. Sens. Actuators B Chem. 2025, 441, 137987. [Google Scholar] [CrossRef]
- Uniyal, A.; Srivastava, G.; Pal, A.; Taya, S.; Muduli, A. Recent Advances in Optical Biosensors for Sensing Applications: A Review. Plasmonics 2023, 18, 735–750. [Google Scholar] [CrossRef]
- Sivashanmugan, K.; Liao, J.-D.; Liu, B.H.; Yao, C.-K. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution. Anal. Chim. Acta 2013, 800, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Hu, L.; Ding, F.; Liu, J.; Su, J.; Tu, K.; Peng, J.; Lan, W.; Pan, L. Introducing high-performance star-shaped bimetallic nanotags into SERS aptasensor: An ultrasensitive and interference-free method for chlorpyrifos detection. Biosens. Bioelectron. 2024, 263, 116577. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Tang, X.; Zhang, Y.; Wu, D.; Yang, W. Applications of metal-organic framework (MOF)-based sensors for food safety: Enhancing mechanisms and recent advances. Trends Food Sci. Technol. 2021, 112, 268–282. [Google Scholar] [CrossRef]
- Chang, K.; Zhao, Y.; Xu, Z.; Zhu, L.; Xu, L.; Wang, Q. Advances in metal-organic framework-plasmonic metal composites based SERS platforms: Engineering strategies in chemical sensing, practical applications and future perspectives in food safety. Chem. Eng. J. 2023, 459, 141539. [Google Scholar] [CrossRef]
- Tesky, A.R.; Hicks, M.; Aryal, S.; Jones, B.; Molitor, J.; Kaul, A.B. Dry electrodes with a printed cellulose-graphene ink for low-profile strain sensors in electromyography. J. Mater. Chem. C 2025, 13, 7004–7016. [Google Scholar] [CrossRef]
- Liu, Y.; Gou, S.; Qiu, L.; Xu, Z.; Yang, H.; Yang, S.; Zhao, Y. A CRISPR/Cas12a-powered gold/nickel foam surface-enhanced Raman spectroscopy biosensor for nucleic acid specific detection in foods. Analyst 2024, 149, 4343–4350. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, X.; Hu, X.; Tong, W.; Leng, Y.; Xiong, Y. Recent advances in colorimetry/fluorimetry-based dual-modal sensing technologies. Biosens. Bioelectron. 2021, 190, 113386. [Google Scholar] [CrossRef]
- Shrikrishna, N.S.; Kaushik, A.; Gandhi, S. Smartphone-assisted detection of monocrotophos pesticide using a portable nano-enabled chromagrid-lightbox system towards point-of-care application. Chemosphere 2023, 330, 138704. [Google Scholar] [CrossRef]
- Gan, Z.; Wang, J. A MOF-stabilized enzyme-based colorimetric biosensor integrated with pH test strips for portable detection of D-limonene in agricultural applications. Chem. Eng. J. 2025, 510, 161719. [Google Scholar] [CrossRef]
- Zhang, X.; Zhi, H.; Zhu, M.; Wang, F.; Meng, H.; Feng, L. Electrochemical/visual dual-readout aptasensor for Ochratoxin A detection integrated into a miniaturized paper-based analytical device. Biosens. Bioelectron. 2021, 180, 113146. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wang, L.; Xu, F.; Ma, G. Dual-functional Fe-MoS2@AuNPs for simple and sensitive colorimetric-electrochemical coupled detection of Hg2+. Ionics 2022, 28, 5251–5255. [Google Scholar] [CrossRef]
- Jin, Z.; Yim, W.; Retout, M.; Housel, E.; Zhong, W.; Zhou, J.; Strano, M.S.; Jokerst, J.V. Colorimetric sensing for translational applications: From colorants to mechanisms. Chem. Soc. Rev. 2024, 53, 7681–7741. [Google Scholar] [CrossRef]
- Song, X.; Chen, X.; Liang, Z.; Xu, D.; Liang, Y. A dual-channel visual sensing system for recognition of multiple metal ions. Colloids Surf. B-Biointerfaces 2022, 216, 112558. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, J.P.; Charvet, R.; Ariga, K. Porphyrin colorimetric indicators in molecular and nano-architectures. J. Nanosci. Nanotechnol. 2007, 7, 2969–2993. [Google Scholar] [CrossRef]
- Kadam, U.S.; Cho, Y.; Park, T.Y.; Hong, J.C. Aptamer-based CRISPR-Cas powered diagnostics of diverse biomarkers and small molecule targets. Appl. Biol. Chem. 2023, 66, 13. [Google Scholar] [CrossRef]
- Shi, J.; Li, P.; Huang, Y.; Wu, Y.; Wu, J.; Huang, K.-J.; Tan, X.; Ya, Y. Smartphone-assisted self-powered dual-mode biosensor designed on binary 3D DNA Walkers mediated CRISPR/Cas12a system. Chem. Eng. J. 2024, 483, 149231. [Google Scholar] [CrossRef]
- Feng, M.; Li, X.; Zhang, X.; Huang, Y. Recent advances in the development and analytical applications of oxidase-like nanozymes. Trac-Trends Anal. Chem. 2023, 166, 117220. [Google Scholar] [CrossRef]
- Zhu, X.; Li, H.; Hou, S.; Song, P.; Zheng, J.; Wu, T.; Zhao, H.; Liu, Q. A novel three-stage continuous sensing platform for H2O2 and cholesterol based on CuFeS2 nanozyme: Theoretical calculation and experimental verification. Chem. Eng. J. 2024, 482, 148589. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Huang, X.; Huang, Q.; Wen, Y.; Li, B.; Holmes, M.; Shi, J.; Zou, X. Uniform stain pattern of robust MOF-mediated probe for flexible paper-based colorimetric sensing toward environmental pesticide exposure. Chem. Eng. J. 2023, 451, 138928. [Google Scholar] [CrossRef]
