Recent Advances in Drying Technologies for Orange Products
Abstract
1. Introduction
2. Review Methods
- (1)
- Databases and timeframe: Scopus/Web of Science/PubMed, 2019–2025.
- (2)
- Search strings: combine orange/citrus/Citrus sinensis/orange products/orange slices/orange peel/orange waste/citrus tea with hot air drying/freeze drying/vacuum drying/microwave drying/microwave vacuum drying/infrared drying/pulsed electric field pretreatment/ozone pretreatment/spray drying/ultrasound drying.
- (3)
- Inclusion/exclusion: peer reviewed; English/Chinese if included; exclude conference abstracts without data; include only studies that report method parameters and at least one of (ΔE, TPC, AAC, Antioxidant activity, total polyphenol content, Deff, EO yield). Include only studies that report dried oranges in food applications.
3. Properties of Oranges
3.1. Phenolic Compounds
3.2. Carotenoids
3.3. Vitamins
3.4. Health Benefits and Side Effects
4. Current Drying Technologies
4.1. Hot Air Drying and Freeze Drying
4.2. Vacuum Drying and Pulsed Drying
4.3. Spray Drying
4.4. Microwave Drying and Infrared Drying
4.5. Solar Drying
4.6. Ozone Pretreatment
5. Dried Orange Products
5.1. Orange Slices
5.2. Orange Peels
5.3. Other Products
5.3.1. Citrus Tea
5.3.2. Orange Juice Powder
5.3.3. Orange Puree
5.3.4. Orange Waste Utilization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ascorbic Acid Content | AAC |
Atmospheric Pressure Drying | APD |
Browning Index | BI |
Catechin Equivalent | CE |
Color Difference | ΔE |
Controlled Atmosphere | CAtm |
Conventional Full Load | CFLT |
Conventional Partial Load | CPST |
Cupric Ion Reducing Antioxidant Capacity | CUPRAC |
Effective Diffusivity | Deff |
2,2-Diphenyl-1-Picrylhydrazyl | DPPH |
Ferric Reducing Antioxidant Power | FRAP |
Freeze Drying | FD |
Gallic Acid Equivalent | GAE |
Glass Transition Temperature | Tg |
Hot Air Drying | HAD |
Hot Air-Assisted Radio Frequency Drying | HA-RFD |
Infrared Drying | ID |
Intermittent Partial Load With Homogenization | IPST |
Lightness | L* |
Microwave Drying | MWD |
Microwave Pretreatment Hot Air Drying | MWHD |
Microwave-Pretreated Vacuum Drying | MWVD |
Moisture Content | MC |
Near-Infrared | NIR |
Normal Atmosphere | NAtm |
Orange Peel | OP |
Oven Drying | OD |
Polymethoxylated Flavones | PMFs |
Pulsed Electric Field | PEF |
Pulsed Vacuum Drying | PVD |
Radio Frequency | RF |
Redness-Greenness | a* |
Rutin Equivalent | RE |
Solar Drying | SD |
Sunlight Drying | SLD |
Total Antioxidant Capacity | TAC |
Total Flavonoid Content | TFC |
Total Phenolic Content | TPC |
Ultrasound | US |
Vacuum Drying | VD |
Vacuum Infrared Drying | VID |
Vacuum Microwave Drying | VMD |
Yellowness-Blueness | b* |
References
- USDA. Production-Oranges. Available online: https://www.fas.usda.gov/data/production/commodity/0571120 (accessed on 23 March 2025).
- Bozkir, H. Effects of hot air, vacuum infrared, and vacuum microwave dryers on the drying kinetics and quality characteristics of orange slices. J. Food. Process. Eng. 2020, 43, e13485. [Google Scholar] [CrossRef]
- Sang, J.; Li, L.; Wen, J.; Gu, Q.; Wu, J.; Yu, Y.; Xu, Y.; Fu, M.; Lin, X. Evaluation of the Structural, Physicochemical and Functional Properties of Dietary Fiber Extracted from Newhall Navel Orange By-Products. Foods 2021, 10, 2772. [Google Scholar] [CrossRef]
- Temple, N.J.J. A rational definition for functional foods: A perspective. Front. Nutr. 2022, 9, 957516. [Google Scholar] [CrossRef] [PubMed]
- Minami, G.S.; Lumbantoruan, E.C.; Puteri; Nuraini, R.; Harianto, J.C.; Fahrurroji, A. The potential of sweet orange (Citrus sinensis) in cardiovascular health: A literature review. JKKI J. Kedokt. Dan Kesehat. Indones. 2023, 14, 82–94. [Google Scholar] [CrossRef]
- Ribeiro, A.P.D.; Pereira, A.G.; Todo, M.C.B.S.; Fujimori, A.S.S.; dos Santos, P.P.; Dantas, D.; Fernandes, A.A.; Zanati, S.G.; Hassimotto, N.M.A.; Zornoff, L.A.M.; et al. Pera orange (Citrus sinensis and Moro orange (Citrus sinensis (L.) Osbeck) juices attenuate left ventricular dysfunction and oxidative stress and improve myocardial energy metabolism in acute doxorubicin-induced cardiotoxicity in rats. Nutrition 2021, 91–92, 111350. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, G.R.; Vasconcelos, A.B.S.; Wu, D.-T.; Li, H.-B.; Antony, P.J.; Li, H.; Geng, F.; Gurgel, R.Q.; Narain, N.; Gan, R.-Y. Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies. Nutrients 2020, 12, 2907. [Google Scholar] [CrossRef]
- Olayaki, L.A.; Okesina, K.B.; Jesubowale, J.D.; Ajibare, A.J.; Odetayo, A.F. Orange Peel Extract and Physical Exercise Synergistically Ameliorate Type 2 Diabetes Mellitus-Induced Dysmetabolism by Upregulating GLUT4 Concentration in Male Wistar Rats. J. Med. Food 2023, 26, 470–479. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, M.; Ju, R.; Law, C.L.; Fan, D.; Semenov, G.V.; Luo, Z. Effect of ultrasound assisted vacuum osmotic dehydration on the mass transfer kinetics and qualities of orange slices. Dry. Technol. 2023, 41, 1636–1650. [Google Scholar] [CrossRef]
- Lu, S.; Cheng, G.; Li, T.; Xue, L.; Liu, X.; Huang, J.; Liu, G. Quantifying supply chain food loss in China with primary data: A large-scale, field-survey based analysis for staple food, vegetables, and fruits. Resour. Conserv. Recycl. 2022, 177, 106006. [Google Scholar] [CrossRef]
- Salehi, F. Recent Applications and Potential of Infrared Dryer Systems for Drying Various Agricultural Products: A Review. Int. J. Fruit Sci. 2020, 20, 586–602. [Google Scholar] [CrossRef]
- Silva-Espinoza, M.A.; Salvador, A.; Camacho, M.d.M.; Martinez-Navarrete, N. Impact of freeze-drying conditions on the sensory perception of a freeze-dried orange snack. J. Sci. Food Agric. 2021, 101, 4585–4590. [Google Scholar] [CrossRef]
- Oyebola, O.O.; Agboola, S.O.; Olabode, O.A.; Ayoola, P.O. Analysis of Physical and Chemical Composition of Sweet Orange (Citrus sinensis) Peels. Int. J. Environ. Agric. Biotechnol. 2017, 2, 2201–2206. [Google Scholar] [CrossRef]
- Hazra, S.; Nahar, N.; Saha, S.K.; Chakraborty, R. Analysis of the influence of different drying processes on the quality attributes of orange peel. Biocatal. Agric. Biotechnol. 2024, 62, 103429. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, T.; Mei, X.; Chen, X.; Chen, G.; Rao, S.; Zheng, X.; Yang, Z. Comparison of different drying technologies for brocade orange (Citrus sinensis) peels: Changes in color, phytochemical profile, volatile, and biological availability and activity of bioactive compounds. Food Chem. 2023, 425, 136539. [Google Scholar] [CrossRef]
