Quality Preservation and Shelf-Life Extension of Prickly Pear (Opuntia ficus-indica L. Mill) Using Edible Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.1.1. Biomass Material
2.1.2. Reagents
2.2. Coatings
2.2.1. Preparation of Coatings Solution
2.2.2. Fruit Coatings
2.3. Prickly Pear Evaluation
2.3.1. Physical and Chemical
Moisture Content and Weight Loss
pH, Titratable Acidity, and Total Soluble Solids
2.3.2. Color and Textural Properties
Color
Textural Properties
2.3.3. Bioactive Properties
Ascorbic Acid Content
Total Phenolic Content (TPC)
Antioxidant Activity
Betalain Content
2.3.4. Microbiological Growth
2.4. Statistical Analysis
3. Results and Discussion
3.1. Weight Loss
3.2. Moisture Content, pH, Titratable Acidity, and Total Soluble Solids
3.3. Color and Textural Properties
3.4. Bioactive Composition
Parameter | Week | Control | Alginate | Chitosan | Pectin | Starch |
---|---|---|---|---|---|---|
TPC (mg GAE/100 g) | 0 | 772 ± 0 Aa | 772 ± 0 Aab | 772 ± 0 Aa | 772 ± 0 Aa | 772 ± 0 Aa |
1 | 702 ± 84 Aa | 754 ± 65 Aab | 754 ± 119 Aa | 764 ± 5 Aa | 886 ± 84 Aa | |
2 | 591 ± 11 Aa | 640 ± 5 Aab | 637 ± 100 Aa | 605 ± 95 Aa | 770 ± 130 Aa | |
3 | 759 ± 86 Aa | 624 ± 92 Aab | 621 ± 138 Aa | 697 ± 46 Aa | 635 ± 38 Aa | |
4 | 924 ± 343 Aa | 824 ± 38 Aa | 683 ± 119 Aa | 586 ± 70 Aa | 764 ± 151 Aa | |
5 | 672 ± 16 Aa | 664 ± 35 Aab | 478 ± 5 Aa | 726 ± 76 Aa | 713 ± 122 Aa | |
6 | 635 ± 97 Aa | 543 ± 43 Ab | 602 ± 27 Aa | 554 ± 43 Aa | 648 ± 154 Aa | |
Antioxidant activity (mg eq Trolox/100 mg) | 0 | 2394 ± 526 Aa | 2394 ± 526 Aa | 2394 ± 526 Aa | 2394 ± 526 Aa | 2394 ± 526 Aa |
1 | 1193 ± 433 Aa | 1543 ± 83 Aab | 1227 ± 67 Aab | 1527 ± 217 Aab | 1618 ± 208 Aa | |
2 | 1327 ± 67 Aa | 1768 ± 75 Aab | 1293 ± 50 Aab | 1410 ± 400 Aab | 1843 ± 100 Aa | |
3 | 1893 ± 300 Aa | 1660 ± 83 Aab | 1735 ± 92 Aab | 1710 ± 100 Aab | 1560 ± 250 Aa | |
4 | 1393 ± 750 Aa | 1335 ± 158 Aab | 1035 ± 158 Aab | 618 ± 92 Ab | 1293 ± 633 Aa | |
5 | 243 ± 0 Ba | 527 ± 367 ABb | 518 ± 375 ABb | 410 ± 117 ABb | 1627 ± 50 Aa | |
6 | 385 ± 225 Aa | 459 ± 263 Aab | 560 ± 267 Ab | 302 ± 92 Ab | 602 ± 408 Aa | |
Ascorbic acid content ([Ascorbic acid] mg/kg) | 0 | 3280 ± 0 Aa | 3280 ± 0 Aa | 3280 ± 0 Aa | 3280 ± 0 Aa | 3280 ± 0 Aa |
1 | 3200 ± 800 Aa | 3600 ± 400 Aa | 3200 ± 0 Aa | 2800 ± 400 Aab | 3600 ± 400 Aa | |
2 | 1600 ± 0 Aab | 1400 ± 200 Ab | 1400 ± 200 Abc | 1600 ± 0 Ac | 1400 ± 200 Ab | |
3 | 1600 ± 0 Aab | 1600 ± 0 Ab | 1600 ± 0 Abc | 1600 ± 0 Ac | 1600 ± 0 Ab | |
4 | 1600 ± 0 Cab | 1600 ± 0 Db | 1200 ± 0 Ec | 1600 ± 0 Bc | 1600 ± 0 Ab | |
5 | 1200 ± 0 Ab | 1600 ± 0 Ab | 1600 ± 0 Abc | 1400 ± 200 Ac | 1400 ± 200 Ab | |
6 | 1400 ± 200 Ab | 1600 ± 0 Ab | 1800 ± 200 Ab | 1800 ± 200 Abc | 1800 ± 0 Ab | |
Betalains–Indicaxanthin (mg/100 g) | 0 | 32.2 ± 0.0 Aa | 32.2 ± 0.0 Aa | 32.2 ± 0.0 Aa | 32.2 ± 0.0 Aa | 32.2 ± 0.0 Aa |
1 | 30.8 ± 3.8 Aa | 31.4 ± 3.8 Aa | 33.0 ± 0.3 Aa | 30.8 ± 5.1 Aa | 34.3 ± 3.5 Aa | |
2 | 13.5 ± 3.2 Aa | 14.1 ± 3.2 Aab | 22.1 ± 2.2 Aa | 13.8 ± 4.8 Aa | 22.8 ± 1.6 Aa | |
3 | 31.8 ± 9.9 Aa | 29.5 ± 3.9 Aab | 36.3 ± 8.0 Aa | 26.0 ± 6.1 Aa | 26.6 ± 4.2 Aa | |
4 | 23.1 ± 6.4 Aa | 29.8 ± 4.2 Aa | 20.5 ± 5.1 Aa | 13.2 ± 2.9 Aa | 18.6 ± 7.7 Aa | |
5 | 21.5 ± 0.3 Aa | 16.4 ± 4.8 Aab | 24.7 ± 3.5 Aa | 24.1 ± 0.3 Aa | 25.7 ± 0.6 Aa | |
6 | 20.2 ± 6.7 Aa | 10.6 ± 1.0 Ab | 22.5 ± 0.6 Aa | 11.6 ± 1.9 Aa | 27.3 ± 16.4 Aa | |
Betalains–Betanin (mg/100 g) | 0 | 53.3 ± 0.0 Aa | 53.3 ± 0.0 Aa | 53.3 ± 0.0 Aa | 53.3 ± 0.0 Aa | 53.3 ± 0.0 Aa |
1 | 48.6 ± 14.7 Aa | 53.6 ± 11.5 Aa | 51.8 ± 0.5 Aab | 52.3 ± 11.0 Aa | 60.5 ± 13.8 Aa | |
2 | 22.0 ± 5.5 Aa | 21.1 ± 6.4 Aa | 37.6 ± 1.8 Ab | 13.8 ± 7.3 Ab | 40.8 ± 7.8 Aa | |
3 | 58.2 ± 17.0 Aa | 50.0 ± 6.9 Aa | 65.1 ± 8.3 Aa | 43.1 ± 9.2 Aab | 43.1 ± 3.7 Aa | |
4 | 34.8 ± 11.9 Aa | 47.7 ± 9.2 Aa | 26.1 ± 6.0 Ab | 17.4 ± 3.7 Aab | 23.8 ± 8.2 Aa | |
5 | 31.6 ± 1.4 Aa | 24.8 ± 9.2 Aa | 37.6 ± 1.8 Ab | 38.0 ± 5.0 Aab | 36.2 ± 2.3 Aa | |
6 | 28.9 ± 14.2 Aa | 16.0 ± 0.5 Aa | 33.0 ± 7.3 Ab | 14.7 ± 1.8 Ab | 47.7 ± 33.0 Aa |
Parameter | Week | Control | Alginate | Chitosan | Pectin | Starch |
---|---|---|---|---|---|---|
TPC (mg GAE/100 g) | 0 | 588 ± 0 Aa | 588 ± 0 Aa | 588 ± 0 Aa | 588 ± 0 Aab | 588 ± 0 Aa |
1 | 497 ± 57 Aa | 626 ± 51 Aa | 610 ± 24 Aa | 616 ± 89 Aab | 589 ± 19 Aa | |
2 | 654 ± 62 Aa | 535 ± 35 Aa | 548 ± 16 Aa | 621 ± 3 Aab | 583 ± 57 Aa | |
3 | 589 ± 41 Aa | 708 ± 14 Aa | 783 ± 197 Aa | 648 ± 51 Aab | 575 ± 81 Aa | |
4 | 516 ± 59 Aa | 467 ± 184 Aa | 667 ± 27 Aa | 505 ± 0 Ab | 443 ± 68 Aa | |
5 | 686 ± 176 Aa | 537 ± 59 Aa | 667 ± 38 Aa | 878 ± 108 Aa | 610 ± 46 Aa | |
6 | 564 ± 54 Aa | 486 ± 51 Aa | 662 ± 43 Aa | 567 ± 24 Aab | 635 ± 114 Aa | |
Antioxidant activity (mg eq Trolox/100 mg) | 0 | 4445 ± 54 Aa | 4445 ± 54 Aa | 4445 ± 54 Aa | 4445 ± 54 Aa | 4445 ± 54 Aa |
1 | 685 ± 25 Abc | 910 ± 100 Abc | 777 ± 17 Abc | 727 ± 67 Ac | 852 ± 92 Ac | |
2 | 1543 ± 117 Ab | 1352 ± 142 ABb | 977 ± 50 Bb | 1277 ± 17 ABb | 1435 ± 75 ABb | |
3 | 760 ± 83 Abc | 602 ± 8 Acd | 552 ± 58 Acd | 560 ± 133 Acd | 377 ± 50 Ad | |
4 | 893 ± 417 Abc | 502 ± 75 Acd | 393 ± 100 Ad | 177 ± 33 Ade | 402 ± 58 Acd | |
5 | 110 ± 0 Bc | 185 ± 58 ABd | 685 ± 58 Abcd | 193 ± 67 ABde | 335 ± 158 ABd | |
6 | 180 ± 8 Abc | 138 ± 138 Ad | 368 ± 25 Ad | 352 ± 0 Ae | 460 ± 350 Ad | |
