Enhancing Meat Quality and Nutritional Value in Monogastric Livestock Using Sustainable Novel Feed Ingredients
Abstract
:1. Introduction
2. Overview of Novel Feed Ingredients
2.1. Definition and Categories
2.1.1. Insect Meals
2.1.2. Microalgae
2.1.3. Seaweeds
2.1.4. Fermented By-Products
2.1.5. Biofortified Grains
2.1.6. Agro-Industrial Residues
2.2. Nutritional Composition
2.2.1. Proteins and Amino Acids
2.2.2. Omega-3 Fatty Acids and Lipid Profile
2.2.3. Antioxidants and Stability
2.2.4. Minerals and Vitamins
2.2.5. Combined Nutritional Benefits
3. Impacts on Meat Quality and Nutritional Value
3.1. Sensory Characteristics
3.2. Nutritional Improvements
3.2.1. Protein Quality
3.2.2. Fatty Acid Enrichment
3.2.3. Antioxidants and Oxidative Stability
3.2.4. Micronutrient Fortification
3.2.5. Comparative Benefits
4. Practical Considerations
4.1. Animal Acceptance and Digestibility
4.2. Regulatory and Safety Issues
4.3. Economic Feasibility
4.3.1. Insect Meals
4.3.2. Microalgae
4.3.3. Seaweeds
4.3.4. Fermented By-Products
4.3.5. Agro-Industrial By-Products
4.3.6. Market Acceptance
5. Challenges and Opportunities
5.1. Technical Barriers
5.1.1. Nutrient Bioavailability
5.1.2. Processing Costs
5.1.3. Consistency in Nutritional Quality
5.2. Sustainability Goals
5.2.1. Environmental Impact Reduction
5.2.2. Microalgae Cultivation
5.2.3. Seaweed Cultivation
5.2.4. Agro-Industrial Residues
5.3. Future Research Directions
5.3.1. Genetic Improvements in Animals
5.3.2. Cost-Effective Processing and Biofortification
5.3.3. Long-Term Studies on Meat Quality and Consumer Acceptance
5.3.4. Case Studies of Successful Integration
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.W.; Less, J.F.; Wang, L.; Yan, T.; Kiron, V.; Kaushik, S.J.; Lei, X.G. Meeting Global Feed Protein Demand: Challenge, Opportunity, and Strategy. Annu. Rev. Anim. Biosci. 2019, 7, 221–243. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.F.; Ribeiro, D.M.; Costa, M.; Coelho, D.F.; Alfaia, C.M.; Lordelo, M.M.; Almeida, A.M.d.; Freire, J.P.B.; Prates, J.A.M. Using Microalgae as a Sustainable Feed Resource to Enhance Quality and Nutritional Value of Pork and Poultry Meat. Foods 2021, 10, 2933. [Google Scholar] [CrossRef] [PubMed]
- van der Heide, M.E.; Stødkilde, L.; Værum Nørgaard, J.; Studnitz, M. The Potential of Locally-Sourced European Protein Sources for Organic Monogastric Production: A Review of Forage Crop Extracts, Seaweed, Starfish, Mussel, and Insects. Sustainability 2021, 13, 2303. [Google Scholar] [CrossRef]
- Øverland, M.; Tauson, A.-H.; Shearer, K.D.; Skrede, A. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals. Arch. Anim. Nutr. 2010, 64, 171–189. [Google Scholar] [CrossRef]
- Tang, F.; Yang, X.; Liu, D.; Zhang, X.; Huang, X.; He, X.; Shi, J.; Li, Z.; Wu, Z. Co-expression of fat1 and fat2 in transgenic pigs promotes synthesis of polyunsaturated fatty acids. Transgenic Res. 2019, 28, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.M.; Alfaia, C.M.; Pestana, J.M.; Carvalho, D.F.P.; Costa, M.; Martins, C.F.; Lemos, J.P.C.; Mourato, M.P.; Gueifão, S.; Delgado, I.M.; et al. Influence of Feeding Weaned Piglets with Laminaria digitata on the Quality and Nutritional Value of Meat. Foods 2022, 11, 1024. [Google Scholar] [CrossRef]
- Hooper, L.; Martin, N.; Jimoh, O.F.; Kirk, C.; Foster, E.; Abdelhamid, A. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2020, 5, CD011737. [Google Scholar] [CrossRef] [PubMed]
- Dalle Zotte, A. Do insects as feed ingredient affect meat quality? Theory Pract. Meat Process. 2021, 6, 200–209. [Google Scholar] [CrossRef]