- Farahmandfar, R.; Tirgarian, B.; Dehghan, B.; Nemati, A. Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste: Changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders. J. Food Meas. Charact. 2019, 14, 862–875. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K.; Malakar, S.; Arora, V.K. Sweet lime (Citrus limettax) peel waste drying approaches and effect on quality attributes, phytochemical and functional properties. Food Biosci. 2022, 48, 101789. [Google Scholar] [CrossRef]
- Elik, A.; Armagan, H.S.; Gogus, F.; Oboturova, N.; Nagdalian, A.; Smaoui, S.; Shariati, M.A. Impact of radio frequency-assisted hot air drying on drying kinetics behaviors and quality features of orange peel. Biomass Convers. Biorefin. 2023, 13, 15173–15183. [Google Scholar] [CrossRef]
- Ramos, F.d.M.; Silveira Junior, V.; Prata, A.S. Assessing the Vacuum Spray Drying Effects on the Properties of Orange Essential Oil Microparticles. Food Bioprocess Technol. 2019, 12, 1917–1927. [Google Scholar] [CrossRef]
- Alp, D.; Bulantekin, O. The microbiological quality of various foods dried by applying different drying methods: A review. Eur. Food Res. Technol. 2021, 247, 1333–1343. [Google Scholar] [CrossRef]
- Kudra, T.; Martynenko, A. Electrohydrodynamic drying: The opportunity for sustainable development. Dry. Technol. 2023, 41, 2606–2619. [Google Scholar] [CrossRef]
- Llavata, B.; Mello, R.E.; Quiles, A.; Correa, J.L.G.; Carcel, J.A. Effect of freeze-thaw and PEF pretreatments on the kinetics and microstructure of convective and ultrasound-assisted drying of orange peel. Npj Sci. Food 2024, 8, 56. [Google Scholar] [CrossRef]
- Liu, S.; Lou, Y.; Li, Y.; Zhang, J.; Li, P.; Yang, B.; Gu, Q. Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Front. Nutr. 2022, 9, 968604. [Google Scholar] [CrossRef]
- Li, Q.; Putra, N.; Rizkiyah, D.; Aziz, A.; Irianto, I.; Qomariyah, L. Orange Pomace and Peel Extraction Processes towards Sustainable Utilization: A Short Review. Molecules 2023, 28, 3550. [Google Scholar] [CrossRef] [PubMed]
- Abd Elghani, E.; El Sayed, A.; Emam, M.; Al-Mahallawi, A.; Tadros, S.; Soliman, F.; Youssef, F. Seasonal metabolic profiling of Valencia orange leaf essential oil using GC coupled with chemometrics, nano-formulation, and insecticidal evaluation: In Vivo and In Silico. Rsc Adv. 2023, 13, 1659–1671. [Google Scholar] [CrossRef]
- Sun, W.; Li, M.; Zhang, Y.; Ai, Z.; Lei, D.; Pei, Y.; Liu, Y. Effect of different drying techniques on drying characteristics, physical quality, and active components of Citri reticulatae pericarpium, and the correlation between physiochemical quality. Ind. Crop. Prod. 2023, 204, 117350. [Google Scholar] [CrossRef]
- Bechlin, T.R.; Granella, S.J.; Christ, D.; Coelho, S.R.M.; Paz, C.H.d.O. Effects of ozone application and hot-air drying on orange peel: Moisture diffusion, oil yield, and antioxidant activity. Food Bioprod. Process. 2020, 123, 80–89. [Google Scholar] [CrossRef]
- Bozkir, H.; Tekgül, Y.; Erten, E.S. Effects of tray drying, vacuum infrared drying, and vacuum microwave drying techniques on quality characteristics and aroma profile of orange peels. J. Food Process Eng. 2020, 44, e13611. [Google Scholar] [CrossRef]
- Razola-Diaz, M.D.C.; Verardo, V.; Gomez-Caravaca, A.M.; Garcia-Villanova, B.; Guerra-Hernandez, E.J. Mathematical Modelling of Convective Drying of Orange By-Product and Its Influence on Phenolic Compounds and Ascorbic Acid Content, and Its Antioxidant Activity. Foods 2023, 12, 500. [Google Scholar] [CrossRef]
- USDA. Oranges, Raw, Navels. Available online: https://fdc.nal.usda.gov/food-details/746771/nutrients (accessed on 23 March 2025).
- Abdelazem, R.E.; Hefnawy, H.; El-Shorbagy, G.A. Chemical composition and phytochemical screening of Citrus sinensis (orange) peels. Zagazig J. Agric. Res. 2021, 48, 793–804. [Google Scholar] [CrossRef]
- Sir Elkhatim, K.A.; Elagib, R.A.A.; Hassan, A.B. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 2018, 6, 1214–1219. [Google Scholar] [CrossRef]
- Shrinath, V.; Gaur, S.; Kaur, K.; Thakur, P.; Mahajan, A. Antioxidant Properties of Orange Peel and Their Implications for Health: A Comprehensive Review. J. Food Chem. Nanotechnol. 2023, 9, S546–S553. [Google Scholar] [CrossRef]
- Etebu, E.; Nwauzoma, A. A review on sweet orange (Citrus sinensis L Osbeck): Health, diseases and management. Am. J. Res. Commun. 2014, 2, 33–70. [Google Scholar]
- Zhang, A.A.; Ni, J.B.; Martynenko, A.; Chen, C.; Fang, X.M.; Ding, C.J.; Chen, J.; Zhang, J.W.; Xiao, H.W. Electrohydrodynamic drying of citrus (Citrus sinensis L.) peel: Comparative evaluation on the physiochemical quality and volatile profiles. Food Chem. 2023, 429, 136832. [Google Scholar] [CrossRef]
- Durmus, N.; Gulsunoglu-Konuskan, Z.; Kilic-Akyilmaz, M. Recovery, Bioactivity, and Utilization of Bioactive Phenolic Compounds in Citrus Peel. Food Sci. Nutr. 2024, 12, 9974–9997. [Google Scholar] [CrossRef]
- Liew, S.S.; Ho, W.Y.; Yeap, S.K.; Sharifudin, S.A.B. Phytochemical composition and in vitro antioxidant activities of Citrus sinensis peel extracts. PeerJ 2018, 6, e5331. [Google Scholar] [CrossRef]
- Seminara, S.; Bennici, S.; Di Guardo, M.; Caruso, M.; Gentile, A.; La Malfa, S.; Distefano, G. Sweet Orange: Evolution, Characterization, Varieties, and Breeding Perspectives. Agriculture 2023, 13, 264. [Google Scholar] [CrossRef]
- Zahr, S.; Zahr, R.; El Hajj, R.; Khalil, M. Phytochemistry and biological activities of Citrus sinensis and Citrus limon: An update. J. Herb. Med. 2023, 41, 100737. [Google Scholar] [CrossRef]
- Deng, L.Z.; Mujumdar, A.S.; Yang, W.X.; Zhang, Q.; Zheng, Z.A.; Wu, M.; Xiao, H.W. Hot air impingement drying kinetics and quality attributes of orange peel. J. Food Process. Preserv. 2019, 44, e14294. [Google Scholar] [CrossRef]
- Razola-Diaz, M.D.C.; Guerra-Hernandez, E.J.; Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Garcia-Villanova, B.; Verardo, V. Optimization of Ultrasound-Assisted Extraction via Sonotrode of Phenolic Compounds from Orange By-Products. Foods 2021, 10, 1120. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I. Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste. Sustainability 2022, 14, 13926. [Google Scholar] [CrossRef]
- Wang, Z.; Mei, X.; Chen, X.; Rao, S.; Ju, T.; Li, J.; Yang, Z. Extraction and recovery of bioactive soluble phenolic compounds from brocade orange (Citrus sinensis) peels: Effect of different extraction methods thereon. LWT 2023, 173, 114337. [Google Scholar] [CrossRef]