Ascorbic acid content ([Ascorbic acid] mg/kg) | 0 | 1094 ± 58 Aa | 1094 ± 58 Aa | 1094 ± 58 Aa | 1094 ± 58 Aa | 1094 ± 58 Aa |
1 | 1200 ± 0 Aa | 1400 ± 200 Aa | 1400 ± 200 Aa | 1200 ± 0 Aa | 1400 ± 200 Aa | |
2 | 800 ± 0 Aa | 1200 ± 400 Aa | 1600 ± 0 Aa | 1600 ± 0 Aa | 1200 ± 400 Aa | |
3 | 1200 ± 400 Aa | 1400 ± 200 Aa | 1400 ± 200 Aa | 1600 ± 0 Aa | 1600 ± 0 Aa | |
4 | 1600 ± 0 Aa | 1600 ± 0 Ba | 1200 ± 0 Ea | 1200 ± 0 Da | 1200 ± 0 Ca | |
5 | 1200 ± 0 Aa | 1600 ± 0 Aa | 1800 ± 0 Aa | 1800 ± 200 Aa | 1600 ± 0 Aa | |
6 | 1600 ± 0 Aa | 1600 ± 0 Aa | 1600 ± 0 Aa | 1200 ± 400 Aa | 1600 ± 0 Aa | |
Betalains–Indicaxanthin (mg/100 g) | 0 | 20.9 ± 6.7 Aa | 20.9 ± 6.7 Aa | 20.9 ± 6.7 Aa | 20.9 ± 6.7 Aa | 20.9 ± 6.7 Aa |
1 | 15.7 ± 3.5 Aa | 29.8 ± 11.9 Aa | 15.7 ± 2.2 Aa | 20.2 ± 4.2 Aa | 28.2 ± 3.2 Aa | |
2 | 24.4 ± 3.8 Aa | 21.2 ± 5.8 Aa | 30.8 ± 10.3 Aa | 21.2 ± 8.3 Aa | 34.3 ± 13.2 Aa | |
3 | 29.2 ± 1.6 Aa | 23.7 ± 6.4 Aa | 22.5 ± 1.3 A | 23.7 ± 1.3 A | 22.5 ± 6.4 Aa | |
4 | 24.7 ± 5.5 Aa | 23.1 ± 5.8 Aa | 31.8 ± 7.4 Aa | 24.4 ± 5.8 Aa | 23.4 ± 9.3 Aa | |
5 | 18.9 ± 0.3 Aa | 33.7 ± 17.0 Aa | 18.3 ± 5.5 Aa | 20.9 ± 1.6 Aa | 32.7 ± 3.9 Aa | |
6 | 20.2 ± 1.4 Aa | 12.5 ± 1.4 Aa | 16.4 ± 4.1 Aa | 11.2 ± 3.2 Aa | 19.3 ± 6.4 Aa | |
Betalains–Betanin (mg/100 g) | 0 | 12.83 ± 1.83 Aa | 12.83 ± 1.83 Aa | 12.83 ± 1.83 Aa | 12.83 ± 1.83 Aa | 12.83 ± 1.83 Aa |
1 | 2.75 ± 0.92 Ab | 4.12 ± 1.38 Ab | 1.37 ± 1.37 Ab | 3.21 ± 1.38 Ab | 1.37 ± 0.46 Ab | |
2 | 0.46 ± 0.46 Ab | 1.38 ± 0.46 Ab | 1.38 ± 0.46 Ab | 1.38 ± 0.46 Ab | 1.83 ± 0.92 Ab | |
3 | 3.67 ± 0.00 Ab | 3.21 ± 0.46 Ab | 1.83 ± 1.83 Ab | 2.75 ± 0.00 Ab | 2.59 ± 0.46 Ab | |
4 | 5.04 ± 0.46 ABb | 4.12 ± 0.46 Bb | 6.42 ± 0.00 Aab | 4.58 ± 0.00 ABb | 5.04 ± 0.46 ABb | |
5 | 2.75 ± 0.92 Ab | 3.21 ± 1.38 Ab | 0.92 ± 0.92 Ab | 1.83 ± 0.00 Ab | 1.83 ± 0.92 Ab | |
6 | 4.13 ± 0.46 Ab | 3.67 ± 0.00 Ab | 4.58 ± 0.92 Ab | 3.21 ± 0.46 Ab | 3.67 ± 0.00 Ab |
3.5. Microbiological Growth
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciriminna, R.; Chavarría-Hernández, N.; Rodríguez-Hernández, A.I.; Pagliaro, M. Toward Unfolding the Bioeconomy of Nopal (Opuntia spp.). Biofuels Bioprod. Biorefining 2019, 13, 1417–1427. [Google Scholar] [CrossRef]
- Aruwa, C.E.; Amoo, S.O.; Kudanga, T. Opuntia (Cactaceae) Plant Compounds, Biological Activities and Prospects—A Comprehensive Review. Food Res. Int. 2018, 112, 328–344. [Google Scholar] [CrossRef]
- Arba, M.; Falisse, A.; Choukr-Allah, R.; Sindic, M. Biology, Flowering and Fruiting of the Cactus Opuntia spp.: A Review and Some Observations on Three Varieties in Morocco. Braz. Arch. Biol. Technol. 2017, 60, e17160568. [Google Scholar] [CrossRef]
- Díaz-Delgado, G.L.; Rodríguez-Rodríguez, E.M.; Dorta, E.; Lobo, M.G. Effects of Peeling, Film Packaging, and Cold Storage on the Quality of Minimally Processed Prickly Pears (Opuntia ficus-indica L. Mill.). Agriculture 2022, 12, 281. [Google Scholar] [CrossRef]
- El-Mostafa, K.; Kharrassi, Y.E.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; Saïd, M.H.; Kebbaj, E.; Latruffe, N.; Lizard, G.; Nasser, B.; et al. Nopal Cactus (Opuntia ficus-indica) as a Source of Bioactive Compounds for Nutrition, Health and Disease. Molecules 2014, 19, 14879–14901. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Bravo, R.K.; Guzmán-Maldonado, S.H.; Araiza-Herrera, H.A.; Zegbe, J.A. Storage Alters Physicochemical Characteristics, Bioactive Compounds and Antioxidant Capacity of Cactus Pear Fruit. Postharvest Biol. Technol. 2019, 150, 105–111. [Google Scholar] [CrossRef]
- Alsubhi, M.; Blake, M.; Nguyen, T.; Majmudar, I.; Moodie, M.; Ananthapavan, J. Consumer Willingness to Pay for Healthier Food Products: A Systematic Review. Obes. Rev. 2023, 24, e13525. [Google Scholar] [CrossRef]
- Liguori, G.; Inglese, P. Cactus Pear (O. ficus-indica (L.) Mill.) Fruit Production: Ecophysiology, Orchard and Fresh-Cut Fruit Management. Acta Hortic. 2015, 1067, 247–252. [Google Scholar] [CrossRef]
- D’Aquino, S.; Satta, D.; De Pau, L.; Palma, A. Effect of a Cold Quarantine Treatment on Physiological Disorders and Quality of Cactus Pear Fruit. AIMS Agric. Food 2019, 4, 114–126. [Google Scholar] [CrossRef]
- D’Aquino, S.; Chessa, I.; Inglese, P.; Liguori, G.; Barbera, G.; Ochoa, M.J.; Satta, D.; Palma, A. Increasing Cold Tolerance of Cactus Pear Fruit by High-Temperature Conditioning and Film Wrapping. Food Bioprocess Technol. 2017, 10, 1466–1478. [Google Scholar] [CrossRef]
- Díaz-Delgado, G.L.; Rodríguez-Rodríguez, E.M.; Cano, M.P.; Lobo, M.G. Storage Conditions of Refrigerated Prickly Pears in Small Processing Industries. Agriculture 2024, 14, 594. [Google Scholar] [CrossRef]
- Guerrero-Beltrán, J.Á.; Ochoa-Velasco, C.E. Figo Da India—Opuntia Spp. In Exotic Fruits; Rodrigues, S., de Oliveira Silva, E., Sousa de Brito, E., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 187–201. ISBN 9780128031384. [Google Scholar]
- Martins, M.; Ribeiro, M.H.; Miranda, A.; Lopes, S.; Franco, R.; Paiva, J.; Almeida, C.M.M. New Foods with History: Nutritional and Toxic Profile of Prickly Pear. J. Food Meas. Charact. 2023, 17, 956–972. [Google Scholar] [CrossRef]