- Wongputtisin, P.; Khanongnuch, C.; Kongbuntad, W.; Niamsup, P.; Lumyong, S.; Sarkar, P.K. Use of Bacillus subtilis isolates from Tua-nao towards nutritional improvement of soya bean hull for monogastric feed application. Lett. Appl. Microbiol. 2014, 59, 328–333. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabrò, S.; Cutrignelli, M.I. A review on the use of agro-industrial CO-products in animals’ diets. Ital. J. Anim. Sci. 2022, 21, 577–594. [Google Scholar] [CrossRef]
- Reguengo, L.M.; Salgaço, M.K.; Sivieri, K.; Maróstica Júnior, M.R. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res. Int. 2022, 152, 110871. [Google Scholar] [CrossRef] [PubMed]
- Magklaras, G.; Skoufos, I.; Bonos, E.; Tsinas, A.; Zacharis, C.; Giavasis, I.; Petrotos, K.; Fotou, K.; Nikolaou, K.; Vasilopoulou, K.; et al. Innovative Use of Olive, Winery and Cheese Waste By-Products as Novel Ingredients in Weaned Pigs Nutrition. Vet. Sci. 2023, 10, 397. [Google Scholar] [CrossRef]
- Gasco, L.; Renna, M.; Bellezza Oddon, S.; Rezaei Far, A.; NASER EL DEEN, S.; Veldkamp, T. Insect meals in a circular economy and applications in monogastric diets. Anim. Front. Rev. Mag. Anim. Agric. 2023, 13, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.S.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef] [PubMed]
- Sajid, Q.U.A.; Asghar, M.U.; Tariq, H.; Wilk, M.; Płatek, A. Insect Meal as an Alternative to Protein Concentrates in Poultry Nutrition with Future Perspectives (An Updated Review). Agriculture 2023, 13, 1239. [Google Scholar] [CrossRef]
- Costa, M.; Coelho, D.; Alfaia, C.; Pestana, J.; Lopes, P.A.; Prates, J.A.M. Chapter 32—Microalgae application in feeds for monogastrics. In Handbook of Food and Feed from Microalgae; Jacob-Lopes, E., Queiroz, M.I., Maroneze, M.M., Zepka, L.Q., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 411–420. [Google Scholar]
- Spínola, M.P.; Mendes, A.R.; Prates, J.A.M. Chemical Composition, Bioactivities, and Applications of Spirulina (Limnospira platensis) in Food, Feed, and Medicine. Foods 2024, 13, 3656. [Google Scholar] [CrossRef]
- Ribeiro, D.M.; Martins, C.F.; Costa, M.; Coelho, D.F.; Pestana, J.M.; Alfaia, C.M.; Lordelo, M.M.; de Almeida, A.M.; Freire, J.P.B.; Prates, J.A.M. Quality Traits and Nutritional Value of Pork and Poultry Meat from Animals Fed with Seaweeds. Foods 2021, 10, 2961. [Google Scholar] [CrossRef]
- Costa, M.; Cardoso, C.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: A systematic review. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1075–1102. [Google Scholar] [CrossRef]
- Makkar, H.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Sun, H.; Kang, X.; Tan, H.; Cai, H.; Chen, D. Progress in Fermented Unconventional Feed Application in Monogastric Animal Production in China. Fermentation 2023, 9, 947. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Kaur, M.; Shivay, Y.S.; Nisar, S.; Gaber, A.; Brestic, M.; Barek, V.; et al. Biofortification—A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security. Molecules 2022, 27, 1340. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Costa, M.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A.M. Use of Grape By-Products to Enhance Meat Quality and Nutritional Value in Monogastrics. Foods 2022, 11, 2754. [Google Scholar] [CrossRef] [PubMed]
- Machado, L.; Carvalho, G.; Pereira, R.N. Effects of Innovative Processing Methods on Microalgae Cell Wall: Prospects towards Digestibility of Protein-Rich Biomass. Biomass 2022, 2, 80–102. [Google Scholar] [CrossRef]