- Hou, J.; Liang, L.; Su, M.; Yang, T.; Mao, X.; Wang, Y. Variations in phenolic acids and antioxidant activity of navel orange at different growth stages. Food Chem. 2021, 360, 129980. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.J.; Chen, J.B.; Cao, J.P.; Li, X.; Sun, C.D. Citrus flavonoids and their antioxidant evaluation. Crit. Rev. Food Sci. Nutr. 2022, 62, 3833–3854. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Gowda, K.G.M.; Keum, Y.S. Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants 2022, 11, 239. [Google Scholar] [CrossRef]
- Rawson, N.E.; Ho, C.-T.; Li, S. Efficacious anti-cancer property of flavonoids from citrus peels. Food Sci. Hum. Wellness 2014, 3, 104–109. [Google Scholar] [CrossRef]
- Chen, X.-M.; Tait, A.R.; Kitts, D.D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem. 2017, 218, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, D.; Tan, C.; Hu, Y.; Sundararajan, B.; Zhou, Z. Profiling of Flavonoid and Antioxidant Activity of Fruit Tissues from 27 Chinese Local Citrus Cultivars. Plants 2020, 9, 196. [Google Scholar] [CrossRef]
- Gyawali, R.; Kim, K. Anticancer Phytochemicals of Citrus Fruits–A Review. J. Anim. Res. 2014, 4, 85. [Google Scholar] [CrossRef]
- Lux, P.E.; Carle, R.; Zacarias, L.; Rodrigo, M.J.; Schweiggert, R.M.; Steingass, C.B. Genuine Carotenoid Profiles in Sweet Orange [Citrus sinensis (L.) Osbeck cv. Navel] Peel and Pulp at Different Maturity Stages. J. Agric. Food Chem. 2019, 67, 13164–13175. [Google Scholar] [CrossRef]
- Chen, H.; Ji, H.; Zhu, S.; Zhu, K.; Ye, J.; Deng, X. Carotenoid and transcriptome profiles of a novel citrus cultivar ‘Jinlegan’ reveal mechanisms of yellowish fruit formation. Hortic. Adv. 2023, 1, 5. [Google Scholar] [CrossRef]
- Escobedo-Avellaneda, Z.; Gutiérrez-Uribe, J.; Valdez-Fragoso, A.; Torres, J.A.; Welti-Chanes, J. Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. J. Funct. Food. 2014, 6, 470–481. [Google Scholar] [CrossRef]
- Alos, E.; Rey, F.; Gil, J.V.; Rodrigo, M.J.; Zacarias, L. Ascorbic Acid Content and Transcriptional Profiling of Genes Involved in Its Metabolism during Development of Petals, Leaves, and Fruits of Orange (Citrus sinensis cv. Valencia Late). Plants 2021, 10, 2590. [Google Scholar] [CrossRef]
- USDA National Nutrient Database for Standard Reference Release 28. Available online: https://ods.od.nih.gov/pubs/usdandb/VitaminE-Content.pdf (accessed on 11 August 2025).
- Vicente, I.S.T.; Fleuri, L.F.; Xavier, W.D.S.; Guimaraes, M.G.; de Carvalho, P.; Rodrigues, E.J.D.; Fonseca Alves, C.E.; Nunes, A.; Lima, G.P.P.; Kadri, S.M.; et al. The Effects of Dietary Orange Peel Fragments Enriched with Zinc and Vitamins C and E on the Antioxidant and Immune Responses of Nile Tilapia under Stress Conditions. Animals 2024, 14, 2962. [Google Scholar] [CrossRef]
- Pandey, P.; Khan, F. A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutr. Res. 2021, 92, 21–31. [Google Scholar] [CrossRef]
- Nazir, A.; Itrat, N.; Shahid, A.; Mushtaq, Z.; Abdulrahman, S.A.; Egbuna, C.; Adetuyi, B.O.; Khan, J.; Uche, C.Z.; Toloyai, P.-E.Y. Orange Peel as Source of Nutraceuticals. In Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals; Spring: Cham, Switzerland, 2022; pp. 97–106. [Google Scholar] [CrossRef]
- Favela-Hernandez, J.M.; Gonzalez-Santiago, O.; Ramirez-Cabrera, M.A.; Esquivel-Ferrino, P.C.; Camacho-Corona Mdel, R. Chemistry and Pharmacology of Citrus sinensis. Molecules 2016, 21, 247. [Google Scholar] [CrossRef]
- Dongre, P.; Doifode, C.; Choudhary, S.; Sharma, N. Botanical description, chemical composition, traditional uses and pharmacology of Citrus sinensis: An updated review. Pharmacol. Res.-Mod. Chin. Med. 2023, 8, 100272. [Google Scholar] [CrossRef]
- Busing, F.; Hagele, F.A.; Nas, A.; Dobert, L.V.; Fricker, A.; Dorner, E.; Podlesny, D.; Aschoff, J.; Pohnl, T.; Schweiggert, R.; et al. High intake of orange juice and cola differently affects metabolic risk in healthy subjects. Clin. Nutr. 2019, 38, 812–819. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, C.E.; Nicklas, T.A.; Rampersaud, G.C.; Fulgoni, V.L., 3rd. 100% orange juice consumption is associated with better diet quality, improved nutrient adequacy, decreased risk for obesity, and improved biomarkers of health in adults: National Health and Nutrition Examination Survey, 2003–2006. Nutr. J. 2012, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Willett, W.; Curhan, G. Fructose-rich beverages and risk of gout in women. JAMA 2010, 304, 2270–2278. [Google Scholar] [CrossRef]
- Herdiana, Y. Functional Food in Relation to Gastroesophageal Reflux Disease (GERD). Nutrients 2023, 15, 3583. [Google Scholar] [CrossRef]
- USDA. Dietary Guidelines for Americans, 2020–2025, 9th Edition. Available online: http://www.dietaryguidelines.gov/ (accessed on 26 August 2025).
- Polat, A. Analysis of drying characteristics and quality attributes in peach slices dried via electrohydrodynamic, hot air and electrohydrodynamic-hot air methods. J. Therm. Anal. Calorim. 2024, 149, 7551–7563. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, J.; Mujumdar, A.; Wang, S. Trends in microwave-related drying of fruits and vegetables. Trends Food Sci. Technol. 2006, 17, 524–534. [Google Scholar] [CrossRef]
- El-Mesery, H.; Farag, H.; Kamel, R.; Alshaer, W. Convective hot air drying of grapes: Drying kinetics, mathematical modeling, energy, thermal analysis. J. Therm. Anal. Calorim. 2023, 148, 6893–6908. [Google Scholar] [CrossRef]
- Özkan-Karabacak, A.; Acoğlu, B.; Yolci Ömeroğlu, P.; Çopur, Ö.U. Microwave pre-treatment for vacuum drying of orange slices: Drying characteristics, rehydration capacity and quality properties. J. Food. Process. Eng. 2020, 43, e13511. [Google Scholar] [CrossRef]
- Jiao, Y.; Tang, H.; Yan, Z.; Wu, Z.; Zhang, D.; Yu, Z.; Chen, Y.; Ni, D. Effect of different drying methods on quality of orange dark tea. J. Food Meas. Charact. 2024, 18, 3244–3254. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Hu, L. High efficient freeze-drying technology in food industry. Crit. Rev. Food Sci. Nutr. 2022, 62, 3370–3388. [Google Scholar] [CrossRef]
- Ledri, S.; Milani, J.; Shahidi, S.; Golkar, A. Comparative analysis of freeze drying and spray drying methods for encapsulation of chlorophyll with maltodextrin and whey protein isolate. Food Chem. X 2024, 21, 101156. [Google Scholar] [CrossRef]
- Antal, T. The effect of refrigeration and room temperature storage conditions on the physico-chemical characteristics of hybrid and freeze-dried blueberries. J. Agric. Food Res. 2024, 16, 101083. [Google Scholar] [CrossRef]