- Andreu-Coll, L.; García-Pastor, M.E.; Valero, D.; Amorós, A.; Almansa, M.S.; Legua, P.; Hernández, F. Influence of Storage on Physiological Properties, Chemical Composition, and Bioactive Compounds on Cactus Pear Fruit (Opuntia ficus-indica (L.) Mill.). Agriculture 2021, 11, 62. [Google Scholar] [CrossRef]
- Heyes, J.A. Chilling Injury in Tropical Crops after Harvest. Annu. Plant Rev. Online 2018, 1, 149–180. [Google Scholar] [CrossRef]
- Yahia, E.M.; Sáenz, C. Cactus Pear (Opuntia Species). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Woodhead Publishing: Cambridge, UK, 2011; pp. 290–331. ISBN 978-1-84569-734-1. [Google Scholar]
- Ochoa-Velasco, C.E.; Guerrero-Beltrán, J.Á. Postharvest Quality of Peeled Prickly Pear Fruit Treated with Acetic Acid and Chitosan. Postharvest Biol. Technol. 2014, 92, 139–145. [Google Scholar] [CrossRef]
- D’Aquino, S.; Inglese, P.; Liguori, G.; Ochoa, M.J.; Palma, A. Reducing Postharvest Decay in Cactus Pears by Dip Treatment with Imazalil or Azoxystrobin. Acta Hortic. 2019, 1247, 41–46. [Google Scholar] [CrossRef]
- Blancas-Benitez, F.J.; Montaño-Leyva, B.; Aguirre-Güitrón, L.; Moreno-Hernández, C.L.; Fonseca-Cantabrana, Á.; Romero-Islas, L.D.C.; González-Estrada, R.R. Impact of Edible Coatings on Quality of Fruits: A Review. Food Control 2022, 139, 109063. [Google Scholar] [CrossRef]
- Pham, T.T.; Nguyen, L.L.P.; Dam, M.S.; Baranyai, L. Application of Edible Coating in Extension of Fruit Shelf Life: Review. AgriEngineering 2023, 5, 520–536. [Google Scholar] [CrossRef]
- Ncama, K.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z. Plant-Based Edible Coatings for Managing Postharvest Quality of Fresh Horticultural Produce: A Review. Food Packag. Shelf Life 2018, 16, 157–167. [Google Scholar] [CrossRef]
- Palma, A.; Mangia, N.P.; Mura, D.; D’Aquino, S. Effect of Edible Coating in Physical-Chemical Parameters in Minimally Processed Cactus Pear (Opuntia ficus-indica). Acta Hortic. 2018, 1209, 231–237. [Google Scholar] [CrossRef]
- Cruz-Monterrosa, R.G.; Rayas-Amor, A.A.; González-Reza, R.M.; Zambrano-Zaragoza, M.L.; Aguilar-Toalá, J.E.; Liceaga, A.M. Application of Polysaccharide-Based Edible Coatings on Fruits and Vegetables: Improvement of Food Quality and Bioactivities. Polysaccharides 2023, 4, 99–115. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Miguel, M.G.C.; Faleiro, M.L.; Antunes, M.D.C. The Influence of Edible Coatings Enriched with Citral and Eugenol on the Raspberry Storage Ability, Nutritional and Sensory Quality. Food Packag. Shelf Life 2016, 9, 20–28. [Google Scholar] [CrossRef]
- Sharma, S.; Nakano, K.; Kumar, S.; Katiyar, V. Edible Packaging to Prolong Postharvest Shelf-Life of Fruits and Vegetables: A Review. Food Chem. Adv. 2024, 4, 100711. [Google Scholar] [CrossRef]
- Carrillo-Lomelí, D.A.; Cerqueira, M.A.; Moo-Huchin, V.; Bourbon, A.I.; Souza, V.G.L.; Lestido-Cardama, A.; Pastrana, L.M.; Ochoa-Fuentes, Y.M.; Hernández-Castillo, F.D.; Villarreal-Quintanilla, J.Á.; et al. Influence of Edible Multilayer Coatings with Opuntia Stenopetala Polysaccharides and Flourensia Microphylla Extract on the Shelf-Life of Cherry Tomato (Solanum lycopersicum L.). Sci Hortic. 2024, 332, 113224. [Google Scholar] [CrossRef]
- Juikar, S.K.; Warkar, S.G. Biopolymers for Packaging Applications: An Overview. Packag. Technol. Sci. 2023, 36, 229–251. [Google Scholar] [CrossRef]
- Pedreiro, S.; Figueirinha, A.; Silva, A.S.; Ramos, F. Bioactive Edible Films and Coatings Based in Gums and Starch: Phenolic Enrichment and Foods Application. Coatings 2021, 11, 1393. [Google Scholar] [CrossRef]
- Tang, X.; Yan, X. Dip-Coating for Fibrous Materials: Mechanism, Methods and Applications. J. Solgel Sci. Technol. 2017, 81, 378–404. [Google Scholar] [CrossRef]
- Kocira, A.; Kozłowicz, K.; Panasiewicz, K.; Staniak, M.; Szpunar-Krok, E.; Hortyńska, P. Polysaccharides as Edible Films and Coatings: Characteristics and Influence on Fruit and Vegetable Quality—A Review. Agronomy 2021, 11, 813. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Li, C.; Xu, Y.; Luo, Y.; Liang, D.; Huang, C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021, 10, 1845. [Google Scholar] [CrossRef]
- Mannozzi, C.; Cecchini, J.P.; Tylewicz, U.; Siroli, L.; Patrignani, F.; Lanciotti, R.; Rocculi, P.; Dalla Rosa, M.; Romani, S. Study on the Efficacy of Edible Coatings on Quality of Blueberry Fruits during Shelf-Life. LWT—Food Sci. Technol. 2017, 85, 440–444. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Peretto, G.; Du, W.X.; Avena-Bustillos, R.J.; De J. Berrios, J.; Sambo, P.; McHugh, T.H. Electrostatic and Conventional Spraying of Alginate-Based Edible Coating with Natural Antimicrobials for Preserving Fresh Strawberry Quality. Food Bioprocess Technol. 2017, 10, 165–174. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Tapia, M.S.; Rodríguez, F.J.; Carmona, A.J.; Martin-Belloso, O. Alginate and Gellan-Based Edible Coatings as Carriers of Antibrowning Agents Applied on Fresh-Cut Fuji Apples. Food Hydrocoll. 2007, 21, 118–127. [Google Scholar] [CrossRef]
- Duong, N.T.C.; Uthairatanakij, A.; Laohakunjit, N.; Jitareerat, P.; Kaisangsri, N. An Innovative Single Step of Cross-Linked Alginate-Based Edible Coating for Maintaining Postharvest Quality and Reducing Chilling Injury in Rose Apple Cv. “Tabtimchan” (Syzygium Samarangenese). Sci. Hortic. 2022, 292, 110648. [Google Scholar] [CrossRef]