- Su, M.; Qin, H.; Tang, Q.; Peng, D.; Li, H.; Zou, Z. Colorimetric ammonia-sensing nanocomposite films based on starch/ sodium alginate and Cu-Phe nanorods for smart packaging application. Int. J. Biol. Macromol. 2024, 282, 137470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Z.; Huang, X.; Hu, X.; Li, Y.; Zhou, Y.; Wang, X.; Zhang, R.; Wei, X.; Zhai, X.; et al. H-Bond Modulation Mechanism for Moisture-driven Bacteriostat Evolved from Phytochemical Formulation. Adv. Funct. Mater. 2024, 34, 2312053. [Google Scholar] [CrossRef]
- Liu, B.; Zhuang, J.; Wei, G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci.-Nano 2020, 7, 2195–2213. [Google Scholar] [CrossRef]
- Elmas, E.; Sen, F.B.; Bener, M.; Apak, R. Development of a dual-sensing colorimetric probe for total antioxidant capacity measurement using iron(III)-o-phenanthroline reagent. Talanta 2025, 288, 127751. [Google Scholar] [CrossRef]
- Lanza, G.; Betancourth, D.; Avila, A.; Riascos, H.; Perez-Taborda, J.A. Control of the size distribution of AuNPs for colorimetric sensing by pulsed laser ablation in liquids. Kuwait J. Sci. 2025, 52, 100294. [Google Scholar] [CrossRef]
- Adade, S.Y.-S.S.; Lin, H.; Nunekpeku, X.; Johnson, N.A.N.; Agyekum, A.A.; Zhao, S.; Teye, E.; Qianqian, S.; Kwadzokpui, B.A.; Ekumah, J.-N.; et al. Flexible paper-based AuNP sensor for rapid detection of diabenz (a,h) anthracene (DbA) and benzo(b)fluoranthene (BbF) in mussels coupled with deep learning algorithms. Food Control 2025, 168, 110966. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, N.; Dong, S.; Huang, M.; Yang, L.; Wu, X.; Liu, Z.; Jiang, J.; Zou, Y. Plasmonic ELISA Based on Nanospherical Brush-Induced Signal Amplification for the Ultrasensitive Naked-Eye Simultaneous Detection of the Typical Tetrabromobisphenol A Derivative and Byproduct. J. Agric. Food Chem. 2018, 66, 2996–3002. [Google Scholar] [CrossRef]
- Jiang, S.; Wu, J.; Xu, L.; Yun, J.; Lu, Z.; Wang, Y.; Sun, M.; Rao, H. A dual-mode biosensing platform based on polydopamine-modified FeCoMOF/Co3O4 nanoenzyme for sensitive detection of Escherichia coli O157:H7. Talanta 2025, 295, 128295. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Liu, Y.; Zhi, W.; Han, J.; Wang, Y.; Ni, L. Green separation of bromelain in food sample with high retention of enzyme activity using recyclable aqueous two-phase system containing a new synthesized thermo-responsive copolymer and salt. Food Chem. 2019, 282, 48–57. [Google Scholar] [CrossRef]
- Guo, Y.; Li, C.; Guo, W.; Zhang, X.; Wang, L.; Zhang, W.; Zou, X.; Sun, Z. Advanced Electrochemical Biosensing toward Staphylococcus aureus Based on the RPA-CRISPR/Cas12a System and Conductive Nanocomposite. J. Agric. Food Chem. 2024, 72, 22918–22925. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Dai, X.; Yang, R.; Liu, Z.; Chen, H.; Zhang, Y.; Zhang, X. Fenton-like catalytic MOFs driving electrochemical aptasensing toward tracking lead pollution in pomegranate fruit. Food Control 2025, 169, 111006. [Google Scholar] [CrossRef]
- Cai, Y.; Cao, L.; Cai, H.; Yang, W.; Lu, H.; Adila, A.; Zhang, B.; Cao, Y.; Huang, W.; Xu, W.; et al. A rapid microfluidic paper-based chip sensor using ratiometric fluorescence and molecularly imprinted polymers for visual detection of sulfadiazine in actual samples. J. Food Compos. Anal. 2025, 139, 107108. [Google Scholar] [CrossRef]
- Jiang, C.; Ye, S.; Xiao, J.; Tan, C.; Yu, H.; Xiong, X.; Huang, K.; Deng, Y.; Zou, Z. Hydride generation-smartphone RGB readout and visual colorimetric dual-mode system for the detection of inorganic arsenic in water samples and honeys. Food Chem.-X 2023, 18, 100634. [Google Scholar] [CrossRef]
- Fay, C.D.; Wu, L. Critical importance of RGB color space specificity for colorimetric bio/ chemical sensing: A comprehensive study. Talanta 2024, 266, 124957. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, S.; Qian, J.; Meng, F.; Yao, J.; Zhang, M. Lable-free aptamer portable colorimetric smartphone for gliadin detection in food. Front. Bioeng. Biotechnol. 2024, 12, 1338408. [Google Scholar] [CrossRef]
- He, Y.; Wang, P.; Chen, X.; Li, Y.; Wei, J.; Cai, G.; Aoyagi, K.; Wang, W. Facile preparation of Fe3O4@Pt nanoparticles as peroxidase mimics for sensitive glucose detection by a paper-based colorimetric assay. R. Soc. Open Sci. 2022, 9, 220484. [Google Scholar] [CrossRef]
- Qu, L.; Zhang, X.; Chu, Y.; Zhang, Y.; Lin, Z.; Kong, F.; Ni, X.; Zhao, Y.; Lu, Q.; Zou, B. Research Progress on Nanotechnology-Driven Enzyme Biosensors for Electrochemical Detection of Biological Pollution and Food Contaminants. Foods 2025, 14, 1254. [Google Scholar] [CrossRef]
- Su, C.; Bai, L.; Zhang, H.; Chang, K.; Li, G.; Li, S. Novel Approach for the Decoration of Magnetic Carbon Nanospheres with Platinum Nanoparticles and Their Enhanced Peroxidase Activity for the Colorimetric Detection of H2O2. Chem. Res. Chin. Univ. 2019, 35, 163–170. [Google Scholar] [CrossRef]
- Oliveira, D.C.D.B.; Costa, F.H.M.; Beraldo, R.M.; da Silva, J.A.F.; Diniz, J.A. Integrating an Extended-Gate Field-Effect Transistor in Microfluidic Chips for Potentiometric Detection of Creatinine in Urine. Sensors 2025, 25, 779. [Google Scholar] [CrossRef]