- Palmquist, D.L. Omega-3 Fatty Acids in Metabolism, Health, and Nutrition and for Modified Animal Product Foods. Prof. Anim. Sci. 2009, 25, 207–249. [Google Scholar] [CrossRef]
- Mendes, A.R.; Spínola, M.P.; Lordelo, M.; Prates, J.A.M. Assessing the Influence of Cumulative Chlorella vulgaris Intake on Broiler Carcass Traits, Meat Quality and Oxidative Stability. Foods 2024, 13, 2753. [Google Scholar] [CrossRef]
- Mulia, R.N.; Doi, H. Global Simulation of Insect Meat Production Under Climate Change. Front. Sustain. Food Syst. 2019, 3. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition; Novel Foods and Food Allergens (NDA); Allergens, F.; Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; et al. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06343. [Google Scholar]
- van der Fels-Klerx, H.J.; Camenzuli, L.; Belluco, S.; Meijer, N.; Ricci, A. Food Safety Issues Related to Uses of Insects for Feeds and Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1172–1183. [Google Scholar] [CrossRef]
- Ranga, L.; Noci, F.; Vale, A.P.; Dermiki, M. Insect-Based Feed Acceptance amongst Consumers and Farmers in Ireland: A Pilot Study. Sustainability 2023, 15, 11006. [Google Scholar] [CrossRef]
- IPIFFI EU Survey on the Consumer Acceptance of Insect Food Products. In 2024 European Edible Insects Report by IPIFF, Conducted by MIS Group; International Platform of Insects for Food & Feed: Brussels, Belgium, 2024.
- Verbeke, W.; Sans, P.; Van Loo, E.J. Challenges and prospects for consumer acceptance of cultured meat. J. Integr. Agric. 2015, 14, 285–294. [Google Scholar] [CrossRef]
- Schmid, B.; Navalho, S.; Schulze, P.; Walle, S.; Royen, G.; Schüler, L.; Maia, I.; Bastos, C.; Baune, M.-C.; Januschewski, E.; et al. Drying Microalgae Using an Industrial Solar Dryer: A Biomass Quality Assessment. Foods 2022, 11, 1873. [Google Scholar] [CrossRef]
- Huis, A.; Gasco, L. Insects as feed for livestock production. Science 2023, 379, 138–139. [Google Scholar] [CrossRef]
- Kusmayadi, A.; Leong, Y.K.; Yen, H.W.; Huang, C.Y.; Chang, J.S. Microalgae as sustainable food and feed sources for animals and humans—Biotechnological and environmental aspects. Chemosphere 2021, 271, 129800. [Google Scholar] [CrossRef]
- Tallentire, C.W.; Mackenzie, S.G.; Kyriazakis, I. Can novel ingredients replace soybeans and reduce the environmental burdens of European livestock systems in the future? J. Clean. Prod. 2018, 187, 338–347. [Google Scholar] [CrossRef]
- Jabbar, A.; Zulfiqar, F.; Mahnoor, M.; Mushtaq, N.; Zaman, M.H.; Din, A.S.U.; Khan, M.A.; Ahmad, H.I. Advances and Perspectives in the Application of CRISPR-Cas9 in Livestock. Mol. Biotechnol. 2021, 63, 757–767. [Google Scholar] [CrossRef] [PubMed]
- van Selm, B.; Frehner, A.; de Boer, I.J.M.; van Hal, O.; Hijbeek, R.; van Ittersum, M.K.; Talsma, E.F.; Lesschen, J.P.; Hendriks, C.M.J.; Herrero, M.; et al. Circularity in animal production requires a change in the EAT-Lancet diet in Europe. Nat. Food 2022, 3, 66–73. [Google Scholar] [CrossRef]
Nutritional Aspect | Insect Meal [14,15,16] | Microalgae [18,19,27] | Seaweeds [7,20,21] | Fermented By-Products [10,22] | Biofortified Grains [5,23] | Agro-Industrial Residues [11,24] |
---|---|---|---|---|---|---|
Protein Quality | High-quality, digestible protein (40–60%), rich in lysine and methionine | High protein content (40–70%) with a complete amino acid profile, including arginine and leucine | Moderate protein (10–20%), varies by species | Improved digestibility post-fermentation (25–35%) | Moderate protein (15–25%), enhanced by biofortification | Moderate protein (15–20%), rich in fibre |