- Rastegar, S.; Hassanzadeh Khankahdani, H.; Rahimzadeh, M. Effectiveness of Alginate Coating on Antioxidant Enzymes and Biochemical Changes during Storage of Mango Fruit. J. Food Biochem. 2019, 43, e12990. [Google Scholar] [CrossRef]
- Chiabrando, V.; Giacalone, G. Effects of Alginate Edible Coating on Quality and Antioxidant Properties in Sweet Cherry during Postharvest Storage. Ital. J. Food Sci. 2015, 27, 45–52. [Google Scholar] [CrossRef]
- Cazón, P.; Velasquez, G.; Ramirez, J.A.; Vásquez, M. Polysaccharide-Based Films and Coatings for Food Packaging: A Review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Wróblewska-Krepsztul, J.; Rydzkowski, T.; Borowski, G.; Szczypiński, M.; Klepka, T.; Thakur, V.K. Recent Progress in Biodegradable Polymers and Nanocomposite-Based Packaging Materials for Sustainable Environment. Int. J. Polym. Anal. Charact. 2018, 23, 383–395. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Development and Application of Rice Starch Based Edible Coating to Improve the Postharvest Storage Potential and Quality of Plum Fruit (Prunus Salicina). Sci. Hortic. 2018, 237, 59–66. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Bowyer, M.; Singh, S.P.; Scarlett, C.J.; Stathopoulos, C.E.; Vuong, Q.V. A Starch Edible Surface Coating Delays Banana Fruit Ripening. LWT 2019, 100, 341–347. [Google Scholar] [CrossRef]
- Bierhals, V.S.; Chiumarelli, M.; Hubinger, M.D. Effect of Cassava Starch Coating on Quality and Shelf Life of Fresh-Cut Pineapple (Ananas comosus L. Merril Cv “Pérola”). J. Food Sci. 2011, 76, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Fakhouri, F.M.; Martelli, S.M.; Caon, T.; Velasco, J.I.; Mei, L.H.I. Edible Films and Coatings Based on Starch/Gelatin: Film Properties and Effect of Coatings on Quality of Refrigerated Red Crimson Grapes. Postharvest Biol. Technol. 2015, 109, 57–64. [Google Scholar] [CrossRef]
- Wigati, L.P.; Wardana, A.A.; Tanaka, F.; Tanaka, F. Application of Pregelatinized Corn Starch and Basil Essential Oil Edible Coating with Cellulose Nanofiber as Pickering Emulsion Agent to Prevent Quality-Quantity Loss of Mandarin Orange. Food Packag. Shelf Life 2023, 35, 101010. [Google Scholar] [CrossRef]
- Darder, M.; Colilla, M.; Ruiz-Hitzky, E. Biopolymer−Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chem. Mater. 2003, 15, 3774–3780. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Rodrigues, P.F.; Duarte, M.P.; Fernando, A.L. Antioxidant Migration Studies in Chitosan Films Incorporated with Plant Extracts. J. Renew. Mater. 2018, 6, 548–558. [Google Scholar] [CrossRef]
- Won, J.S.; Lee, S.J.; Park, H.H.; Song, K.B.; Min, S.C. Edible Coating Using a Chitosan-Based Colloid Incorporating Grapefruit Seed Extract for Cherry Tomato Safety and Preservation. J. Food Sci. 2018, 83, 138–146. [Google Scholar] [CrossRef]
- Jiao, W.; Shu, C.; Li, X.; Cao, J.; Fan, X.; Jiang, W. Preparation of a Chitosan-Chlorogenic Acid Conjugate and Its Application as Edible Coating in Postharvest Preservation of Peach Fruit. Postharvest Biol. Technol. 2019, 154, 129–136. [Google Scholar] [CrossRef]
- Tokatlı, K.; Demirdöven, A. Effects of Chitosan Edible Film Coatings on the Physicochemical and Microbiological Qualities of Sweet Cherry (Prunus avium L.). Sci. Hortic. 2020, 259, 108656. [Google Scholar] [CrossRef]
- Khalifa, I.; Barakat, H.; El-Mansy, H.A.; Soliman, S.A. Improving the Shelf-Life Stability of Apple and Strawberry Fruits Applying Chitosan-Incorporated Olive Oil Processing Residues Coating. Food Packag. Shelf Life 2016, 9, 10–19. [Google Scholar] [CrossRef]
- Pagliarulo, C.; Sansone, F.; Moccia, S.; Russo, G.L.; Aquino, R.P.; Salvatore, P.; Di Stasio, M.; Volpe, M.G. Preservation of Strawberries with an Antifungal Edible Coating Using Peony Extracts in Chitosan. Food Bioprocess Technol. 2016, 9, 1951–1960. [Google Scholar] [CrossRef]
- Vanitha, T.; Khan, M. Role of Pectin in Food Processing and Food Packaging. In Pectins—Extraction, Purification, Characterization and Applications; IntechOpen: London, UK, 2020; ISBN 978-1-78984-072-8. [Google Scholar]
- Ayala-Zavala, J.F.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; Leyva, J.M.; Ortega-Ramírez, L.A.; Carrazco-Lugo, D.K.; Pérez-Carlón, J.J.; Melgarejo-Flores, B.G.; González-Aguilar, G.A.; Miranda, M.R.A. Pectin-Cinnamon Leaf Oil Coatings Add Antioxidant and Antibacterial Properties to Fresh-Cut Peach. Flavour Fragr. J. 2013, 28, 39–45. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Ramaswamy, H.S. Application and Evaluation of a Pectin-Based Edible Coating Process for Quality Change Kinetics and Shelf-Life Extension of Lime Fruit (Citrus aurantifolium). Coatings 2019, 9, 285. [Google Scholar] [CrossRef]
- Sanchís, E.; Ghidelli, C.; Sheth, C.C.; Mateos, M.; Palou, L.; Pérez-Gago, M.B. Integration of Antimicrobial Pectin-Based Edible Coating and Active Modified Atmosphere Packaging to Preserve the Quality and Microbial Safety of Fresh-Cut Persimmon (Diospyros kaki Thunb. Cv. Rojo Brillante). J. Sci. Food Agric. 2017, 97, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Labrador, A.; Moreno, R.; Villamiel, M.; Montilla, A. Preparation of Citrus Pectin Gels by Power Ultrasound and Its Application as an Edible Coating in Strawberries. J. Sci. Food Agric. 2018, 98, 4866–4875. [Google Scholar] [CrossRef]