- Liu, L.; Boni, B.O.O.; Ullah, M.W.; Qi, F.; Li, X.; Shi, Z.; Yang, G. Cellulose: A promising and versatile Pickering emulsifier for healthy foods. Food Rev. Int. 2023, 39, 7081–7111. [Google Scholar] [CrossRef]
- Dou, L.; Bai, Y.; Liu, M.; Shao, S.; Yang, H.; Yu, X.; Wen, K.; Wang, Z.; Shen, J.; Yu, W. ‘Three-To-One’ multi-functional nanocomposite-based lateral flow immunoassay for label-free and dual-readout detection of pathogenic bacteria. Biosens. Bioelectron. 2022, 204, 114093. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhou, R.; Zhang, D.; Zheng, X.; El-Seedi, H.R.; Chen, S.; Niu, L.; Li, X.; Guo, Z.; Zou, X. Magnetic nanoparticle-based immunosensors and aptasensors for mycotoxin detection in foodstuffs: An update. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13266. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Kan, X. Dual-mode colorimetric/photoelectrochemical sensing platform derived from the decomposition of CuHPT for glutathione detection. Analyst 2025, 150, 2792–2799. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, Y.; Li, P. Consistency of electrical and physiological properties of tea leaves on indicating critical cold temperature. Biosyst. Eng. 2017, 159, 89–96. [Google Scholar] [CrossRef]
- Falina, S.; Syamsul, M.; Abd Rhaffor, N.; Sal Hamid, S.; Mohamed Zain, K.A.; Abd Manaf, A.; Kawarada, H. Ten Years Progress of Electrical Detection of Heavy Metal Ions (HMIs) Using Various Field-Effect Transistor (FET) Nanosensors: A Review. Biosensors 2021, 11, 478. [Google Scholar] [CrossRef]
- Mettakoonpitak, J.; Khongsoun, K.; Wongwan, N.; Kaewbutdee, S.; Siripinyanond, A.; Kuharuk, A.; Henry, C.S. Simple biodegradable plastic screen-printing for microfluidic paper-based analytical devices. Sens. Actuators B-Chem. 2021, 331, 129463. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, B.; Zhang, M.; Yuan, Z.; Jiang, Y.; Tai, H. High-performance electrochemical power generation humidity sensor based on NaCl/sodium alginate humidity sensing electrolyte and Cu/Zn electrodes for visual humidity indication and respiratory patterns detection. Sens. Actuators B-Chem. 2024, 409, 135585. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Wang, H.; Huang, X.; Shi, Y.; Zou, Y.; Hu, X.; Li, Z.; Shi, J.; Zou, X. Energy difference-driven ROS reduction for electrochemical tracking crop growth sensitized with electron-migration nanostructures. Anal. Chim. Acta 2024, 1304, 342515. [Google Scholar] [CrossRef]
- Gabunada, J.C.; Vinothkannan, M.; Kim, D.H.; Kim, A.R.; Yoo, D.J. Magnetite Nanorods Stabilized by Polyaniline/Reduced Graphene Oxide as a Sensing Platform for Selective and Sensitive Non-enzymatic Hydrogen Peroxide Detection. Electroanalysis 2019, 31, 1524–1533. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, Z.; Zhang, T.; Chen, Q.; Qiu, F.; Peng, Y.; Tang, S. Fabrication of functional biomass carbon aerogels derived from sisal fibers for application in selenium extraction. Food Bioprod. Process. 2018, 111, 93–103. [Google Scholar] [CrossRef]
- Huang, X.; Huang, C.; Zhou, L.; Hou, G.; Sun, J.; Zhang, X.; Zou, X. Allosteric switch for electrochemical aptasensor toward heavy metals pollution of Lentinus edodes sensitized with porphyrinic metal-organic frameworks. Anal. Chim. Acta 2023, 1278, 341752. [Google Scholar] [CrossRef]
- Xu, X.; Li, C.-H.; Zhang, H.; Guo, X.-M. Construction of Electrochemical and Photoelectrochemical Sensing Platform Based on Porphyrinic Metal-Organic Frameworks for Determination of Ascorbic Acid. Nanomaterials 2022, 12, 482. [Google Scholar] [CrossRef]
- Han, L.; Mao, H.; Kumi, F.; Hu, J. Development of a Multi-Task Robotic Transplanting Workcell for Greenhouse Seedlings. Appl. Eng. Agric. 2018, 34, 335–342. [Google Scholar] [CrossRef]
- Han, E.; Li, L.; Gao, T.; Pan, Y.; Cai, J. Nitrite determination in food using electrochemical sensor based on self-assembled MWCNTs/AuNPs/poly-melamine nanocomposite. Food Chem. 2024, 437, 137773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, Y.; Wang, J.; Huang, X.; El-Mesery, H.S.; Shi, Y.; Zou, Y.; Li, Z.; Li, Y.; Shi, J.; et al. Simple-easy electrochemical sensing mode assisted with integrative carbon-based gel electrolyte for in-situ monitoring of plant hormone indole acetic acid. Food Chem. 2025, 467, 142342. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lin, H.; Wang, F.; Adade, S.Y.-S.S.; Peng, T.; Chen, Q. Discrimination of toxigenic and non-toxigenic Aspergillus flavus in wheat based on nanocomposite colorimetric sensor array. Food Chem. 2024, 430, 137048. [Google Scholar] [CrossRef]
- Kang, L.; Liang, Q.; Liu, Y.; Rashid, A.; Qayum, A.; Zhou, C.; Han, X.; Ren, X.; Chi, Z.; Chi, R.; et al. Preparation technology and preservation mechanism of novel Ag NPs-loaded ZIF-67 packaging film. Food Packag. Shelf Life 2024, 45, 101338. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, H.; Wang, S. Pasteurization mechanism of S. aureus ATCC 25923 in walnut shells using radio frequency energy at lab level. Lwt-Food Sci. Technol. 2021, 143, 111129. [Google Scholar] [CrossRef]
