Effect of Combined Static Magnetic Field and Static Electric Field on the Supercooling Point and Quality of Beef
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.1.1. Determination of Supercooling Temperature of Beef by SEF
2.1.2. Determination of Supercooling Temperature of Beef by SEF + SMF
2.1.3. SEF + SMF Assisted Supercooling Storage
2.2. Determination of the pH
2.3. Total Volatile Basic Nitrogen (TVB-N) Analysis
- V1: volume of hydrochloric acid consumed during titration (mL)
- V2: volume of hydrochloric acid consumed by the blank group during titration (mL)
- C: concentration of standard hydrochloric acid solution used in the titration process (mol/L)
- 14: the mass of nitrogen equivalent to 1.00 mL of hydrochloric acid standard solution (mg)
- m: mass of the sample.
2.4. Total Viable Counts (TVC)
- C: sum of the number of colonies in the plates (plates containing the appropriate range of colony numbers)
- n1: number of plates at the first dilution (low dilution)
- n2: number of plates at the second dilution (high dilution)
- d: dilution factor (first dilution).
2.5. Lipid Oxidation Measurement
2.6. Determination of Shear Force
2.7. Total Calpain Activity
2.8. Determination of Moisture Distribution and State
2.9. Data Analysis
3. Results
3.1. Effect of Supercooling Point
3.2. pH
3.3. TVB-N
3.4. TVC Value
3.5. Lipid Oxidation
3.6. Shear Force
3.7. Ca2+ Protease Activity
3.8. Water Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SMF | Static magnetic field |
SEF | Static electric field |
TVC | Total viable counts |
BLL | Beef longissimus lumborum |
PE | Polyethylene film |
TVB-N | Total volatile basic nitrogen |
TBARS | Thiobarbituric acid active substance |
TCA | Trichloroacetic acid |
EDTA | Ethylene diamine tetra-acetic acid |
HVEF | High voltage electrostatic field |
CHVEF | Continuous high-voltage electrostatic fields |
IHVEF | Intermittent high voltage electrostatic field |
SHVEF | Static high voltage electrostatic field |
MDA | Malondialdehyde |
LF-NMR | Low-field nuclear magnetic resonance |
MRI | Magnetic resonance imaging |
PEF | Pulsed electric fields |
References
- Xu, C.-C.; Liu, D.-K.; Guo, C.-X.; Wu, Y.-Q. Effect of cooling rate and super-chilling temperature on ice crystal characteristic, cell structure, and physicochemical quality of super-chilled fresh-cut celery. Int. J. Refrig. 2020, 113, 249–255. [Google Scholar] [CrossRef]
- Honggyun, K.; GeunPyo, H. Comparison of Superchilling and Supercooling on Extending the Fresh Quality of Beef Loin. Foods 2022, 11, 2729. [Google Scholar] [CrossRef] [PubMed]
- Hengxun, L.; Songsong, Z.; Xinyi, H.; Wenqiang, G.; Bin, L.; Aiqiang, C.; Yongsheng, S.; Jiyun, W. Effect of static magnetic field extended supercooling preservation on beef quality. Food Chem. 2022, 370, 131264. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, W.; Mu, Y.; Liu, X.; Yang, K.; Mu, R. Metabolomics analysis of dynamic quality changes in beef during low-voltage electrostatic field combined with partial freezing storage. Food Chem. X 2025, 29, 102775. [Google Scholar] [CrossRef]
- Fan, L.; Na, Y.; Lingtao, Z.; Yamei, J.; Zhengyu, J.; Xueming, X. Effect of weak magnetic field on the water-holding properties, texture, and volatile compounds of pork and beef during frozen storage. Food Biosci. 2023, 53, 102667. [Google Scholar] [CrossRef]
- Hengxun, L.; Xingxing, H.; Chenghao, L.; Junhong, M.; Wenqiang, G.; Chengli, H.; Chunhui, Z.; Wenxin, W. Static magnetic field-assisted supercooling preservation enhances water-holding capacity of beef during subzero storage. Innov. Food Sci. Emerg. Technol. 2022, 80, 103106. [Google Scholar]