- Panahirad, S.; Naghshiband-Hassani, R.; Mahna, N. Pectin-Based Edible Coating Preserves Antioxidative Capacity of Plum Fruit during Shelf Life. Food Sci. Technol. Int. 2020, 26, 583–592. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, Q.; Niu, B.; Liu, R.; Chen, H.; Xiao, S.; Wu, W.; Zhang, W.; Gao, H. The Dual Function of Calcium Ion in Fruit Edible Coating: Regulating Polymer Internal Crosslinking State and Improving Fruit Postharvest Quality. Food Chem. 2024, 447, 138952. [Google Scholar] [CrossRef]
- Nunes, V.X.; Nunes, N.X.; Silva, J.M.D.; Fonsesa, S.N.A.; Jesus, M.O.D.; Paraizo, E.A.; Mizobutsi, G.P.; Santos, C.E.M.D. Effect of Cassava Starch Coating on the Quality and Shelf Life of Prickly Pear in Refrigerated Storage. J. Exp. Agric. Int. 2019, 37, 1–11. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Mello, I.P.; Khalid, O.; Pires, J.R.A.; Rodrigues, C.; Alves, M.M.; Santos, C.; Fernando, A.L.; Coelhoso, I. Strategies to Improve the Barrier and Mechanical Properties of Pectin Films for Food Packaging: Comparing Nanocomposites with Bilayers. Coatings 2022, 12, 108. [Google Scholar] [CrossRef]
- Chiumarelli, M.; Pereira, L.M.; Ferrari, C.C.; Sarantópoulos, C.I.G.L.; Hubinger, M.D. Cassava Starch Coating and Citric Acid to Preserve Quality Parameters of Fresh-Cut “Tommy Atkins” Mango. J. Food Sci. 2010, 75, E297–E304. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Soliva-Fortuny, R.; Martín-Belloso, O. Edible Coatings with Antibrowning Agents to Maintain Sensory Quality and Antioxidant Properties of Fresh-Cut Pears. Postharvest Biol. Technol. 2008, 50, 87–94. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Pires, J.R.A.; Vieira, É.T.; Coelhoso, I.M.; Duarte, M.P.; Fernando, A.L. Activity of Chitosan-Montmorillonite Bionanocomposites Incorporated with Rosemary Essential Oil: From in Vitro Assays to Application in Fresh Poultry Meat. Food Hydrocoll. 2019, 89, 241–252. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International. In Association of Official Analysis Chemists International; Association of Analytical Chemists: Arlington, TX, USA, 1990; Volume I. [Google Scholar]
- Mohammadi, A.; Rafiee, S.; Emam-Djomeh, Z.; Keyhani, A. Kinetic Models for Colour Changes in Kiwifruit Slices During Hot Air Drying. World J. Agric. Sci. 2008, 4, 376–383. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analisys of Total Phenols and Other Oxidation Sobstrates and Antioxidants by Means of Folin Ciocalteau Reagent. Methods Enzym. 1999, 299, 152–178. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Castellanos-Santiago, E.; Yahia, E.M. Identification and Quantification of Betalains from the Fruits of 10 Mexican Prickly Pear Cultivars by High-Performance Liquid Chromatography and Electrospray Ionization Mass Spectrometry. J. Agric. Food Chem. 2008, 56, 5758–5764. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Herbach, K.M.; Mosshammer, M.R.; Carle, R.; Yi, W.; Sellappan, S.; Akoh, C.C.; Bunch, R.; Felker, P. Color, Betalain Pattern, and Antioxidant Properties of Cactus Pear (Opuntia spp.) Clones. J. Agric. Food Chem. 2005, 53, 442–451. [Google Scholar] [CrossRef]
- ISO 4833-1:2013 (E); Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. ISO: Geneva, Switzerland, 2013. Available online: https://www.iso.org/standard/53728.html (accessed on 1 October 2019).
- ISO 21527-1:2008 (E); Microbiology of Food and Animal Feeding Stuff—Horizontal Method for the Enumeration of Yeast and Moulds. ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/38275.html (accessed on 1 October 2019).
- Ferreira, D.C.M.; Molina, G.; Pelissari, F.M. Effect of Edible Coating from Cassava Starch and Babassu Flour (Orbignya Phalerata) on Brazilian Cerrado Fruits Quality. Food Bioprocess Technol. 2020, 13, 172–179. [Google Scholar] [CrossRef]
- Batista Silva, W.; Cosme Silva, G.M.; Santana, D.B.; Salvador, A.R.; Medeiros, D.B.; Belghith, I.; da Silva, N.M.; Cordeiro, M.H.M.; Misobutsi, G.P. Chitosan Delays Ripening and ROS Production in Guava (Psidium guajava L.) Fruit. Food Chem. 2018, 242, 232–238. [Google Scholar] [CrossRef]
- Pereira, G.V.D.S.; Pereira, G.V.D.S.; Oliveira, L.C.D.; Cardoso, D.N.P.; Calado, V.; Lourenço, L.D.F.H. Rheological Characterization and Influence of Different Biodegradable and Edible Coatings on Postharvest Quality of Guava. J. Food Process. Preserv. 2021, 45, e15335. [Google Scholar] [CrossRef]
- Liguori, G.; Gaglio, R.; Greco, G.; Gentile, C.; Settanni, L.; Inglese, P. Effect of Opuntia ficus-indica Mucilage Edible Coating on Quality, Nutraceutical, and Sensorial Parameters of Minimally Processed Cactus Pear Fruits. Agronomy 2021, 11, 1963. [Google Scholar] [CrossRef]
- Iturralde-García, R.D.; Cinco-Moroyoqui, F.J.; Martínez-Cruz, O.; Ruiz-Cruz, S.; Wong-Corral, F.J.; Borboa-Flores, J.; Cornejo-Ramírez, Y.I.; Bernal-Mercado, A.T.; Del-Toro-Sánchez, C.L. Emerging Technologies for Prolonging Fresh-Cut Fruits’ Quality and Safety during Storage. Horticulturae 2022, 8, 731. [Google Scholar] [CrossRef]
- Piga, A. Cactus Pear: A Fruit of Nutraceutical and Functional Importance. J. Prof. Assoc. Cactus Dev. 2004, 6, 9–22. Available online: https://jpacd.org/jpacd/article/view/294 (accessed on 3 October 2024).