- An, N.-n.; Sun, W.; Li, D.; Wang, L.-j.; Wang, Y. Effect of microwave-assisted hot air drying on drying kinetics, water migration, dielectric properties, and microstructure of corn. Food Chem. 2024, 455, 139913. [Google Scholar] [CrossRef]
- Li, G.; Qin, M.; Zhang, Q.; Yuan, B.; Xue, L.; Zhang, S.; Yan, J.; Xu, C. In-situ electrochemical fabrication of holey graphene oxide and oxo-functionalized graphene for electrochemical sensing. Carbon Trends 2025, 18, 100447. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Li, Y.; Shi, J.; Huang, X.; Li, Z.; Zhang, J.; Li, W.; Xu, Y.; Zou, X. Easy-to-Use Visual Sensing System for Milk Freshness, Sensitized with Acidity-Responsive N-Doped Carbon Quantum Dots. Foods 2022, 11, 1855. [Google Scholar] [CrossRef]
- Zhao, H.; Tan, X.; Chai, H.; Hu, L.; Li, H.; Qu, L.; Zhang, X.; Zhang, G. Recent advances in conductive MOF-based electrochemical sensors. Chin. Chem. Lett. 2025, 36, 110571. [Google Scholar] [CrossRef]
- Guan, G.; Liang, Q.; Zhao, Y.; Wang, P.; Kong, F.; Zhang, Y.; Lin, Z.; Xing, N.; Xue, Z.; Lu, Q.; et al. Recent advances in glucose monitoring utilizing oxidase electrochemical biosensors integrating carbon-based nanomaterials and smart enzyme design. Front. Chem. 2025, 13, 1591302. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sun, Z.-C.; Pei, W.-Y.; Yang, J.; Xu, H.-L.; Zhang, J.-P.; Ma, J.-F. A Porous Metal-Organic Framework as an Electrochemical Sensing Platform for Highly Selective Adsorption and Detection of Bisphenols. Inorg. Chem. 2021, 60, 12049–12058. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.; Yu, X.; Chen, L.; Yarley, O.P.N.; Zhou, C. Facile preparation of sugarcane bagasse-derived carbon supported MoS2 nanosheets for hydrogen evolution reaction. Ind. Crops Prod. 2021, 172, 114064. [Google Scholar] [CrossRef]
- Abdualrahman, M.A.Y.; Ma, H.; Zhou, C.; Yagoub, A.E.A.; Hu, J.; Yang, X. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides. J. Sci. Food Agric. 2016, 96, 4861–4873. [Google Scholar] [CrossRef]
- Duan, N.; Gong, W.; Wu, S.; Wang, Z. Selection and Application of ssDNA Aptamers against Clenbuterol Hydrochloride Based on ssDNA Library Immobilized SELEX. J. Agric. Food Chem. 2017, 65, 1771–1777. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, J.; Li, Y.; Li, M. Effect of High-Voltage Electrostatic Field on Inorganic Nitrogen Uptake by Cucumber Plants. Trans. Asabe 2016, 59, 25–29. [Google Scholar]
- Cui, H.; Wang, Y.; Li, C.; Chen, X.; Lin, L. Antibacterial efficacy of Satureja montana L. essential oil encapsulated in methyl-β-cyclodextrin/soy soluble polysaccharide hydrogel and its assessment as meat preservative. Lwt-Food Sci. Technol. 2021, 152, 112427. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Huang, X.; Zou, X.; Shi, J.; Xu, Y.; Hu, X.; Sun, Y.; Zhai, X. Hypha-templated synthesis of carbon/ZnO microfiber for dopamine sensing in pork. Food Chem. 2021, 335, 127646. [Google Scholar] [CrossRef]
- Xia, J.; Zou, B.; Liu, F.; Wang, P.; Yan, Y. Sensitive glucose biosensor based on cyclodextrin modified carbon nanotubes for detecting glucose in honey. J. Food Compos. Anal. 2022, 105, 104221. [Google Scholar] [CrossRef]
- Xia, J.; Liu, F.; Yan, L.; Suo, H.; Qian, J.; Zou, B. Simultaneous determination of tert-butylhydroquinone, butylated hydroxyanisole and phenol in plant oil by metalloporphyrin-based covalent organic framework electrochemical sensor. J. Food Compos. Anal. 2023, 122, 105486. [Google Scholar] [CrossRef]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Xu, Y.; Ouyang, Q.; Chen, Q. Facile synthesis of fluorescence-SERS dual-probe nanocomposites for ultrasensitive detection of sulfur-containing gases in water and beer samples. Food Chem. 2023, 420, 136095. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Li, Y.; Zhang, L.; Bi, N.; Gou, J.; Zhu, T.; Jia, L. A novel intelligently integrated MOF-based ratio fluorescence sensor for ultra-sensitive monitoring of TC in water and food samples. Food Chem. 2023, 405, 134899. [Google Scholar] [CrossRef]
- Wu, H.; Xie, R.; Hao, Y.; Pang, J.; Gao, H.; Qu, F.; Tian, M.; Guo, C.; Mao, B.; Chai, F. Portable smartphone-integrated AuAg nanoclusters electrospun membranes for multivariate fluorescent sensing of Hg2+, Cu2+and L-histidine in water and food samples. Food Chem. 2023, 418, 135961. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Yin, L.; Picchetti, P.; Yang, T.; Zhou, R.; Zhao, C.; Xue, S.; Zhang, Z.; Zou, X.; et al. Competitive binding strategy for reliable signal-off surface enhanced Raman scattering sensing in protecting apples from patulin without external interference. J. Food Compos. Anal. 2025, 139, 107052. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, X.; Xue, S.; Yin, L.; Gao, S.; Zhang, Y.; Wang, C.; Wang, Y.; El-Seedi, H.R.; Zou, X.; et al. Magnetic metal-organic frameworks-based ratiometric SERS aptasensor for sensitive detection of patulin in apples. Food Chem. 2025, 466, 142200. [Google Scholar] [CrossRef]