- Albuquerque, J.; de Figueirêdo, R.; Queiroz, A.; dos Santos, F.; Santos, N.; Carvalho, R.; Gregório, M.; Moura, H.; Albuquerque, N.J.; Amadeu, L.; et al. Processing of Maranhão mango peels by convective drying and freeze-drying: Kinetic study, functional and thermal properties. J. Food Meas. Charact. 2024, 18, 6295–6309. [Google Scholar] [CrossRef]
- Pinto, M.; Kusch, C.; Belmonte, K.; Valdivia, S.; Valencia, P.; Ramírez, C.; Almonacid, S. Application of CO2-Laser Micro-Perforation Technology to Freeze-Drying Whole Strawberry (Fragaria ananassa Duch.): Effect on Primary Drying Time and Fruit Quality. Foods 2024, 13, 1465. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Peng, X.; Yang, J.; Li, X.; Zhang, H.; Jia, X.; Liu, Y.; Wang, Z.; Zhang, Z. Effect of vacuum drying and pulsed vacuum drying on drying kinetics and quality of bitter orange (Citrus aurantium L.) slices. J. Food Process. Preserv. 2021, 45, e16098. [Google Scholar] [CrossRef]
- Moon, K.; Kwon, E.; Lee, B.; Kim, C. Recent Trends in Controlling the Enzymatic Browning of Fruit and Vegetable Products. Molecules 2020, 25, 2754. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Peng, X.; Yuan, T.; Yang, J.; Li, X.; Zhang, H.; Zhang, Y.; Zhang, Z.; Jia, X. Effect of vacuum drying on drying kinetics and quality of the aqueous extracts of Callicarpa nudiflora Hook. et Arn. LWT-Food Sci. Technol. 2021, 152, 112305. [Google Scholar] [CrossRef]
- Xie, L.; Mujumdar, A.; Zhang, Q.; Wang, J.; Liu, S.; Deng, L.; Wang, D.; Xiao, H.; Liu, Y.; Gao, Z. Pulsed vacuum drying of wolfberry: Effects of infrared radiation heating and electronic panel contact heating methods on drying kinetics, color profile, and volatile compounds. Dry. Technol. 2017, 35, 1312–1326. [Google Scholar] [CrossRef]
- Mounir, S.; Allaf, T.; Berka, B.; Hassani, A.; Allaf, K. Instant Controlled Pressure Drop technology: From a new fundamental approach of instantaneous transitory thermodynamics to large industrial applications on high performance-high controlled quality unit operations. Comptes Rendus Chim. 2014, 17, 261–267. [Google Scholar] [CrossRef]
- Wang, J.; Law, C.; Nema, P.; Zhao, J.; Liu, Z.; Deng, L.; Gao, Z.; Xiao, H. Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. J. Food Eng. 2018, 224, 129–138. [Google Scholar] [CrossRef]
- Geng, Z.; Zhu, L.; Wang, J.; Yu, X.; Li, M.; Yang, W.; Hu, B.; Zhang, Q.; Yang, X. Drying sea buckthorn berries (Hippophae rhamnoides L.): Effects of different drying methods on drying kinetics, physicochemical properties, and microstructure. Front. Nutr. 2023, 10, 1106009. [Google Scholar] [CrossRef]
- Ji, Z.; Zhao, D.; Yin, J.; Ding, S.; Liu, X.; Hao, J. Quality analysis and pectin characteristics of winter jujube processed by microwave coupled with pulsed vacuum drying (MPVD). LWT-Food Sci. Technol. 2024, 201, 116236. [Google Scholar] [CrossRef]
- Aryaee, H.; Ariaii, P.; Zare, D.; Mirdamadi, S.; Raeisi, S. Evaluation of the Physicochemical Characteristics of a Blend Fruit Juice Powder Mixed with Lactiplantibacillus plantarum: A Comparison of Spray Drying and Freeze Drying. J. Food Process Preserv. 2023, 2023, 5597647. [Google Scholar] [CrossRef]
- Gervasi, C.; Pellizzeri, V.; Vecchio, G.L.; Vadalà, R.; Foti, F.; Tardugno, R.; Cicero, N.; Gervasi, T. From by-product to functional food: The survival of L. casei shirota, L. casei immunitas and L. acidophilus johnsonii, during spray drying in orange juice using a maltodextrin/pectin mixture as carrier. Nat. Prod. Res. 2022, 36, 6393–6400. [Google Scholar] [CrossRef]
- Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Resistant maltodextrin’s effect on the physicochemical and structure properties of spray dried orange juice powders. Eur. Food Res. Technol. 2021, 247, 1125–1132. [Google Scholar] [CrossRef]
- Yousefi, S.; Emam-Djomeh, Z.; Mousavi, S. Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica granatum L.). J. Food Sci. Technol. 2011, 48, 677–684. [Google Scholar] [CrossRef]
- Tepe, T.; Tepe, F. Improvement of pear slices drying by pretreatments and microwave-assisted convective drying method: Drying characteristics, modeling of artificial neural network, principal component analysis of quality parameters. J. Therm. Anal. Calorim. 2024, 149, 7313–7328. [Google Scholar] [CrossRef]
- Dash, K.; Shangpliang, H.; Raj, G.; Chakraborty, S.; Sahu, J. Influence of microwave vacuum drying process parameters on phytochemical properties of sohiong (Prunus nepalensis) fruit. J. Food Process. Preserv. 2021, 45, e15290. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, M.; Bhandari, B. A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militaris. Innov. Food Sci. Emerg. Technol. 2019, 54, 34–42. [Google Scholar] [CrossRef]
- Malakar, S.; Arora, V.; Nema, P.; Yadav, D. Development of infrared-assisted hybrid solar dryer for drying pineapple slices: Investigation of drying characteristics, mass transfer parameters, and quality attributes. Innov. Food Sci. Emerg. Technol. 2023, 88, 103437. [Google Scholar] [CrossRef]
- Khampakool, A.; Soisungwan, S.; Park, S. Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture. LWT-Food Sci. Technol. 2019, 99, 355–363. [Google Scholar] [CrossRef]
- Kang, S.; Hwang, J.; Chung, K.; Park, S. Evaluation of infrared assisted freeze drying for strawberry snacks: Drying kinetics, energy efficiency and quality attributes. Food Sci. Biotechnol. 2021, 30, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Antal, T. Influence of Two-Stage Drying Methods on the Physical Properties and Drying Characteristics of Sweet Potato Slices. Food Res. 2023, 7, 17. [Google Scholar] [CrossRef]
- An, J.; Wicaksana, F.; Liu, P.; Woo, M. Optimizing infrared wavelengths in food drying: A comprehensive review of standalone and combined techniques. Food Control. 2025, 169, 110991. [Google Scholar] [CrossRef]
- Oliveira, N.; Alexandre, A.C.S.; Silva, S.H.; De Abreu Figueiredo, J.; Rodrigues, A.A.; De Resende, J.V. Drying efficiency and quality preservation of blackberries (Rubus spp. variety Tupy) in the near and mid-infrared-assisted freeze-drying. Food Chem. Adv. 2023, 3, 100550. [Google Scholar] [CrossRef]
- Oliveira, N.; Silva, S.; Figueiredo, J.; Norcino, L.; de Resende, J. Infrared-assisted freeze-drying (IRFD) of acai puree: Effects on the drying kinetics, microstructure and bioactive compounds. Innov. Food Sci. Emerg. Technol. 2021, 74, 102843. [Google Scholar] [CrossRef]
- Onwude, D.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. The effectiveness of combined infrared and hot-air drying strategies for sweet potato. J. Food Eng. 2019, 241, 75–87. [Google Scholar] [CrossRef]