- Panza, O.; Lacivita, V.; Conte, A.; Del Nobile, M.A. Quality Preservation of Ready-to-Eat Prickly Pears by Peels Recycling. Foods 2022, 11, 2016. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.; Paula, C.D.D.; Lahbouki, S.; Meddich, A.; Outzourhit, A.; Rashad, M.; Pari, L.; Coelhoso, I.; Fernando, A.L.; Souza, V.G.L. Opuntia spp.: An Overview of the Bioactive Profile and Food Applications of This Versatile Crop Adapted to Arid Lands. Foods 2023, 12, 1465. [Google Scholar] [CrossRef] [PubMed]
- Lekhuleni, I.L.G.; Kgatla, T.E.; Mashau, M.E.; Jideani, A.I.O. Physicochemical Properties of South African Prickly Pear Fruit and Peel: Extraction and Characterisation of Pectin from the Peel. Open Agric. 2021, 6, 178–191. [Google Scholar] [CrossRef]
- Trindade, S.; Rouxinol, M.I.; Agulheiro-Santos, A.C. Opuntia ficus-indica L. Fruits Cold Storage Using Different Packaging Materials. Sustainability 2023, 15, 1334. [Google Scholar] [CrossRef]
- Allegra, A.; Inglese, P.; Gullo, G.; Sortino, G. Use of Xanthan Gum as Edible Coating to Prolong Shelf Life of Cactus Pear Fruit. Acta Hortic. 2022, 1343, 317–322. [Google Scholar] [CrossRef]
- de Souza, W.F.C.; de Lucena, F.A.; da Silva, K.G.; Martins, L.P.; de Castro, R.J.S.; Sato, H.H. Influence of Edible Coatings Composed of Alginate, Galactomannans, Cashew Gum, and Gelatin on the Shelf- Life of Grape Cultivar ‘Italia’: Physicochemical and Bioactive Properties. LWT 2021, 152, 112315. [Google Scholar] [CrossRef]
- Nair, M.S.; Tomar, M.; Punia, S.; Kukula-Koch, W.; Kumar, M. Enhancing the Functionality of Chitosan- and Alginate-Based Active Edible Coatings/Films for the Preservation of Fruits and Vegetables: A Review. Int. J. Biol. Macromol. 2020, 164, 304–320. [Google Scholar] [CrossRef]
- Tyl, C.; Sadler, G.D. PH and Titratable Acidity. In Food Analysis; Nielsen, S.S., Ed.; Springer: Cham, Switzerland, 2017; pp. 389–406. ISBN 978-3-319-45776-5. [Google Scholar]
- FAO. Agro-Industrial Utilization of Cactus Pear; FAO: Rome, Italy, 2013; ISBN 978-92-5-107987-4. [Google Scholar]
- Elsabee, M.Z.; Abdou, E.S. Chitosan Based Edible Films and Coatings: A Review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef]
- Kumarihami, H.M.P.C.; Kim, Y.H.; Kwack, Y.B.; Kim, J.; Kim, J.G. Application of Chitosan as Edible Coating to Enhance Storability and Fruit Quality of Kiwifruit: A Review. Sci. Hortic. 2022, 292, 110647. [Google Scholar] [CrossRef]
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of Alginate Edible Coating on Preserving Fruit Quality in Four Plum Cultivars during Postharvest Storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar] [CrossRef]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, E.C.; Arslan, R.; Güleç, A.; Aksay, S. Determination of Physical and Phytochemical Properties of Prickly Pear (Opuntia ficus-indica L.). J. Food Process. Preserv. 2022, 46, e15990. [Google Scholar] [CrossRef]
- Shakir, M.S.; Ejaz, S.; Hussain, S.; Ali, S.; Sardar, H.; Azam, M.; Ullah, S.; Khaliq, G.; Saleem, M.S.; Nawaz, A.; et al. Synergistic Effect of Gum Arabic and Carboxymethyl Cellulose as Biocomposite Coating Delays Senescence in Stored Tomatoes by Regulating Antioxidants and Cell Wall Degradation. Int. J. Biol. Macromol. 2022, 201, 641–652. [Google Scholar] [CrossRef]
- Formiga, A.S.; Pinsetta, J.S.; Pereira, E.M.; Cordeiro, I.N.F.; Mattiuz, B.H. Use of Edible Coatings Based on Hydroxypropyl Methylcellulose and Beeswax in the Conservation of Red Guava ‘Pedro Sato’. Food Chem. 2019, 290, 144–151. [Google Scholar] [CrossRef]
- Sousa, F.F.; Pinsetta Junior, J.S.; Oliveira, K.T.E.F.; Rodrigues, E.C.N.; Andrade, J.P.; Mattiuz, B.H. Conservation of ‘Palmer’ Mango with an Edible Coating of Hydroxypropyl Methylcellulose and Beeswax. Food Chem. 2021, 346, 128925. [Google Scholar] [CrossRef]
- Saleem, M.S.; Ejaz, S.; Anjum, M.A.; Ali, S.; Hussain, S.; Ercisli, S.; Ilhan, G.; Marc, R.A.; Skrovankova, S.; Mlcek, J. Improvement of Postharvest Quality and Bioactive Compounds Content of Persimmon Fruits after Hydrocolloid-Based Edible Coating Application. Horticulturae 2022, 8, 1045. [Google Scholar] [CrossRef]
- Ochoa-Velasco, C.E.; Guerrero-Beltrán, J.Á. The Effects of Modified Atmospheres on Prickly Pear (Opuntia albicarpa) Stored at Different Temperatures. Postharvest Biol. Technol. 2016, 111, 314–321. [Google Scholar] [CrossRef]
- Mohamed, A.Y.I.; Aboul-Anean, H.E.; Hassan, M.H. Utilization of Edible Coating in Extending the Shelf Life of Minimally Processed Prickly Pear. J. Appl. Sci. Res. 2013, 9, 1202–1208. [Google Scholar]