- Tang, J.; Shao, S.; Tian, C. Effects of the magnetic field on the freezing parameters of the pork. Int. J. Refrig. 2019, 107, 31–38. [Google Scholar] [CrossRef]
- Junbo, J.; Liyuan, Z.; Jianbo, Y.; Yue, C.; Zhongrong, C.; Gang, Z. Effect of Static Magnetic Field Assisted Thawing on Physicochemical Quality and Microstructure of Frozen Beef Tenderloin. Front. Nutr. 2022, 9, 914373. [Google Scholar] [CrossRef]
- Wang, W.; Lin, H.; Guan, W.; Song, Y.; He, X.; Zhang, D. Effect of static magnetic field-assisted thawing on the quality, water status, and myofibrillar protein characteristics of frozen beef steaks. Food Chem. 2023, 436, 137709. [Google Scholar] [CrossRef]
- Sun, W.; Xu, X.; Zhang, H.; Xu, C. Effects of dipole polarization of water molecules on ice formation under an electrostatic field. Cryobiology 2008, 56, 93–99. [Google Scholar] [CrossRef]
- Yong, X.; Kai, Z.; Bo, C.; Yunhao, M.; Cheng, T.; Peijun, L.; Zhaoming, W.; Feiran, X.; Cong, L.; Hui, Z.; et al. Mechanism of low-voltage electrostatic fields on the water-holding capacity in frozen beef steak: Insights from myofilament lattice arrays. Food Chem. 2023, 428, 136786. [Google Scholar]
- Dalvi-Isfahan, M.; Hamdami, N.; Xanthakis, E.; Le-Bail, A. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. J. Food Eng. 2017, 195, 222–234. [Google Scholar] [CrossRef]
- Yong, X.; Kai, Z.; Bo, C.; Yang, W.; Wen, N.; Sujuan, W.; Wu, W.; Peijun, L.; Baocai, X. Applying low voltage electrostatic field in the freezing process of beef steak reduced the loss of juiciness and textural properties. Innov. Food Sci. Emerg. Technol. 2021, 68, 102600. [Google Scholar] [CrossRef]
- Jia, G.; He, X.; Nirasawa, S.; Tatsumi, E.; Liu, H.; Liu, H. Effects of high-voltage electrostatic field on the freezing behavior and quality of pork tenderloin. J. Food Eng. 2017, 204, 18–26. [Google Scholar] [CrossRef]
- Orlowska, M.; Havet, M.; Le-Bail, A. Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Res. Int. 2009, 42, 879–884. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, M.; Deng, D. The synergistic antimicrobial effects and mechanism of cinnamon essential oil and high voltage electrostatic field and their application in minced pork. Food Control 2024, 163, 110475. [Google Scholar] [CrossRef]
- Zhang, J.; Fei, L.; Cui, P.; Walayat, N.; Ji, S.; Chen, Y.; Lyu, F.; Ding, Y. Effect of low voltage electrostatic field combined with partial freezing on the quality and microbial community of large yellow croaker. Food Res. Int. 2023, 169, 112933. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, M.; Mujumdar, A.S.; Chen, B. Comparative freezing study of broccoli and cauliflower: Effects of electrostatic field and static magnetic field. Food Chem. 2022, 397, 133751. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, M.; Mujumdar, A.S. Novel assistive technologies for efficient freezing of pork based on high voltage electric field and static magnetic field: A comparative study. Innov. Food Sci. Emerg. Technol. 2022, 80, 103087. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.F.; Wang, Z.P.; Li, X.F.; Li, C.; Xu, B. Effects of different freezing methods on the quality of conditioned beef steaks during storage. J. Food Process. Preserv. 2020, 44, e14496. [Google Scholar] [CrossRef]