- Hassan, M.M.; Ahmad, W.; Zareef, M.; Rong, Y.; Xu, Y.; Jiao, T.; He, P.; Li, H.; Chen, Q. Rapid detection of mercury in food via rhodamine 6G signal using surface-enhanced Raman scattering coupled multivariate calibration. Food Chem. 2021, 358, 129844. [Google Scholar] [CrossRef]
- Liu, R.; Ali, S.; Haruna, S.A.; Ouyang, Q.; Li, H.; Chen, Q. Development of a fluorescence sensing platform for specific and sensitive detection of pathogenic bacteria in food samples. Food Control 2022, 131, 108419. [Google Scholar] [CrossRef]
- Shi, B.; Zhang, X.; Li, W.; Liang, N.; Hu, X.; Xiao, J.; Wang, D.; Zou, X.; Shi, J. An intrinsic dual-emitting fluorescence sensing toward tetracycline with self-calibration model based on luminescent lanthanide-functionalized metal-organic frameworks. Food Chem. 2023, 400, 133995. [Google Scholar] [CrossRef]
- Sharma, A.S.; Ali, S.; Sabarinathan, D.; Murugavelu, M.; Li, H.; Chen, Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5765–5801. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Huang, X.; Hu, X.; Huang, X.; Yin, L.; Huang, Q.; Wen, Y.; Li, B.; Shi, J.; et al. Switchable aptamer-fueled colorimetric sensing toward agricultural fipronil exposure sensitized with affiliative metal-organic framework. Food Chem. 2023, 407, 135115. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Xu, Y.; Zareef, M.; Li, H.; Rong, Y.; Chen, Q. Recent advances of nanomaterial-based optical sensor for the detection of benzimidazole fungicides in food: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 2851–2872. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Q.; Belwal, T.; Lin, X.; Luo, Z. Insights into chemometric algorithms for quality attributes and hazards detection in foodstuffs using Raman/surface enhanced Raman spectroscopy. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2476–2507. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, W.; Huang, M.; Huang, W.; Feng, J. Green preparation of holocellulose nanocrystals from burdock and their inhibitory effects against α-amylase and α-glucosidase. Food Funct. 2022, 13, 170–185. [Google Scholar] [CrossRef]
- Han, F.; Huang, X.; Mahunu, G.K. Exploratory review on safety of edible raw fish per the hazard factors and their detection methods. Trends Food Sci. Technol. 2017, 59, 37–48. [Google Scholar] [CrossRef]
- Qi, W.; Tian, Y.; Lu, D.; Chen, B. Research Progress of Applying Infrared Spectroscopy Technology for Detection of Toxic and Harmful Substances in Food. Foods 2022, 11, 930. [Google Scholar] [CrossRef]
- Deng, J.; Ni, L.; Bai, X.; Jiang, H.; Xu, L. Simultaneous analysis of mildew degree and aflatoxin B1 of wheat by a multi-task deep learning strategy based on microwave detection technology. Lwt-Food Sci. Technol. 2023, 184, 115047. [Google Scholar] [CrossRef]
- Shi, Y.; Li, W.; Hu, X.; Zhang, X.; Huang, X.; Li, Z.; Zhai, X.; Shen, T.; Shi, J.; He, Y.; et al. A novel sustainable biomass-based fluorescent probe for sensitive detection of salicylic acid in rice. Food Chem. 2024, 434, 137260. [Google Scholar] [CrossRef]
- Li, Y.; Ouyang, Q.; Li, H.; Chen, M.; Zhan, Z.; Chen, Q. Turn-On Fluoresence Sensor for Hg2+ in Food Based on FRET between Aptamers-Functionalized Upconversion Nanoparticles and Gold Nanoparticles. J. Agric. Food Chem. 2018, 66, 6188–6195. [Google Scholar] [CrossRef]
- Su, X.; Chen, Z.; Wang, H.; Yuan, L.; Zheng, K.; Zhang, W.; Zou, X. Ratiometric immunosensor with DNA tetrahedron nanostructure as high-performance carrier of reference signal and its applications in selective phoxim determination for vegetables. Food Chem. 2022, 383, 132445. [Google Scholar] [CrossRef] [PubMed]
- Romero-Marquez, J.M.; Navarro-Hortal, M.D.; Forbes-Hernandez, T.Y.; Varela-Lopez, A.; Puentes, J.G.; Sanchez-Gonzalez, C.; Sumalla-Cano, S.; Battino, M.; Garcia-Ruiz, R.; Sanchez, S.; et al. Effect of olive leaf phytochemicals on the anti-acetylcholinesterase, anti-cyclooxygenase-2 and ferric reducing antioxidant capacity. Food Chem. 2024, 444, 138516. [Google Scholar] [CrossRef] [PubMed]
- Arshad, A.; Ding, L.; Akram, R.; Zhu, W.; Long, L.; Wang, K. Construction of a novel Au@Os mediated TMB-H2O2 platform with dual-signal output for rapid and accurate detection of ziram in food. Food Chem. 2025, 462, 140988. [Google Scholar] [CrossRef]
- Yang, R.; Liu, Z.; Chen, H.; Zhang, X.; El-Mesery, H.S.; Lu, W.; Dai, X.; Xu, R. Technology Empowering to Safeguard agricultural Products: A review of innovative approaches toward pesticide residue monitoring. Microchem. J. 2025, 213, 113693. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, R.; Chen, H.; Zhang, X. Recent Advances in Food Safety: Nanostructure-Sensitized Surface-Enhanced Raman Sensing. Foods 2025, 14, 1115. [Google Scholar] [CrossRef]
- Qin, W.-C.; Qiu, B.-J.; Xue, X.-Y.; Chen, C.; Xu, Z.-F.; Zhou, Q.-Q. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Duan, N.; Chang, B.; Zhang, H.; Wang, Z.; Wu, S. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int. J. Food Microbiol. 2016, 218, 38–43. [Google Scholar] [CrossRef]