- Qu, F.; Zhu, X.; Ai, Z.; Ai, Y.; Qiu, F.; Ni, D. Effect of different drying methods on the sensory quality and chemical components of black tea. LWT-Food Sci. Technol. 2019, 99, 112–118. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, L.; Zielinska, M.; Pan, Z.; Deng, L.; Zhang, J.; Gao, L.; Wang, S.; Zheng, Z.; Xiao, H. Improvement of drying efficiency and quality attributes of blueberries using innovative far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD). Innov. Food Sci. Emerg. Technol. 2022, 77, 102948. [Google Scholar] [CrossRef]
- Ismail, M.; Yunus, N.; Hashim, H. Integration of solar heating systems for low-temperature heat demand in food processing industry–A review. Renew. Sust. Energ. Rev. 2021, 147, 111192. [Google Scholar] [CrossRef]
- Mustayen, A.; Mekhilef, S.; Saidur, R. Performance study of different solar dryers: A review. Renew. Sust. Energ. Rev. 2014, 34, 463–470. [Google Scholar] [CrossRef]
- Teguia, M.; Chabane, F.; Arif, A.; Aouissi, Z. Drying of the orange slices, and energetic analysis of the drying chamber alimented by a solar air collector for extraction of the water from an orange slice. Sci. Afr. 2024, 24, e02149. [Google Scholar] [CrossRef]
- Ortiz-Rodríguez, N.; Condorí, M.; Durán, G.; García-Valladares, O. Solar drying Technologies: A review and future research directions with a focus on agroindustrial applications in medium and large scale. Appl. Therm. Eng. 2022, 215, 118993. [Google Scholar] [CrossRef]
- Bajoub, A.; Ennahli, N.; Ouaabou, R.; Chaji, S.; Hafida, H.; Soulaymani, A.; Idlimam, A.; Merah, O.; Lahlali, R.; Ennahli, S. Investigation into Solar Drying of Moroccan Strawberry Tree (Arbutus unedo L.) Fruit: Effects on Drying Kinetics and Phenolic Composition. Appl. Sci. 2023, 13, 769. [Google Scholar] [CrossRef]
- Kumar, M.; Shimpy; Sahdev, R.; Sansaniwal, S.; Bhutani, V.; Manchanda, H. Experimental forced convection greenhouse and indirect cabinet drying of date fruits: A comparative study. J. Therm. Anal. Calorim. 2023, 148, 5437–5454. [Google Scholar] [CrossRef]
- Kassa, M.; Teferi, D. Impact of ripening stages and drying techniques on the physicochemical and sensory attributes of apple mango chips. J. Food Sci. 2025, 90, e17585. [Google Scholar] [CrossRef]
- Mongi, R. Physicochemical properties, microbial loads and shelf life prediction of solar dried mango (Mangifera indica) and pineapple (Ananas comosus) in Tanzania. J. Agric. Food Res. 2023, 11, 100522. [Google Scholar] [CrossRef]
- Dewangan, N.; Verma, G.; Ghritlahre, H.; Verma, M.; Kumar, S.; Kumar, Y.; Agrawal, S. An experimental investigation of mixed-mode tent house solar dryer using ultraviolet sheet for drying potato slices. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 11446–11466. [Google Scholar] [CrossRef]
- Onyenwigwe, D.; Ndukwu, M.; Abam, F.; Ibeh, M.; Ugwu, E.; Akuwueke, L.; Mbanasor, J.; Oriaku, L.; Wu, H.; Dirioha, C.; et al. Eco-thermal Analysis and Response Surface Optimization of the Drying Rate of Potato Slices in a Mix-Mode Solar Dryer. Iran. J. Sci. Technol. Trans. Mech. Eng. 2023, 47, 1379–1396. [Google Scholar] [CrossRef]
- Radhakrishnan, G.; Breaz, T.; Al Mahrouqi, A.; Al Zakwani, N.; Al Fahdi, M.; Al Shuraiqi, A.; Al Awamri, S.; Al Aamri, R.; Karthikeyan, K. A Comparative Management Analysis on the Performance of Different Solar Drying Methods for Drying Vegetables and Fruits. Sustainability 2024, 16, 775. [Google Scholar] [CrossRef]
- Karaaslan, S.; Ekinci, K. Effect of pretreatments on solar dehydration of different varieties of apple (Malus domestica). Czech J. Food Sci. 2022, 40, 93–101. [Google Scholar] [CrossRef]
- Sadasivan, M.; Subramanian, S. Performance analysis of an enhanced indirect solar dryer with thermal storage material integration for drying apple slices. Materia 2025, 30, e20240743. [Google Scholar] [CrossRef]
- Deng, L.; Mujumdar, A.; Zhang, Q.; Yang, X.; Wang, J.; Zheng, Z.; Gao, Z.; Xiao, H. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes–A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1408–1432. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, V.; Borse, K.; Bhandarkar, H.; Subramaniam, V.; Bhardwaj, S. Efficacy of Ozone to Reduce Total Viable Count, Yeast and Mould Count, Coliform Count and Enterobacteriaceae Count in Raw Onion and Dehydrated Onion Products. Plant Arch. 2018, 18, 2811–2821. [Google Scholar]
- Bae, J.; Lee, D.; Oh, K.; Jeong, D.; Lee, D.; Kim, J. Photochemical advanced oxidative process treatment effect on the pesticide residues reduction and quality changes in dried red peppers. Sci. Rep. 2023, 13, 4444. [Google Scholar] [CrossRef] [PubMed]
- Pandiselvam, R.; Rathnakumar, K.; Nickhil, C.; Charles, A.; Falsafi, S.; Rostamabadi, H.; Sofia, A.; Aydar, A.; Priya, V.; Malik, S.; et al. Ozone-Based Oxidation Treatment to Enhance Food Drying Rate and Quality: Mechanisms, Current Knowledge, and Future Outlook. Food Bioprocess Technol. 2025, 18, 5038–5057. [Google Scholar] [CrossRef]
- Botondi, R.; Barone, M.; Grasso, C. A Review into the Effectiveness of Ozone Technology for Improving the Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods 2021, 10, 748. [Google Scholar] [CrossRef]
- Fonteles, T.; Nascimento, R.; Rodrigues, S.; Fernandes, F. Effects of ozone pretreatment on drying kinetics and quality of Granny Smith Apple dried in a fluidized bed dryer. In Proceedings of the 21st International Drying Symposium (IDS), Valencia, Spain, 11–14 September 2018; pp. 789–794. [Google Scholar]
- Zhang, D.; Jiang, B.; Luo, Y.; Fu, X.; Kong, H.; Shan, Y.; Ding, S. Effects of ultrasonic and ozone pretreatment on the structural and functional properties of soluble dietary fiber from lemon peel. J. Food. Process. Eng. 2022, 45, e13916. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, Z.; Jiao, Y.; Huang, J.; Yu, Z.; Zhang, D.; Chen, Y.; Ni, D. Hot-Air Drying Significantly Improves the Quality and Functional Activity of Orange Black Tea Compared with Traditional Sunlight Drying. Foods 2023, 12, 1913. [Google Scholar] [CrossRef]
- Lai, C.; Liang, Y.; Zhang, L.; Huang, J.; Kaliaperumal, K.; Jiang, Y.; Zhang, J. Variations of Bioactive Phytochemicals and Antioxidant Capacity of Navel Orange Peel in Response to Different Drying Methods. Antioxidants 2022, 11, 1543. [Google Scholar] [CrossRef]
- Castañón Rodríguez, J.F.; Uresti-Marín, R.M.; Soto Gómez, M.G.; Santiago-Adame, R.; Ortiz-Basurto, R.I. Evaluation of spray-drying’s operable condition for obtaining orange juice powder: Effects on physicochemical properties. CyTA-J. Food 2020, 18, 195–202. [Google Scholar] [CrossRef]