- Rodrigues, C.; Souza, V.G.L.; Coelhoso, I.; Fernando, A.L. Bio-Based Sensors for Smart Food Packaging—Current Applications and Future Trends. Sensors 2021, 21, 2148. [Google Scholar] [CrossRef] [PubMed]
- Valero-Galván, J.; González-Fernández, R.; Sigala-Hernández, A.; Núñez-Gastélum, J.A.; Ruiz-May, E.; Rodrigo-García, J.; Larqué-Saavedra, A.; Martínez-Ruiz, N.D.R. Sensory Attributes, Physicochemical and Antioxidant Characteristics, and Protein Profile of Wild Prickly Pear Fruits (O. macrocentra Engelm., O. phaeacantha Engelm., and O. engelmannii Salm-Dyck Ex Engelmann.) and Commercial Prickly Pear Fruits (O. ficus-indica (L.) Mill.). Food Res. Int. 2021, 140, 109909. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jin, T.; Liu, W.; Hao, W.; Yan, L.; Zheng, L. Effects of Hydroxyethyl Cellulose and Sodium Alginate Edible Coating Containing Asparagus Waste Extract on Postharvest Quality of Strawberry Fruit. LWT 2021, 148, 111770. [Google Scholar] [CrossRef]
- Anorve Morga, J.; Aquino Bolanos, E.N.; Mercado Silva, E. Effect of storage temperature on quality of minimally processed cactus pear. Acta Hortic. 2006, 728, 217–222. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Mahunu, G.K.; Arslan, M.; Abdalhai, M.; Zhihua, L. Recent Developments in Gum Edible Coating Applications for Fruits and Vegetables Preservation: A Review. Carbohydr. Polym. 2019, 224, 115141. [Google Scholar] [CrossRef]
- Carreón-Hidalgo, J.P.; Franco-Vásquez, D.C.; Gómez-Linton, D.R.; Pérez-Flores, L.J. Betalain Plant Sources, Biosynthesis, Extraction, Stability Enhancement Methods, Bioactivity, and Applications. Food Res. Int. 2022, 151, 110821. [Google Scholar] [CrossRef]
- Calva-Estrada, S.J.; Jiménez-Fernández, M.; Lugo-Cervantes, E. Betalains and Their Applications in Food: The Current State of Processing, Stability and Future Opportunities in the Industry. Food Chem. Mol. Sci. 2022, 4, 100089. [Google Scholar] [CrossRef]
- Palma, A.; Continella, A.; La Malfa, S.; D’Aquino, S. Changes in Physiological and Some Nutritional, Nutraceuticals, Chemical–Physical, Microbiological and Sensory Quality of Minimally Processed Cactus Pears Cvs ‘Bianca’, ‘Gialla’ and ‘Rossa’ Stored under Passive Modified Atmosphere. J. Sci. Food Agric. 2018, 98, 1839–1849. [Google Scholar] [CrossRef]
- Severo, C.; Anjos, I.; Souza, V.G.L.; Canejo, J.P.; Bronze, M.R.; Fernando, A.L.; Coelhoso, I.; Bettencourt, A.F.; Ribeiro, I.A.C. Development of cranberry extract films for the enhancement of food packaging antimicrobial properties. Food Packag. Shelf Life 2021, 28, 100646. [Google Scholar] [CrossRef]
- Campos, R.P.; Kwiatkowski, A.; Clemente, E. Post-Harvest Conservation of Organic Strawberries Coated with Cassava Starch and Chitosan. Rev. Ceres 2011, 58, 554–560. [Google Scholar] [CrossRef]
- Vivek, K.; Subbarao, K.V. Effect of Edible Chitosan Coating on Combined Ultrasound and NaOCl Treated Kiwi Fruits during Refrigerated Storage. Int. Food Res. J. 2018, 25, 101–108. [Google Scholar]
Parameter | Week | Control | Alginate | Chitosan | Pectin | Starch |
---|---|---|---|---|---|---|
Moisture (%) | 0 | 86.7 ± 2.2 Aa | 86.7 ± 2.2 Aa | 86.7 ± 2.2 Aa | 86.7 ± 2.2 Aa | 86.7 ± 2.2 Aa |
1 | 82.2 ± 7.2 Aa | 82.0 ± 4.8 Aa | 85.0 ± 2.9 Aa | 84.1 ± 1.1 Aa | 84.7 ± 1.8 Aa | |
2 | 81.1 ± 2.4 Aa | 81.5 ± 2.0 Aa | 83.0 ± 0.9 Aa | 80.6 ± 0.4 Aa | 80.7 ± 1.6 Aa | |
3 | 79.4 ± 0.8 Aa | 79.8 ± 1.0 Aa | 81.9 ± 1.8 Aa | 79.8 ± 1.5 Aa | 80.3 ± 2.9 Aa | |
4 | 78.7 ± 1.0 Aa | 79.4 ± 0.0 Aa | 80.3 ± 1.1 Aa | 78.1 ± 0.5 Aa | 80.2 ± 2.8 Aa | |
5 | 77.8 ± 1.6 Aa | 78.8 ± 0.9 Aa | 80.3 ± 1.8 Aa | 76.4 ± 0.2 Aa | 78.8 ± 0.0 Aa | |
6 | 77.5 ± 0.2 Aa | 78.6 ± 2.5 Aa | 78.9 ± 1.7 Aa | 74.1 ± 9.8 Aa | 78.1 ± 1.6 Aa | |
pH | 0 | 6.15 ± 0.10 Aa | 6.15 ± 0.10 Aa | 6.15 ± 0.10 Aa | 6.15 ± 0.10 Aa | 6.15 ± 0.10 Aa |
1 | 6.41 ± 0.04 Aa | 6.14 ± 0.16 Aa | 6.31 ± 0.04 Aa | 6.36 ± 0.05 Aa | 6.28 ± 0.01 Aa | |
2 | 6.31 ± 0.01 Aa | 6.26 ± 0.00 ABa | 6.18 ± 0.03 Ba | 6.29 ± 0.02 Aa | 6.23 ± 0.02 ABa | |
3 | 6.21 ± 0.04 Aa | 6.20 ± 0.00 Aa | 6.17 ± 0.17 Aa | 6.29 ± 0.04 Aa | 6.45 ± 0.08 Aa | |
4 | 6.11 ± 0.15 Aa | 6.19 ± 0.03 Aa | 6.21 ± 0.11 Aa | 6.15 ± 0.18 Aa | 6.17 ± 0.01 Aa | |
5 | 6.36 ± 0.05 Aa | 6.17 ± 0.29 Aa | 6.65 ± 0.02 Aa | 6.20 ± 0.12 Aa | 6.31 ± 0.11 Aa | |
6 | 5.96 ± 0.09 ABa | 5.53 ± 0.10 Ba | 6.14 ± 0.13 ABa | 6.08 ± 0.16 ABa | 6.39 ± 0.04 Aa | |
TSS (°Brix) | 0 | 13.2 ± 0.7 Aa | 13.2 ± 0.7 Aa | 13.2 ± 0.7 Aa | 13.2 ± 0.7 Aa | 13.2 ± 0.7 Aa |
1 | 13.0 ± 2.0 Aa | 14.6 ± 0.4 Aa | 12.8 ± 1.8 Aa | 14.9 ± 0.8 Aa | 14.8 ± 0.1 Aa | |
2 | 14.7 ± 0.0 Aa | 16.5 ± 0.4 Aa | 12.7 ± 0.5 Aa | 14.0 ± 2.1 Aa | 11.9 ± 1.8 Aa | |
3 | 14.9 ± 0.8 Aa | 11.9 ± 0.6 Aa | 12.5 ± 2.0 Aa | 15.8 ± 0.4 Aa | 15.0 ± 0.1 Aa | |