Omega-3 Fatty Acids | Limited, primarily omega-6 with minor omega-3 content | High in DHA, EPA and functional lipids (up to 50% of total lipids); Spirulina contains GLA | Modest omega-3 levels, primarily contributes functional lipid | Limited unless enriched by substrate | Rich in ALA, a precursor for DHA/EPA synthesis | Limited unless associated with specific residues (e.g., grape seeds) |
Antioxidants | Chitin provides mild oxidative protection | Rich in carotenoids (e.g., lutein and astaxanthin) and phycocyanin (Spirulina), reducing lipid peroxidation by 30–40% | High levels of polyphenols, vitamins A, E and bioactive compounds (e.g., fucoxanthin) | Polyphenols present, enhancing oxidative stability | Limited unless fortified | Rich in polyphenols, enhancing oxidative stability (e.g., grape pomace) |
Mineral Content | Iron, zinc and phosphorus | Calcium, magnesium, iron and trace minerals; Spirulina is particularly rich in iron and potassium | Rich in iodine, selenium and zinc, enhancing mineral density in meat | Varies based on source; fermentation may enhance bioavailability | Selenium and zinc (fortification-dependent) | Limited to trace minerals depending on the residue type |
Bioactive Compounds | Antimicrobial peptides and chitin boost immune function | Functional lipids and pigments, like astaxanthin and phycocyanin (Spirulina), improve oxidative stability | Laminarin and fucoidan with prebiotic and antioxidant effects | Probiotics and secondary metabolites (e.g., flavonoids) | None inherently, relies on external fortification | Polyphenols and fibres with prebiotic potential (e.g., brewer’s spent grains) |
Aspect | Ingredients | Impacts | Main References |
---|---|---|---|
Sensory Characteristics | Grape by-products, microalgae and seaweeds | Improved flavour, tenderness, colour, texture and oxidative stability | [7,19,24] |
Functional Properties | Grape by-products, microalgae and seaweeds | Extended shelf life, reduced lipid peroxidation and enhanced water-holding capacity | [7,19,24] |
Improved Protein Quality | Insect meal and fermented by-products | High protein digestibility (40–60%), better amino acid profiles and reduced anti-nutritional factors | [10,14,15,16,22] |
Fatty Acid Enrichment | Microalgae, seaweeds and biofortified grains | Enriched omega-3 (DHA/EPA) and reduced omega-6/omega-3 ratio | [5,7,19] |
Antioxidant Enhancement | Microalgae, seaweeds and agro-industrial residues | Reduction in lipid oxidation (up to 40%), higher oxidative stability and extended storage durability | [7,11,24,27] |
Micronutrient Fortification | Seaweeds and microalgae | Higher iodine, selenium, zinc and vitamins A, D and E | [7,17,23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prates, J.A.M. Enhancing Meat Quality and Nutritional Value in Monogastric Livestock Using Sustainable Novel Feed Ingredients. Foods 2025, 14, 146. https://doi.org/10.3390/foods14020146
Prates JAM. Enhancing Meat Quality and Nutritional Value in Monogastric Livestock Using Sustainable Novel Feed Ingredients. Foods. 2025; 14(2):146. https://doi.org/10.3390/foods14020146
Chicago/Turabian StylePrates, José A. M. 2025. "Enhancing Meat Quality and Nutritional Value in Monogastric Livestock Using Sustainable Novel Feed Ingredients" Foods 14, no. 2: 146. https://doi.org/10.3390/foods14020146
APA StylePrates, J. A. M. (2025). Enhancing Meat Quality and Nutritional Value in Monogastric Livestock Using Sustainable Novel Feed Ingredients. Foods, 14(2), 146. https://doi.org/10.3390/foods14020146