- Nemati, A.; Motamedzadegan, A.; Milani, J.M. Evaluating the effect of different foam mat drying methods on the properties of orange beverage powder. J. Food Process Preserv. 2022, 46, e16539. [Google Scholar] [CrossRef]
- Homayounfar, H.; Amiri Chayjan, R.; Sarikhani, H. Orange slice drying enhancement by intervention of control atmosphere coupled with vacuum condition—A new design and optimization strategy. Dry. Technol. 2023, 41, 1498–1513. [Google Scholar] [CrossRef]
- Ismail, M.; Özbek, H.N.; Göğüş, F. Hot air–assisted radio frequency drying of orange slices: Drying behavior and product quality. J. Food Sci. 2024, 89, 6494–6506. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, R.; Zhang, B.; Pei, S.; Liu, Q.; Ramaswamy, H.; Wang, S. Radio Frequency-Vacuum Drying of Kiwifruits: Kinetics, Uniformity, and Product Quality. Food Bioprocess Technol. 2018, 11, 2094–2109. [Google Scholar] [CrossRef]
- Özbek, H.; Koç, B.; Yanik, D.; Gögüs, F. Hot air-assisted radiofrequency drying of avocado: Drying behavior and the associated effect on the characteristics of avocado powder. J. Food Process Eng. 2022, 45, e14094. [Google Scholar] [CrossRef]
- Hou, L.; Zhou, X.; Wang, S. Numerical analysis of heat and mass transfer in kiwifruit slices during combined radio frequency and vacuum drying. Int. J. Heat Mass Transf. 2020, 154, 119704. [Google Scholar] [CrossRef]
- Özbey, A.; Karagöz, Ş.; Cingöz, A. Effect of drying process on pesticide residues in grapes. GIDA 2017, 42, 204–209. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, F.; Ge, J.; Ma, L.; Wu, L.; Xue, X. Changes in eleven pesticide residues in jujube (Ziziphus jujuba Mill.) during drying processing. Dry. Technol. 2018, 36, 965–972. [Google Scholar] [CrossRef]
- Acoglu, B.; Yolci Ömeroğlu, P. The effect of drying processes on pesticide residues in orange (Citrus sinensis). Dry. Technol. 2021, 39, 2039–2054. [Google Scholar] [CrossRef]
- Han, L.; Zhang, J.; Cao, X. Effects of orange peel powder on rheological properties of wheat dough and bread aging. Food Sci. Nutr. 2021, 9, 1061–1069. [Google Scholar] [CrossRef]
- Bb, B.; Pm, K.; Sn, G.; Ud, C. Studies on utilization of orange peel powder in the preparation of cookies. Int. J. Chem. Stud. 2021, 9, 1600–1602. [Google Scholar] [CrossRef]
- Phuon, V.; Ramos, I.N.; Brandão, T.R.; Silva, C.L. Assessment of the impact of drying processes on orange peel quality characteristics. J. Food Process. Eng. 2022, 45, e13794. [Google Scholar] [CrossRef]
- Mello, R.E.; Fontana, A.; Mulet, A.; Corrêa, J.L.G.; Cárcel, J.A. PEF as pretreatment to ultrasound-assisted convective drying: Influence on quality parameters of orange peel. Innov. Food Sci. Emerg. Technol. 2021, 72, 102753. [Google Scholar] [CrossRef]
- Farahmandfar, R.; Tirgarian, B.; Dehghan, B.; Nemati, A. Changes in chemical composition and biological activity of essential oil from Thomson navel orange (Citrus sinensis L. Osbeck) peel under freezing, convective, vacuum, and microwave drying methods. Food Sci. Nutr. 2019, 8, 124–138. [Google Scholar] [CrossRef]
- Silva-Espinoza, M.A.; Ayed, C.; Foster, T.; Camacho, M.d.M.; Martínez-Navarrete, N. The Impact of Freeze-Drying Conditions on the Physico-Chemical Properties and Bioactive Compounds of a Freeze-Dried Orange Puree. Foods 2019, 9, 32. [Google Scholar] [CrossRef]
- Süfer, Ö.; Pandiselvam, R.; Kaya, Y.Y. Drying kinetics, powder properties, and bioactive components of bitter orange (Citrus aurantium L.) dried by microwave-assisted foam-mat approach. Biomass Convers. Biorefin. 2023, 14, 1275–1287. [Google Scholar] [CrossRef]
- Aşkin, B. Comparison of aroma profiles of essential oils extracted by hydro-distillation from orange peel waste dried by various methods. J. Food Nutr. Res. 2021, 60, 271–278. [Google Scholar]
- Özcan, M.M.; Ghafoor, K.; Al Juhaimi, F.; Uslu, N.; Babiker, E.E.; Mohamed Ahmed, I.A.; Almusallam, I.A. Influence of drying techniques on bioactive properties, phenolic compounds and fatty acid compositions of dried lemon and orange peel powders. J. Food Sci. Technol. 2020, 58, 147–158. [Google Scholar] [CrossRef]
- Afrin, S.M.; Acharjee, A.; Sit, N. Convective drying of orange pomace at different temperatures and characterization of the obtained powders. J. Food Sci. Technol. 2021, 59, 1040–1052. [Google Scholar] [CrossRef] [PubMed]
- Kaloudi, A.S.; Zygouri, P.; Spyrou, K.; Athinodorou, A.-M.; Papanikolaou, E.; Subrati, M.; Moschovas, D.; Datta, K.K.R.; Sideratou, Z.; Avgeropoulos, A.; et al. A Strategic Synthesis of Orange Waste-Derived Porous Carbon via a Freeze-Drying Method: Morphological Characterization and Cytocompatibility Evaluation. Molecules 2024, 29, 3967. [Google Scholar] [CrossRef] [PubMed]
- Maia, G.D.; Horta, A.C.L.; Felizardo, M.P. From the conventional to the intermittent biodrying of orange solid waste biomass. Chem. Eng. Process.-Process Intensif. 2023, 188, 109361. [Google Scholar] [CrossRef]
Drying Technology | Related Product | Key Parameters | Advantages | Disadvantages |
---|---|---|---|---|
Hot Air Drying (HAD) | orange slice | Temperature: 60–80 °C Air velocity: 1–2 m/s [2,68,69] |
|
|
orange peel | Temperature: 50–60 °C Air velocity: 1–3 m/s [18,26,29] | |||
citrus tea | Temperature: 40–50 °C [70,121] | |||
Freeze Drying (FD) | orange peel | Temperature: Pre-frozen: −80–−65 °C Dry: −60–−50 °C [14,15,16,122] |
|
|
Vacuum Drying (VD) | orange slice | Temperature: 60–80 °C Pressure: 10–30 kPa [69,76] |
|
|
Pulsed Vacuum Drying (PVD) | orange slice | Temperature: 65–75 °C Pressure: 10–20 kPa Pulse cycle: 5:10–5:20 min [76] |
|
|
Spray Drying | orange juice powder | Inlet temperature: 140–200 °C Outlet temperature: 40–90 °C [85,123] |
|
|
Microwave Drying (MWD) | orange slice | Temperature of vacuum treated: 50–80 °C Pressure: 15–30 kPa Power: 90–350 W [69,76] |
|
|
orange peel | Power: 300–900 W [14,15,16] | |||
orange juice powder | Power: 360–900 W [124] | |||
Ozone Pretreatment | orange peel | Concentration: 4–40 µg/L [27] |
|
|
Orange Peel Samples | Drying Methods | Moisture | Color | Antioxidant Ability | Phytochemicals | Conclusion | Ref. |
---|---|---|---|---|---|---|---|
Citrus sinensis (width: 27 ± 0.577 mm, thickness: 3 ± 0.577 mm) | Freeze drying (FD): −45 °C, 14 Pa, 21 h and 5 min. Hot air oven drying: 60 °C, 300 min, air velocity of 1 m/s. Tray drying (TD): 50 °C, 350 min, air velocity of 1.5 m/s. Microwave drying (MWD): 180 W, 300 W, 600 W, 900 W. | Initial moisture content: 3.08 g/g dm Final moisture content: 0.028 g/g dm | FD showed the highest L* (74.01 ± 0.38) but largest ΔE (11.57), while MWD 180 W best preserved original color with the lowest ΔE (3.97). | The highest antioxidant activity (DPPH: 74.95%, FRAP: 292.98 µmol AAE/g) was recorded for OP dried with MWD 600 W. | FD retained the highest β-carotene 0.057 mg/g. The highest TPC (24.65 mg GAE/g) and TFC (11.73 mg QE/g) contents were in OP dried with MWD 600 W. | FD preserved β-carotene best, while MWD 600 W resulted in the highest phenolic, flavonoid, and antioxidant levels. MWD 900 W takes the shortest time (<5 min). | [14] |