- Huang, H.; Sun, W.; Xiong, G.; Shi, L.; Jiao, C.; Wu, W.; Li, X.; Qiao, Y.; Liao, L.; Ding, A.; et al. Effects of HVEF treatment on microbial communities and physicochemical properties of catfish fillets during chilled storage. LWT 2020, 131, 109667. [Google Scholar] [CrossRef]
- Sobral, M.M.C.; Casal, S.; Faria, M.A.; Cunha, S.C.; Ferreira, I.M.P.L.V.O. Influence of culinary practices on protein and lipid oxidation of chicken meat burgers during cooking and in vitro gastrointestinal digestion. Food Chem. Toxicol. 2020, 141, 111401. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Rongrong, L.; Yanwei, M.; Yimin, Z.; Lebao, N.; Renhuan, W.; Chenglong, L.; Yuqing, L.; Xin, L. Effect of suspension method and aging time on meat quality of Chinese fattened cattle M. Longissimus dorsi. Meat Sci. 2014, 96, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhang, Y.; Pu, A.; Tian, J.; Yang, Z.; Feng, Y.; Zhang, Y.; Liu, G. A preliminary exploration of the synergistic preservation effect of electrostatic field and superchilling on muscle foods: Mechanisms, influencing factors, applications, and challenges. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70066. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.K.; Xanthakis, E.; Jury, V.; Le-Bail, A. An Overview on Magnetic Field and Electric Field Interactions with Ice Crystallisation; Application in the Case of Frozen Food. Crystals 2017, 7, 299. [Google Scholar] [CrossRef]
- Jha, P.K.; Sadot, M.; Vino, S.A.; Jury, V.; Curet-Ploquin, S.; Rouaud, O.; Havet, M.; Le-Bail, A. A review on effect of DC voltage on crystallization process in food systems. Innov. Food Sci. Emerg. Technol. 2017, 42, 204–219. [Google Scholar] [CrossRef]
- Fallah-Joshaqani, S.; Hamdami, N.; Keshavarzi, E.; Keramat, J.; Dalvi-Isfahan, M. Evaluation of the static electric field effects on freezing parameters of some food systems. Int. J. Refrig. 2019, 99, 30–36. [Google Scholar] [CrossRef]
- Maninder, K.; Mahesh, K. An Innovation in Magnetic Field Assisted Freezing of Perishable Fruits and Vegetables: A Review. Food Rev. Int. 2020, 36, 761–780. [Google Scholar]
- Zhang, Y.; Qin, L.; Mao, Y.; Hopkins, D.L.; Han, G.; Zhu, L.; Luo, X. Carbon monoxide packaging shows the same color improvement for dark cutting beef as high oxygen packaging. Meat Sci. 2018, 137, 153–159. [Google Scholar] [CrossRef]
- Alam, A.M.M.N.; Hwang, Y.H.; Samad, A.; Joo, S.T. Meat Quality Traits Using Gelatin–Green Tea Extract Hybrid Electrospun Nanofiber Active Packaging. Foods 2025, 14, 1734. [Google Scholar] [CrossRef]
- Masniyom, P.; Benjakul, S.; Visessanguan, W. Shelf-life extension of refrigerated seabass slices under modified atmosphere packaging. J. Sci. Food Agric. 2002, 82, 873–880. [Google Scholar] [CrossRef]
- Sharma, P.; Oey, I.; Bremer, P.; Everett, D.W. Microbiological and enzymatic activity of bovine whole milk treated by pulsed electric fields. Int. J. Dairy. Technol. 2018, 71, 10–19. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, H.; Yang, Y.; Cui, L.; Chisoro, P.; Yang, C.; Wu, G.; Li, Q.; Li, J.; Zhang, C.; et al. Exploring the role of static magnetic field in supercooling storage from the viewpoint of meat quality and microbial community. Food Res. Int. 2024, 195, 114884. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.E.-D.A.; Holman, B.W.B.; Giteru, S.G.; Hopkins, D.L. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci. Technol. 2021, 109, 280–302. [Google Scholar] [CrossRef]
- GB 2707-2016; National Food Safety Standard—Fresh (Frozen) Livestock and Poultry Meat. China Standard Press: Beijing, China, 2016.