- Wang, L.; Huang, T.; Cao, H.X.; Yuan, Q.X.; Liang, Z.P.; Liang, G.X. Application of Air-Assisted Liquid-Liquid Microextraction for Determination of Some Fluoroquinolones in Milk Powder and Egg Samples: Comparison with Conventional Dispersive Liquid-Liquid Microextraction. Food Anal. Methods 2016, 9, 2223–2230. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Niu, R.; Zhu, X.; Qiang, M.; Niu, G.; Wang, Y. Development and application of an immunoaffinity column clean-up for enrofloxacin determination in food samples. Food Agric. Immunol. 2017, 28, 248–259. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.; Aheto, J.H.; Osae, R. Application of Hyperspectral Imaging as a Nondestructive Technique for Foodborne Pathogen Detection and Characterization. Foodborne Pathog. Dis. 2019, 16, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Tang, H.; Zhang, Y.; Xiao, X.; Xia, Y.; Ai, L. The intervention effects of Lactobacillus casei LC2W on Escherichia coli O157:H7-induced mouse colitis. Food Sci. Hum. Wellness 2020, 9, 289–294. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, B.-X.; Zhao, F.-Y.; Cao, J. Genome-Wide Analysis of Chitinase Gene Family in Rice and Arabidopsis Reveal their Mechanisms and Diverse Roles in Defense Response. Int. J. Agric. Biol. 2020, 24, 812–822. [Google Scholar]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Yang, Y.; Chen, Q. Upconversion Nanoprobes Based on a Horseradish Peroxidase-Regulated Dual-Mode Strategy for the Ultrasensitive Detection of Staphylococcus aureus in Meat. J. Agric. Food Chem. 2021, 69, 9947–9956. [Google Scholar] [CrossRef]
- Cai, M.; Zhang, G.; Wang, J.; Li, C.; Cui, H.; Lin, L. Application of glycyrrhiza polysaccharide nanofibers loaded with tea tree essential oil/gliadin nanoparticles in meat preservation. Food Biosci. 2021, 43, 101270. [Google Scholar] [CrossRef]
- Han, J.; Ullah, M.; Andoh, V.; Khan, M.N.; Feng, Y.; Guo, Z.; Chen, H. Engineering Bacterial Chitinases for Industrial Application: From Protein Engineering to Bacterial Strains Mutation! A Comprehensive Review of Physical, Molecular, and Computational Approaches. J. Agric. Food Chem. 2024, 72, 23082–23096. [Google Scholar] [CrossRef]
- Xie, Y.; Du, X.; Li, D.; Wang, X.; Xu, C.; Zhang, C.; Sun, A.; Schmidt, S.; Liu, X. Seasonal occurrence and abundance of norovirus in pre- and postharvest lettuce samples in Nanjing, China. Lwt-Food Sci. Technol. 2021, 152, 112226. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Hu, X.; Zhang, X.; Huang, X.; Li, Z.; Li, M.; Zou, X.; Shi, J. Efficient preparation of dual-emission ratiometric fluorescence sensor system based on aptamer-composite and detection of bis(2-ethylhexyl) phthalate in pork. Food Chem. 2021, 352, 129352. [Google Scholar] [CrossRef]
- Yin, M.; Wang, W.; Wei, J.; Chen, X.; Chen, Q.; Chen, X.; Oyama, M. Novel dual-emissive fluorescent immunoassay for synchronous monitoring of okadaic acid and saxitoxin in shellfish. Food Chem. 2022, 368, 130856. [Google Scholar] [CrossRef]
- Bi, X.; Li, L.; Luo, L.; Liu, X.; Li, J.; You, T. A ratiometric fluorescence aptasensor based on photoinduced electron transfer from CdTe QDs to WS2 NTs for the sensitive detection of zearalenone in cereal crops. Food Chem. 2022, 385, 132657. [Google Scholar] [CrossRef]
- Navarro-Hortal, M.D.; Romero-Marquez, J.M.; Jimenez-Trigo, V.; Xiao, J.; Giampieri, F.; Forbes-Hernandez, T.Y.; Grosso, G.; Battino, M.; Sanchez-Gonzalez, C.; Quiles, J.L. Molecular bases for the use of functional foods in the management of healthy aging: Berries, curcumin, virgin olive oil and honey; three realities and a promise. Crit. Rev. Food Sci. Nutr. 2023, 63, 11967–11986. [Google Scholar] [CrossRef]
- Zhai, X.; Sun, Y.; Cen, S.; Wang, X.; Zhang, J.; Yang, Z.; Li, Y.; Wang, X.; Zhou, C.; Arslan, M.; et al. Anthocyanins-encapsulated 3D-printable bigels: A colorimetric and leaching-resistant volatile amines sensor for intelligent food packaging. Food Hydrocoll. 2022, 133, 107989. [Google Scholar] [CrossRef]
- Jiang, L.; Wei, W.; Liu, S.; Haruna, S.A.; Zareef, M.; Ahmad, W.; Hassan, M.M.; Li, H.; Chen, Q. A tailorable and recyclable TiO2 NFSF/Ti@Ag NPs SERS substrate fabricated by a facile method and its applications in prohibited fish drugs detection. J. Food Meas. Charact. 2022, 16, 2890–2898. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Wang, C.; Tian, X.; Yi, R.; Wang, Y. Fabrication and evaluation of chitosan modified filter paper for chlorpyrifos detection in wheat by surface-enhanced Raman spectroscopy. J. Sci. Food Agric. 2022, 102, 7323–7330. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Du, L.; Li, Z.; Xue, J.; Shi, J.; Tahir, H.E.; Zhai, X.; Zhang, J.; Zhang, N.; Sun, W.; et al. A visual bi-layer indicator based on mulberry anthocyanins with high stability for monitoring Chinese mitten crab freshness. Food Chem. 2023, 411, 135497. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zheng, Y.; Wang, X.; Zhou, X.; Qiu, Y.; Qin, W.; Shentu, X.; Wang, S.; Yu, X.; Ye, Z. Dosage-sensitive and simultaneous detection of multiple small-molecule pollutants in environmental water and agriproducts using portable SERS-based lateral flow immunosensor. Sci. Total Environ. 2024, 912, 169440. [Google Scholar] [CrossRef]