Brocade oranges (Citrus sinensis) | FD: 48 h below −60 °C, vacuum degree < 10 mbar. Heat pump drying (HPD): 16 h at (43 ± 2) °C under 90% RH. MWD: at 350 W for 35 min at 1 min intervals Far-infrared drying (FID): 20 h at (43 ± 2) °C. | Initial moisture content: not mentioned Final moisture content: <0.11 g/g dm | FD maintained the highest L* (61.86 ± 3.83) and b* (81.22 ± 4.07), while FID caused the most significant darkening (L* 36.49 ± 3.47) and color reduction, with all methods showing similar redness (a* 22–24). | DPPH (2.53 ± 0.15 mg TE/g dm) and ABTS (1.73 ± 0.11 mg TE/g dm) highest in FD. HPD had highest FRAP (50.21 ± 3.78 mg ferrous sulfate equivalent/g dm). | FD maintained the highest contents of ascorbic acid (0.46 mg/g dm), synephrine (15.58 mg/g dm), and limonin (2.34 mg/g dm). The highest TPC content (1158.00 ± 31.64 μg/g dm) and highest bioaccessibility of phenols (15.99 ± 0.75%) was observed in OP treated with MWD. | FD is more suitable for color protection. HPD and MWD are more suitable for industrial-scale drying. | [15] |
Citrus sinensis L. (20.00 g sample) | Electrohydrodynamic (EHD) drying: a high-voltage needle-plate electrode setup, applying 9, 18, 27, 36, and 45 kV alternating current (AC) or direct current (DC). 25 ± 2 °C, 30 ± 5% RH, and wind speed of 0 m/s. Control check (CK): sun drying | Initial moisture content: 2.125 ± 0.001 g/g dm Final moisture content: 0.10 g/g dm | / | Polyphenol oxidase (PPO) and peroxidase (POD) activity significantly reduced. DC fields caused stronger inactivation than AC. | All phenolic compounds decreased due to enzymatic degradation (PPO and POD) and non-enzymatic oxidation by corona wind, but vanillic acid increased. Carotenoids: EHD drying preserved more carotenoids than CK. Decreased with higher AC voltages. | EHD drying effectively reduced drying time and affected the quality, volatile profiles, and phenolic content of citrus peel. | [35] |
Orange peels (thickness: 10, 30, 50 mm) | Radio frequency-assisted hot air drying (RF-HAD): electrode gaps: 60, 70, 80 mm; 50 min, 45 ± 1 °C, 17 ± 0.5% RH, 1.5 m/s air velocity. Hot air drying (HAD): 190 min, the same conditions as RF-HAD but without RF heating. | Initial moisture content: 74.6 ± 0.5% wet basis Final moisture content: 0.09 ± 0.02 g/g dm | Fresh: L* (73.31 ± 0.02), a* (13.11 ± 0.02), b* (69.41 ± 0.11). RF-HAD: L* (76.73 ± 0.01), a* (10.06 ± 0.005), b* (67.49 ± 0.04), ΔE (4.95 ± 0.09). HAD: L* (78.98 ± 0.03), a* (7.17 ± 0.01), b* (63.84 ± 0.08), ΔE (9.92 ± 0.09). | FRAP (µmol/g dm): Fresh (153.68 ± 2.71), RF-HAD (125.87 ± 4.41), HAD (119.49 ± 2.04). RF-HAD preserved antioxidants better than HAD due to shorter drying time. | Total Phenolic Content (TPC, mg GAE/g dm) Fresh OP: 23.48 ± 0.25. RF-HAD: 22.52 ± 0.72 (no significant). HAD: 20.18 ± 0.81 (significant). Total Carotenoid Content (TCC, µg β-carotene/g dm) Fresh OP: 599.50 ± 3.28. F-HAD: 345.14 ± 4.22 (42% loss). HAD: 208.19 ± 5.72 (65% loss). Ascorbic Acid (AA, mg/100 g dm) Fresh OP: 536.07 ± 16.03. RF-HAD: 499.30 ± 10.33. HAD: 489.59 ± 2.61. | RF-HAD was superior to HAD, offering faster drying, better retention of phytochemicals, and improved color/powder properties. Optimal conditions: 70 mm electrode gap, 30 mm thickness. | [18] |
Navelina (diameter: 100 μm) | Convective air-drying (CAD): 40 °C, 1800 min (no airflow), 900 min (1.6 m/s airflow); 60 °C, 720 min (no airflow), 315 min (1.6 m/s airflow); 80 °C, 360 min (no airflow), 180 min (1.6 m/s airflow). | Initial moisture content: 70 ± 1.5% Final moisture content: <10% | / | DPPH: 7.97–10.99 mg TE/g dm ABTS: 8.27–14.13 mg TE/g dm FRAP: 7.70–16.69 mg TE/g dm Highest activity: 60 °C, 1.6 m/s airflow | TPC was the highest at 60 °C, 1.6 m/s. CAD at 60 °C and 1.6 m/s retained the highest hesperidin, naringenin and naringin hydrate. Phenolic-compound content was higher when increasing the air flow. Total vitamin C content ranged from 828.36 to 1463.17 µg/g dm. | Best drying condition was 60 °C, 1.6 m/s airflow, which had the lowest degradation of phenolics, high antioxidant activity, and moderate vitamin C retention. | [29] |
Newhall navel oranges (pieces of 1 cm2) | FD: Pre-frozen at −80 °C, dried for 48 h. Shade drying (ShD): ambient temperature (5–20 °C), 60–80% RH, 14 days. Hot-air oven drying (OD): 2 m/s airflow OD50: 50 °C, 5–10% RH, 12 h. OD70: 70 °C, 5–10% RH, 8 h. MWD: 600 W, 12 min. | Initial moisture content: not mentioned Final moisture content: 10 ± 0.5% wet basis | / | (DPPH (IC50, mg/mL): OD50 (1.15) > OD70 (1.18) > ShD (1.23) > MWD (1.34) > FD (1.37). ABTS Scavenging (IC50, mg/mL): OD50 (0.23) > ShD (0.24) > OD70 (0.28) > MWD (0.29) > FD (0.32). FRAP (µg VC/mg): OD70 (4.27) > FD (4.03) > OD50 (3.92) > MWD (3.86) > ShD (3.39). PPO activity is inactivated most with OD70. | TPC, (µM GAE/g DM): OD70 (81.36) > OD50 (78.93) > SHD (77.75) > FD (75.42) > MWD (71.72). TFC, (µM QE/g DM): FD (183.06) ≈ OD50 (182.57) > OD70 (168.14) > SHD (160.41) > MWD (139.93). Individual flavonoids (µg/mg dm): Hesperidin (highest: 36.27 in FD; lowest: 17.28 in MWD). | The results recommend the use of OD50 or OD70 for drying orange peel, both of which help the maintenance of bioactive compounds in the peel and improve its antioxidant capacity. | [122] |
Citrus sinensis L. cv “Bollo” (pieces of around 4 cm × 0.35 cm) | Convective drying (CD): 50.14 ± 0.99 °C, air velocity 1.01 ± 0.03 m/s, 51.12 ± 1.67% RH, 4.5 h MWD: 340 W, 1 h FD: Pre-freezing: −80 °C, 20 h; −50 °C, 150–200 Pa vacuum, 5 days | Initial moisture content: 75.66–78.23% wet basis Final moisture content: MD: 11.10–11.46%, CD: 10.85–13.03%, FD: 5.49–5.79%. | MWD had the least total color difference (7.0 ± 1.5) compared to fresh samples. | Total antioxidant activity was observed to increase 44.1% compared to fresh samples, while CD increased 25.0% and MWD increased 18.1%. | FD increased TPC by 19.5% compared to fresh samples, while CD increased 6.4% and MWD decreased 13.7%. | FD present better-quality parameters. | [135] |