- Wang, T.; Jin, Y.; Zhang, X.; Yang, N.; Xu, X. Effect of Static Magnetic Field on the Quality of Pork during Super-Chilling Storage. Foods 2024, 13, 1205. [Google Scholar] [CrossRef]
- Yuqian, X.; Xiangyuan, W.; Dequan, Z.; Martine, S.; Debao, W.; Xin, L.; Chengli, H. Changes in the Freshness and Bacterial Community of Fresh Pork in Controlled Freezing Point Storage Assisted by Different Electrostatic Field Usage Frequencies. Food Bioprocess. Technol. 2023, 17, 939–954. [Google Scholar]
- Kilgannon, A.K.; Holman, B.W.B.; Mawson, A.J.; Campbell, M.; Collins, D.; Hopkins, D.L. The effect of different temperature-time combinations when ageing beef: Sensory quality traits and microbial loads. Meat Sci. 2018, 150, 23–32. [Google Scholar] [CrossRef]
- Mengyuan, Q.; Qingyan, L.; Ying, L.; Haiyang, Y.; Yan, Z.; Yuan, Y. Staphylococcus aureus biofilm inhibition by high voltage prick electrostatic field (HVPEF) and the mechanism investigation. Int. J. Food Microbiol. 2022, 362, 109499. [Google Scholar] [CrossRef]
- Sirui, C.; Yamei, J.; Na, Y.; Liwen, W.; Dan, X.; Xueming, X. Improving microbial production of value-added products through the intervention of magnetic fields. Bioresour. Technol. 2023, 393, 130087. [Google Scholar] [CrossRef]
- Chow, K.-C.; Tung, W.L. Magnetic Field Exposure Stimulates Transposition through the Induction of DnaK/J Synthesis. Biochem. Biophys. Res. Commun. 2000, 270, 745–748. [Google Scholar] [CrossRef]
- Ko, W.-C.; Yang, S.-Y.; Chang, C.-K.; Hsieh, C.-W. Effects of adjustable parallel high voltage electrostatic field on the freshness of tilapia (Orechromis niloticus) during refrigeration. LWT—Food Sci. Technol. 2016, 66, 151–157. [Google Scholar] [CrossRef]
- Li, T.; Haiqing, T.; Jingyi, C.; Shangyuan, S.; Ruiping, L.; Zhepeng, Z.; Changrong, O. Origin of static magnetic field induced quality improvement in sea bass (Lateolabrax japonicus) during cold storage: Microbial growth inhibition and protein structure stabilization
. Front. Nutr. 2022, 9, 1066964. [Google Scholar]
- Zheng, Z.; Jin, Y.; Zhang, L.; Xu, X.; Yang, N. Inactivation of microorganisms in foods by electric field processing: A review. J. Agric. Food Res. 2024, 16, 101109. [Google Scholar] [CrossRef]
- Albuquerque, W.W.C.; Costa, R.M.P.B.; Fernandes, T.d.S.e.; Porto, A.L.F. Evidences of the static magnetic field influence on cellular systems. Prog. Biophys. Mol. Biol. 2016, 121, 16–28. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Lianxin, G.; Kunlun, L.; Huiyan, Z. Lipid oxidation in foods and its implications on proteins. Front. Nutr. 2023, 10, 1192199. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Her, J.-Y.; Shafel, T.; Kang, T.; Jun, S. Supercooling preservation on quality of beef steak. J. Food Eng. 2020, 274, 109840. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Q.; Lin, S.; Yan, Z.; Wu, X.; Wei, W.; Pang, G. Effect of Near-Freezing Storage Combined with High-Voltage Electric Fields on the Freshness of Large Yellow Croaker. Foods 2024, 13, 2877. [Google Scholar] [CrossRef]
- Kantono, K.; Hamid, N.; Oey, I.; Wang, S.; Xu, Y.; Ma, Q.; Faridnia, F.; Farouk, M. Physicochemical and sensory properties of beef muscles after Pulsed Electric Field processing. Food Res. Int. 2019, 121, 1–11. [Google Scholar] [CrossRef]
- Faridnia, F.; Ma, Q.L.; Bremer, P.J.; Burritt, D.J.; Hamid, N.; Oey, I. Effect of freezing as pre-treatment prior to pulsed electric field processing on quality traits of beef muscles. Innov. Food Sci. Emerg. Technol. 2015, 29, 31–40. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Role of Calpain System in Meat Tenderness: A Review. Food Sci. Hum. Wellness 2018, 7, 196–204. [Google Scholar] [CrossRef]
- Han, S.; Jo, K.; Jeong, S.K.C.; Jeon, H.; Kim, S.; Woo, M.; Jung, S.; Lee, S. Comparative Study on the Postmortem Proteolysis and Shear Force during Aging of Pork and Beef Semitendinosus Muscles. Food Sci. Anim. Resour. 2024, 44, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
- Dang, D.S.; Bastarrachea, L.J.; Martini, S.; Matarneh, S.K. Crystallization Behavior and Quality of Frozen Meat. Foods 2021, 10, 2707. [Google Scholar] [CrossRef] [PubMed]