- Liang, G.; Song, L.; Gao, Y.; Wu, K.; Guo, R.; Chen, R.; Zhen, J.; Pan, L. Aptamer Sensors for the Detection of Antibiotic Residues—A Mini-Review. Toxics 2023, 11, 513. [Google Scholar] [CrossRef]
- Li, X.-J.; Li, Y.-T.; Gu, H.-X.; Xue, P.-F.; Qin, L.-X.; Han, S. A wearable screen-printed SERS array sensor on fire-retardant fibre gloves for on-site environmental emergency monitoring. Anal. Methods 2022, 14, 781–788. [Google Scholar] [CrossRef]
- He, Y.; Wei, J.; Zhang, L.; Xia, Y.; Wang, Z.; Yang, J. A DNA walker-driven SERS-fluorescent dual-mode aptasensor based on optimized aptamers to detect Shigella flexneri. Food Control 2024, 160, 110305. [Google Scholar] [CrossRef]
- Jarwal, D.K.; Jingar, N.; Kulhar, M.; Kumar, R.; Bera, A. Development of high-performance ultrafast photodetector using CsPbBr3 perovskite single crystal. Sens. Actuators A-Phys. 2024, 374, 115451. [Google Scholar] [CrossRef]
- Samanta, S.; Paul, S.; Debnath, T. Obtaining Ligand-Free Aqueous Au-Nanoparticles Using Reversible CsPbBr3 ⇆ Au@CsPbBr3 Nanocrystal Transformation. Small 2024, 20, 2311712. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Li, Z.; Huang, X.; Wang, Y.; Wei, X.; Zou, X.; Shi, J.; Huang, Z.; Yin, L.; Gao, L.; et al. A cell-based electrochemical taste sensor for detection of Hydroxy-?-sanshool. Food Chem. 2023, 418, 135941. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Liu, T.; Xue, C.; Xue, G.; Wu, M.; Liu, P.; Hammock, B.D.; Lai, W.; Peng, J.; Zhang, C. Competitive ratiometric fluorescent lateral flow immunoassay based on dual emission signal for sensitive detection of chlorothalonil. Food Chem. 2024, 433, 137200. [Google Scholar] [CrossRef]
- Wang, C.; Gu, C.; Rong, Y.; Zhao, X.; Qian, L.; Liu, M.; Huang, X.; Qian, J. Detection of AFB1 in corn by MXene paper-based unlabeled aptasensor. J. Food Process Eng. 2024, 47, e14654. [Google Scholar] [CrossRef]
- Zou, Y.; Shi, Y.; Wang, T.; Ji, S.; Zhang, X.; Shen, T.; Huang, X.; Xiao, J.; Farag, M.A.; Shi, J.; et al. Quantum dots as advanced nanomaterials for food quality and safety applications: A comprehensive review and future perspectives. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13339. [Google Scholar] [CrossRef]
- Murugesan, A.; Li, H.; Shoaib, M. Recent Advances in Functionalized Carbon Quantum Dots Integrated with Metal-Organic Frameworks: Emerging Platforms for Sensing and Food Safety Applications. Foods 2025, 14, 2060. [Google Scholar] [CrossRef]
- Li, Y.; Meng, S.; Dong, N.; Wei, Y.; Wang, Y.; Li, X.; Liu, D.; You, T. Space-Confined Electrochemical Aptasensing with Conductive Hydrogels for Enhanced Applicability to Aflatoxin B1 Detection. J. Agric. Food Chem. 2023, 71, 14806–14813. [Google Scholar] [CrossRef]
- Yin, L.; Hu, X.; Hao, M.; Shi, J.; Zou, X.; Dusabe, K.D. Upconversion nanoparticles-based background-free selective fluorescence sensor developed for immunoassay of fipronil pesticide. J. Food Meas. Charact. 2023, 17, 3125–3133. [Google Scholar] [CrossRef]
Sensing Type | Target Analyte | Signal Mechanism | Nanomaterial | LOD | SERS |
---|---|---|---|---|---|
Fluorescence Sensing | |||||
E. coli | On-off-on fluorescence | Au NCs | 89 CFU/mL | [44] | |
VB2 | Ratiometric fluorescence | SiNPs | 135 nM | [45] | |
S2− | Fluorescence quenching | F-SiNPs | 0.1 μM | [46] | |
UO22+ | DNAzyme/GO nanosystem | UCNPs | 25 pM | [47] | |
TCs | Ratiometric fluorescence | HC@Eu-MOF | 4.8 nM (OTC); 16.5–56.4 nM (other TCs) | [48] | |
Foodborne pathogens | Turn-on fluorescence | Fe-MOF | 0.464 log CFU/mL (S. aureus); 0.584 log CFU/mL (E. coli) | [49] | |
Raman Sensing | |||||
Methylene blue, thiabendazole | SERS intensity | Au nanostar monolayer | 4.2 × 10−12 M | [50] | |
Thiram | SERS intensity | Au@Ag core–shell nanoflowers | 7.09 × 10−8 mol/L | [51] | |
ciprofloxacin | Dual-resonance SERS | V5S4 nanopompons | 10−7 M | [52] | |
tetracycline | Dual-resonance SERS | V5S4 nanopompons | 10−8 M | [52] | |
chloromycin | Dual-resonance SERS | V5S4 nanopompons | 10−7 M | [52] | |
Antibiotic residues | SERS intensity | TiO2/ZnO heterostructure | 3.94 × 10−8 M | [53] | |
PATP (model molecule) | SERS intensity | AgNWs@MOF | 10−13 mol/L (liquid); 10−7 mol/L (gas) | [54] | |
Wheat gluten | SERS intensity | AgNPs/MOF substrate | 1.16 × 10−16 mol/L | [55] | |
Carbendazim (pesticide) | SERS intensity | Ag/CuO nanocomposite | 8.85 × 10−11 M | [56] | |
Colorimetric Sensing | |||||
Ascorbic acid | Oxidase-like activity | Fe3O4@SiO2@NiCo2S4 | 0.36 μM | [57] | |
Sarcosine | Oxidase-like activity | Fe3O4@SiO2@NiCo2S4 | 0.42 μM | [57] | |
Lactose | Peroxidase-like activity | Cu/N-doped carbon nanozyme | 0.03 mM | [58] | |
β-Galactosidase | Peroxidase-like activity | Cu/NC NS | 0.01 U/mL | [58] | |
ferulic acid | Peroxidase-like activity | Ta-MOF | 0.19 μM | [59] | |
tannic acid | Peroxidase-like activity | Ta-MOF | 0.06 μM | [59] | |
chlorogenic acid | Peroxidase-like activity | Ta-MOF | 0.11 μM | [59] | |
Nandrolone | Aptamer binding | Zn-Fe MOF | 0.85 nM | [60] | |