Citrus sinensis var. Valencia Late (length × width × thickness: 48 ± 1 × 26 ± 1 × 3.18 ± 0.04 mm) | Pulsed electric field (PEF) Pretreatment: field strength: 1.20 kV/cm, 200 µs (0.37 kJ/kg) and 600 µs (1.12 kJ/kg). HAD: 50 ± 1 °C, 1 m/s, 3.5 ± 0.3 h. Ultrasound (US)-assisted drying: 20.5 kW/m3, 21.9 kHz. Combined treatments: HAD-US-200 µs, HAD-US-600 µs. | Initial moisture content: 2.70 ± 0.31 g/g dm Final moisture content: 0.6 g/g dm | / | HAD-600 µs showed a 31% retention of antioxidant capacity, which was lower than that of HAD (45%). US alone had no significant impact. | TPC retention: HAD: 27%, lowest HAD-200 µs: 48%, highest Ascorbic acid retention: similar in different conditions, 52–45% | PEF pretreatment combined with ultrasound drying better preserves color, phenolic content, and antioxidant capacity in orange peel compared to conventional drying. | [136] |
Sweet orange (length × width × thickness: 10.0 × 2.5 × 0.35 cm) | Ozone concentrations: 4 µg/L and 40 µg/L for 2 h. HAD: 40 °C, 50 °C, 60 °C. | Initial moisture content: 73.89 ± 0.60% wet basis Final moisture content: 12% wet basis | L* decreased with higher ozone concentration and higher drying temperature (from 78.87 ± 0.18 to 62.98 ± 0.43). The color a* increased markedly (from 1.11 ± 0.14 to 9.04 ± 0.38), and b* decreased significantly (from 57.12 ± 0.90 to 37.90 0.89) compared to control. | DPPH radical scavenging (IC50, mg/mL): Best: 4.09 ± 0.12 (4 µg O3/L + 60 °C). Worst: 5.70 ± 0.04 (40 µg O3/L + 40 °C). | Phenolic Content (µg GAE/mg): Control: 9.81 ± 0.25. Treated: 6.89 ± 0.05–8.05 ± 0.14 (reduction due to ozone and drying). Essential Oil (EO) yield (g/100 g dried peel): Highest: 4.48 ± 0.07 (40 µg O3 L−1 + 40 °C). Lowest: 3.19 ± 0.01 (4 µg O3 L−1 + 60 °C). Pectin Yield (g/100 g peel): Control: 25.96 ± 0.72. Treated: 21.03 ± 0.49–24.57 ± 0.54. | Ozone pretreatment combined with HAD enhanced moisture diffusivity and EO yield but reduced phenolic content. Higher ozone (40 µg L−1) improved EO yield but reduced antioxidant activity. Lower ozone (4 µg L−1) + high drying temp (60 °C) preserved antioxidants best. | [27] |
Citrus sinensis L. Osbeck var. Lane Late (6 ± 0.5 mm thickness) | TD: 50 °C, 300 min, air velocity 1.8 m/s, 30% RH Vacuum infrared drying (VID): 50 °C, 106 min, 500 W, 877 mbar Vacuum microwave drying (VMD): 20.67 min, 334 W, 877 mbar | Initial moisture content: 72.94% Final moisture content: TD: 9.96% VID: 7.99% VMD: 9.04% | VMD produced the brightest samples (L* = 73.64 ± 0.06) but with greatest color change (ΔE = 16.08 ± 0.08), while TD showed better color preservation (ΔE = 7.65 ± 0.10) despite lower brightness (L* = 67.92 ± 0.11), and VID significantly enhanced yellowness (b* = 62.53 ± 0.05) | / | Vitamin C (mg/100 g dm): Fresh: 292.235 ± 0.720 TD: 243.862 ± 0.671 VID: 212.050 ± 0.619 VMD: 272.862 ± 0.716 TPC (mg GAE/100 g dm): Fresh: 115.384 ± 0.320 TD: 85.677 ± 0.621 VID: 85.386 ± 0.475 VMD: 103.010 ± 0.520 Total Carotenoid Content (mg/100 g dm): Fresh: 24.775 ± 0.177 TD: 17.532 ± 0.089 VID: 15.490 ± 0.240 VMD: 20.050 ± 0.146 | VMD is optimal for rapid drying and retaining antioxidants but changes color. VID is best for aroma preservation. | [28] |
“Newhall” navel orange (Citrus sinensis Osb.) (15 mm diameter and 5 mm thickness) | Air impingement dryer: air velocity of 9 m/s 50 °C: 150 min; 55 °C: 120 min; 60 °C: 105 min; 65 °C: 90 min; 70 °C: 75 min. | Initial moisture content: 75.54 ± 1.07% wet basis Final moisture content: 10% wet basis | / | / | TPC decreased from 29.72 mg GAE/g dm to 25.73–26.72 mg GAE/g dm. TFC observed a reduction of 19.90–23.41% (no significant difference across temperatures). Ascorbic acid decreased from 86.56 mg/100 g dm to 41.01–53.87 mg/100 g. | Optimal condition: 65 °C (fast drying and best quality) | [40] |
Bitter orange (Citrus aurantium L.) | Sun drying (SND): 15–37 °C (ambient), 48 h. Shade drying (ShD): 20 ± 5 °C (dark room), 60 h. Oven drying (OD): 45 °C,5 h; 60 °C, 4 h. Vacuum oven drying (VOD): 0.8 mbar, 45 °C, 48 h; 60 °C, 36 h. MWD: 360 W, 35 min; 600 W; 20 min. FD: pre-frozen at −18 °C, −50 °C, 24 h, 0.125 mbar. | Initial moisture content: 74.4 ± 0.6% wet basis Final moisture content: 10% wet basis | L*: FD (75.54, ± 0.08 highest), VOD 60 °C (50.24 ± 0.14, lowest). b*: FD (77.91 ± 0.06, highest), VOD 60 °C (55.75 ± 0.10, lowest) ΔE: SD (19.42 ± 0.44, lowest), VOD 60 °C (31.21 ± 0.20, highest) | DPPH radical scavenging (IC50, ppm): FD: 6916.90 (lowest IC50, highest activity). SD: 35,574.20 (weakest). FRAP (at 80,000 ppm): FD: 0.52% (highest reducing power). SND: 0.17%. | FD showed the highest EO yield (6.90% v/w). TPC (mg GAE/100 g): FD: 12.73 (highest). SND: 3.23 (lowest). | FD had the highest L*, b*, essential oil yield (6.90%), antioxidant activity, and phenolic content while exhibiting minimal color change. Sun/shade drying caused significant color degradation and low antioxidant retention. | [16] |
Thomson navel orange (Citrus sinensis L. Osbeck) | ShD: 20 ± 5 °C, 60 h SD: direct sun/day light, 25~37 °C, 36 h Oven drying (OD): 45 °C, 5 h; 60 °C, 4 h VOD: 45 °C, up to 48 h; 60 °C, 36 h MWD: 360 W, 35 min; 600 W, 20 min FD: −50 °C, 0.125 mbar, 24 h | Initial moisture content: 77.3 ± 0.9% Final moisture content: constant weight | FD could preserve color values with the highest L* (48.54 ± 0.69), b* (49.00 ± 0.01) and lowest a* (1.79 ± 0.37). VOD at 60 °C had the lowest b* (30.28 ± 0.80) and highest ΔE (40.16 ± 1.38). | The highest antioxidant activity (lowest IC50, mg/mL) was observed in FD sample (5.00), followed by VOD 60 °C (7.24), MWD 600 W (7.50), fresh (7.86), VOD 45 °C (7.99), OD 45 °C (14.23), MWD 360 W (14.76), ShD (15.04), OD 60 °C (16.07), and SD (20.00). | TPC of drying treatments were as following order: FD > VOD 60 °C > MWD 600 W > fresh samples. FD had the highest EO yield (6.90% v/w), while the lowest EO yield was in fresh samples (1.20% v/w). | Results showed that FD performed best compared to other drying methods and could be a potential method for producing an excellent dried peel product with highest quality EO. | [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Jiang, W.; Su, J.; Yu, F. Recent Advances in Drying Technologies for Orange Products. Foods 2025, 14, 3051. https://doi.org/10.3390/foods14173051
Tan X, Jiang W, Su J, Yu F. Recent Advances in Drying Technologies for Orange Products. Foods. 2025; 14(17):3051. https://doi.org/10.3390/foods14173051
Chicago/Turabian StyleTan, Xindi, Wenzhan Jiang, Jiaying Su, and Fanqianhui Yu. 2025. "Recent Advances in Drying Technologies for Orange Products" Foods 14, no. 17: 3051. https://doi.org/10.3390/foods14173051
APA StyleTan, X., Jiang, W., Su, J., & Yu, F. (2025). Recent Advances in Drying Technologies for Orange Products. Foods, 14(17), 3051. https://doi.org/10.3390/foods14173051