- Kemp, C.M.; Parr, T. The effect of recombinant caspase 3 on myofibrillar proteins in porcine skeletal muscle. Animal 2008, 2, 1254–1264. [Google Scholar] [CrossRef]
- Moldoveanu, T.; Hosfield, C.M.; Lim, D.; Elce, J.S.; Davies, P.L. A Ca(2+) switch aligns the active site of calpain. Cell 2002, 108, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, E.H.; Zhang, W.; Lonergan, S.M. Biochemistry of postmortem muscle—Lessons on mechanisms of meat tenderization. Meat Sci. 2010, 86, 184–195. [Google Scholar] [CrossRef]
- Miranda, J.I.V.; López, M.R.R.; Torre, R.R.R.d.l.; Beltrán, L.A.; Sánchez, H.H.; López, G.F.G. Effect of high-voltage electrostatic field treatments on bananas (Musa paradisiaca var. sapientum) on their postharvest quality, enzymatic activity and morphological changes. Food Bioprod. Process. 2024, 146, 135–146. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Pulsed electric field operates enzymatically by causing early activation of calpains in beef during ageing. Meat Sci. 2019, 153, 144–151. [Google Scholar] [CrossRef]
- Yan, M.; Yuan, B.; Xie, Y.; Cheng, S.; Huang, H.; Zhang, W.; Chen, J.; Cao, C. Improvement of postharvest quality, enzymes activity and polyphenoloxidase structure of postharvest Agaricus bisporus in response to high voltage electric field. Postharvest Biol. Technol. 2020, 166, 111230. [Google Scholar] [CrossRef]
- Guo, Y.; Han, M.; Chen, L.; Zeng, X.; Wang, P.; Xu, X.; Feng, X.; Lu, X. Pulsed electric field: A novel processing technology for meat quality enhancing. Food Biosci. 2024, 58, 103645. [Google Scholar] [CrossRef]
- Han, M.; Wang, P.; Xu, X.; Zhou, G. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Res. Int. 2014, 62, 1175–1182. [Google Scholar] [CrossRef]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef]
- Shengming, Z.; Yu, L.; Xiaorui, Y.; Yanyan, Z.; Zhuangli, K.; Mingming, Z.; Hanjun, M. Effect of low-frequency alternating magnetic field on the rheological properties, water distribution and microstructure of low-salt pork batters. LWT 2022, 159, 113164. [Google Scholar]
- Yuqian, X.; Dequan, Z.; Feifei, X.; Xin, L.; Martine, S.; Li, C.; Chengli, H. Changes in water holding capacity of chilled fresh pork in controlled freezing-point storage assisted by different modes of electrostatic field action. Meat Sci. 2023, 204, 109269. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Kwon, J.A.; Kim, M.; Lee, Y.E.; Ryu, M.; Jo, C. Effect of supercooling on storage ability of different beef cuts in comparison to traditional storage methods. Meat Sci. 2023, 199, 109137. [Google Scholar] [CrossRef] [PubMed]
- Yong, X.; Kai, Z.; Bo, C.; Sam, A.-D.; Cong, L.; Ying, W.; Zhaoming, W.; Hui, Z.; Peijun, L.; Baocai, X. Synergism effect of low voltage electrostatic field and antifreeze agents on enhancing the qualities of frozen beef steak: Perspectives on water migration and protein aggregation. Innov. Food Sci. Emerg. Technol. 2023, 84, 103263. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Ma, Y.; Liu, J.; Xiao, C.; Liu, L.; Li, Y.; Chen, J.; Quan, Z. Effect of Combined Static Magnetic Field and Static Electric Field on the Supercooling Point and Quality of Beef. Foods 2025, 14, 3161. https://doi.org/10.3390/foods14183161
He Y, Ma Y, Liu J, Xiao C, Liu L, Li Y, Chen J, Quan Z. Effect of Combined Static Magnetic Field and Static Electric Field on the Supercooling Point and Quality of Beef. Foods. 2025; 14(18):3161. https://doi.org/10.3390/foods14183161
Chicago/Turabian StyleHe, Yujing, Yuan Ma, Jingni Liu, Cenke Xiao, Lisha Liu, Yinying Li, Jiaxin Chen, and Zhiying Quan. 2025. "Effect of Combined Static Magnetic Field and Static Electric Field on the Supercooling Point and Quality of Beef" Foods 14, no. 18: 3161. https://doi.org/10.3390/foods14183161
APA StyleHe, Y., Ma, Y., Liu, J., Xiao, C., Liu, L., Li, Y., Chen, J., & Quan, Z. (2025). Effect of Combined Static Magnetic Field and Static Electric Field on the Supercooling Point and Quality of Beef. Foods, 14(18), 3161. https://doi.org/10.3390/foods14183161