Trimethylamine | Pigment binding | KA-ACN/HPMC-SA film | 15.79 μM | [61] | |
Ascorbic acid | Oxidase-like activity | CD-LEuH@MnO2 | 0.064 μM | [62] | |
Formaldehyde | Nanoparticle color shift | Au/Ag NPs | 0.02 μM | [63] | |
Dimethoate (pesticide) | Dual-enzyme mimic | Ag2CrO4 NPs | 8.7 μg/L (oxidase); 10.9 μg/L (laccase) | [64] | |
Electrochemical Sensing | |||||
Nitrite | Electrocatalysis | Cu BTC MOF; ZIF-8 MOF | 16.39 μM; 24.48 μM | [65] | |
Enrofloxacin | Oxidation current | Cu-Ni-MOF | 15.17 nM | [66] | |
Ascorbic acid | Electrocatalysis | Cabbage-derived carbon/Cu | 0.05 μM | [67] | |
Formaldehyde | Electrocatalysis | CoO@CoMn-LDH/NF | 7.8 × 10−3 mM | [68] | |
Mefexamide hydrochloride | Redox peaks | TiC/carbon matrix | 3.6 × 10−7 M | [69] | |
Caffeic acid | Redox catalysis | Co-NC/MWCNT | 0.162 μM | [70] | |
Caffeic acid | Electrocatalysis | MS/NGR | 0.05 μmol/L | [71] |
Detection Method | Target Substance/Pollutant | Example Application | Key Nanomaterial/Technology | Food Matrix | SERS |
---|---|---|---|---|---|
Fluorescence Sensing | |||||
Heavy metals (e.g., Hg2+) | Real-time monitoring in water and agricultural products | Gold nanoclusters | Water, fish, grains | [44] | |
Biological toxins (e.g., aflatoxin B1) | Mycotoxin screening in nuts and cereals | Quantum dot-labeled antibodies | Peanuts, maize | [46,105] | |
Antibiotics (e.g., tetracycline) | Veterinary drug residue detection in animal-derived foods | HC@Eu-MOF nanosensor | Milk, meat | [48] | |
Pathogens (e.g., E. coli, S. aureus) | Rapid bacterial detection in dairy and beverages | Fe-MOF | Milk, juice | [49] | |
Vitamins (e.g., riboflavin, VB2) | Nutrient quantification in fortified foods | Silicon nanoparticles | Juices, dairy products | [45] | |
Uranyl ions (UO22+) | Contaminant tracking in water sources | Upconversion nanoparticles with DNAzyme/GO | Drinking water | [47] | |
Raman Sensing | |||||
Pesticides (e.g., chlorpyrifos, thiram) | Residue screening in fruits and vegetables | Au nanostar dimers; Au@Ag core–shell nanoflowers | Apples, milk | [50,51] | |
Antibiotics (e.g., ciprofloxacin, tetracycline) | Drug residue identification in animal products | V5S4 nanopompons; TiO2/ZnO heterostructure | Eggs, meat | [52,53] | |
Allergens (e.g., wheat gluten) | Gluten detection in processed foods | AgNPs/MOF substrate | Soy sauce, vinegar | [55] | |
Additives (e.g., Sudan dyes) | Illegal dye identification in spices | Ag/CuO nanocomposite | Tea leaves, chili powder | [56] | |
Recycled cooking oil adulterants | Cholesterol-based authentication in oils | Gold nanostar monolayers | Cooking oils | [54] | |
Colorimetric Sensing | |||||
Antioxidants (e.g., ascorbic acid) | Quality control in beverages and supplements | Fe3O4@SiO2@NiCo2S4 nanocomposites | Juices, vitamin tablets | [57] | |
Hormones/illegal additives (e.g., nandrolone) | Doping agent detection in sports foods | Zn-Fe MOF aptasensor | Meat products, supplements | [60] | |
Pesticides (e.g., dimethoate) | On-site residue testing in vegetables | Ag2CrO4 nanoparticles | Leafy greens, tomatoes | [64] | |
Freshness indicators (e.g., trimethylamine) | Spoilage monitoring in seafood and meat | KA-ACN/HPMC-SA film | Salmon, beef | [61] | |
Flavors/aldehydes (e.g., formaldehyde) | Authenticity assessment in alcoholic beverages | Au/Ag nanoparticle array | Baijiu, wines | [63] | |
Electrochemical Sensing | |||||
Nitrites | Preservative analysis in processed meats and water | Cu BTC/ZIF-8 MOFs | Tap water, cured meats | [65] | |
Antibiotics (e.g., enrofloxacin) | Veterinary drug monitoring in dairy and eggs | Cu-Ni-MOF | Milk, eggs | [66] | |
Organic acids (e.g., ascorbic acid) | Nutrient and additive quantification in fruits | Cabbage-derived carbon/Cu | Oranges, berries | [67] | |
Aldehydes (e.g., formaldehyde) | Contaminant detection in preserved foods | CoO@CoMn-LDH nanoarray | Fish, processed foods | [68] | |
Phenolic compounds (e.g., caffeic acid) | Antioxidant screening in functional foods | Co-NC/MWCNT | Blueberries, coffee | [70,71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Yuan, Z.; Gao, S.; Zhang, X.; El-Mesery, H.S.; Lu, W.; Dai, X.; Xu, R. Nanostructure-Engineered Optical and Electrochemical Biosensing Toward Food Safety Assurance. Foods 2025, 14, 3021. https://doi.org/10.3390/foods14173021
Wu X, Yuan Z, Gao S, Zhang X, El-Mesery HS, Lu W, Dai X, Xu R. Nanostructure-Engineered Optical and Electrochemical Biosensing Toward Food Safety Assurance. Foods. 2025; 14(17):3021. https://doi.org/10.3390/foods14173021
Chicago/Turabian StyleWu, Xinxin, Zhecong Yuan, Shujie Gao, Xinai Zhang, Hany S. El-Mesery, Wenjie Lu, Xiaoli Dai, and Rongjin Xu. 2025. "Nanostructure-Engineered Optical and Electrochemical Biosensing Toward Food Safety Assurance" Foods 14, no. 17: 3021. https://doi.org/10.3390/foods14173021
APA StyleWu, X., Yuan, Z., Gao, S., Zhang, X., El-Mesery, H. S., Lu, W., Dai, X., & Xu, R. (2025). Nanostructure-Engineered Optical and Electrochemical Biosensing Toward Food Safety Assurance. Foods, 14(17), 3021. https://doi.org/10.3390/foods14173021