4 | 11.7 ± 1.2 Aa | 12.3 ± 1.4 Aa | 12.4 ± 0.8 Aa | 10.7 ± 1.1 Aa | 12.1 ± 0.8 Aa | |
5 | 13.5 ± 1.3 Aa | 14.3 ± 1.5 Aa | 11.2 ± 0.9 Aa | 14.0 ± 2.6 Aa | 12.1 ± 3.4 Aa | |
6 | 11.6 ± 1.6 Aa | 13.1 ± 0.0 Aa | 12.7 ± 1.1 Aa | 13.0 ± 1.5 Aa | 13.2 ± 0.9 Aa | |
Total titratable acidity (% citric acid (wt/wt)) | 0 | 0.024 ± 0.002 Ab | 0.024 ± 0.002 Ab | 0.024 ± 0.002 Ab | 0.024 ± 0.002 Ac | 0.024 ± 0.002 Aa |
1 | 0.059 ± 0.004 Aa | 0.066 ± 0.010 Aab | 0.071 ± 0.008 Aa | 0.058 ± 0.002 Aab | 0.069 ± 0.010 Aa | |
2 | 0.052 ± 0.002 Aab | 0.061 ± 0.004 Aab | 0.054 ± 0.003 Aab | 0.053 ± 0.006 Aab | 0.063 ± 0.007 Aa | |
3 | 0.045 ± 0.005 Aab | 0.048 ± 0.006 Aab | 0.052 ± 0.010 Aab | 0.053 ± 0.002 Aab | 0.041 ± 0.005 Aa | |
4 | 0.048 ± 0.002 Aab | 0.051 ± 0.009 Aab | 0.056 ± 0.001 Aa | 0.052 ± 0.001 Ab | 0.054 ± 0.008 Aa | |
5 | 0.059 ± 0.008 Aa | 0.068 ± 0.020 Aab | 0.044 ± 0.006 Aab | 0.062 ± 0.008 Aab | 0.061 ± 0.026 Aa | |
6 | 0.061 ± 0.018 Aa | 0.083 ± 0.022 Aa | 0.052 ± 0.014 Aab | 0.069 ± 0.002 Aa | 0.057 ± 0.004 Aa |
Parameter | Week | Control | Alginate | Chitosan | Pectin | Starch |
---|---|---|---|---|---|---|
Moisture (%) | 0 | 82.2 ± 0.1 Aa | 82.2 ± 0.1 Aa | 82.2 ± 0.1 Aa | 82.2 ± 0.1 Aa | 82.2 ± 0.1 Aa |
1 | 81.2 ± 0.4 Aa | 82.2 ± 0.1 Aa | 80.9 ± 1.9 Aa | 82.2 ± 0.1 Aa | 82.2 ± 0.1 Aa | |
2 | 79.0 ± 0.7 Aa | 81.7 ± 1.1 Aa | 80.1 ± 1.5 Aa | 82.0 ± 1.8 Aa | 81.7 ± 2.8 Aa | |
3 | 77.4 ± 2.8 Aa | 79.8 ± 1.1 Aa | 79.9 ± 0.1 Aa | 80.8 ± 1.4 Aa | 80.5 ± 2.7 Aa | |
4 | 73.7 ± 2.6 Aa | 77.8 ± 2.8 Aa | 79.5 ± 0.1 Aa | 80.1 ± 1.4 Aa | 79.7 ± 1.4 Aa | |
5 | 69.0 ± 9.9 Aa | 77.6 ± 3.0 Aa | 78.9 ± 0.3 Aa | 78.4 ± 0.3 Aa | 79.0 ± 0.0 Aa | |
6 | 59.8 ± 22.4 Aa | 77.1 ± 0.1 Aa | 78.6 ± 0.2 Aa | 77.1 ± 0.7 Aa | 77.7 ± 0.7 Aa | |
pH | 0 | 6.48 ± 0.21 Aa | 6.48 ± 0.21 Aa | 6.48 ± 0.21 Aa | 6.48 ± 0.21 Aa | 6.48 ± 0.21 Aa |
1 | 6.54 ± 0.04 Aa | 6.38 ± 0.01 Aa | 6.36 ± 0.07 Aa | 6.39 ± 0.06 Aa | 6.42 ± 0.00 Aa | |
2 | 6.33 ± 0.03 Aa | 6.36 ± 0.02 Aa | 6.35 ± 0.06 Aa | 6.30 ± 0.02 Aa | 6.37 ± 0.08 Aa | |
3 | 6.48 ± 0.05 Aa | 6.46 ± 0.04 Aa | 6.44 ± 0.05 Aa | 6.45 ± 0.01 Aa | 6.04 ± 0.64 Aa | |
4 | 6.34 ± 0.06 Aa | 6.47 ± 0.01 Aa | 6.25 ± 0.04 Aa | 6.51 ± 0.11 Aa | 6.40 ± 0.10 Aa | |
5 | 6.44 ± 0.02 Aa | 6.40 ± 0.02 Aa | 6.08 ± 0.18 Aa | 6.01 ± 0.21 Aa | 6.33 ± 0.21 Aa | |
6 | 6.43 ± 0.05 Aa | 6.36 ± 0.20 Aa | 5.98 ± 0.22 Aa | 6.36 ± 0.09 Aa | 6.45 ± 0.05 Aa | |
TSS (°Brix) | 0 | 13.5 ± 1.2 Aa | 13.5 ± 1.2 Aa | 13.5 ± 1.2 Aa | 13.5 ± 1.2 Aa | 13.5 ± 1.2 Aa |
1 | 10.1 ± 1.3 Aa | 13.3 ± 0.1 Aa | 12.6 ± 0.6 Aa | 10.4 ± 0.0 Aa | 13.9 ± 0.7 Aa | |
2 | 10.2 ± 0.2 Aa | 13.6 ± 1.5 Aa | 10.5 ± 0.3 Aa | 12.0 ± 0.7 Aa | 11.8 ± 1.5 Aa | |
3 | 11.6 ± 1.6 Aa | 13.5 ± 0.3 Aa | 13.1 ± 0.6 Aa | 14.2 ± 0.1 Aa | 12.3 ± 0.9 Aa | |
4 | 16.8 ± 1.3 Aa | 14.2 ± 1.1 Aa | 13.4 ± 0.6 Aa | 11.4 ± 0.9 Aa | 13.2 ± 2.3 Aa | |
5 | 13.7 ± 0.8 Aa | 12.6 ± 0.1 Aa | 13.1 ± 0.7 Aa | 13.0 ± 0.9 Aa | 11.9 ± 1.4 Aa | |
6 | 12.7 ± 1.6 Aa | 12.0 ± 0.9 Aa | 11.3 ± 1.1 Aa | 12.9 ± 0.4 Aa | 11.6 ± 1.6 Aa | |
Total titratable acidity (% citric acid (wt/wt)) | 0 | 0.025 ± 0.002 Ac | 0.025 ± 0.002 Ac | 0.025 ± 0.002 Ab | 0.025 ± 0.002 Ab | 0.025 ± 0.002 Aa |
1 | 0.038 ± 0.002 Bbc | 0.050 ± 0.003 Aab | 0.043 ± 0.003 ABab | 0.047 ± 0.001 ABa | 0.052 ± 0.005 Aa | |
2 | 0.040 ± 0.003 Aab | 0.039 ± 0.003 Abc | 0.048 ± 0.006 Aab | 0.047 ± 0.004 Aa | 0.047 ± 0.000 Aa | |
3 | 0.042 ± 0.007 Aab | 0.046 ± 0.003 Aab | 0.053 ± 0.006 Aab | 0.047 ± 0.002 Aa | 0.056 ± 0.031 Aa | |
4 | 0.052 ± 0.001 Aab | 0.044 ± 0.007 Aab | 0.058 ± 0.012 Aab | 0.051 ± 0.008 Aa | 0.047 ± 0.006 Aa | |
5 | 0.045 ± 0.000 Aab | 0.055 ± 0.002 Aab | 0.058 ± 0.014 Aab | 0.064 ± 0.010 Aa | 0.052 ± 0.014 Aa | |
6 | 0.054 ± 0.004 Aa | 0.058 ± 0.006 Aa | 0.066 ± 0.014 Aa | 0.055 ± 0.006 Aa | 0.048 ± 0.004 Aa |
Parameter | Week | Control | Alginate | Chitosan | Pectin | Starch |
---|---|---|---|---|---|---|
Mesophiles (log CFU/g) | 0 | 3.98 ± 0.26 Aa | 3.98 ± 0.26 Aa | 3.98 ± 0.26 Aa | 3.98 ± 0.26 Aa | 3.98 ± 0.26 Aa |
1 | 3.45 ± 0.20 Aa | 3.76 ± 0.35 Aa | 3.76 ± 0.25 Aa | 3.76 ± 0.33 Aab | 4.60 ± 0.70 Aa | |
2 | 3.18 ± 0.38 Aa | 3.16 ± 0.73 Aa | 3.83 ± 0.65 Aa | 2.45 ± 0.20 Abc | 2.43 ± 0.48 Aa | |
3 | 3.69 ± 0.23 Aa | 4.37 ± 0.42 Aa | 3.72 ± 1.06 Aa | 2.55 ± 0.27 Abc | 2.99 ± 0.03 Aa | |
4 | 3.80 ± 0.75 Aa | 4.66 ± 0.65 Aa | 3.72 ± 0.72 Aa | 2.12 ± 0.09 Ac | 2.12 ± 0.39 Aa | |
5 | 2.90 ± 0.22 ABa | 3.66 ± 0.59 ABa | 2.40 ± 0.16 Ba | 3.21 ± 0.03 ABabc | 4.51 ± 0.41 Aa | |
6 | 3.29 ± 1.34 Aa | 2.66 ± 0.41 Aa | 3.68 ± 0.08 Aa | 2.93 ± 0.37 Aabc | 3.26 ± 0.53 Aa | |
Yeasts and Molds (log CFU/g) | 0 | 2.01 ± 0.02 Aa | 2.01 ± 0.02 Aa | 2.01 ± 0.02 Aa | 2.01 ± 0.02 Aa | 2.01 ± 0.02 Aa |
1 | 3.04 ± 0.09 Aa | 3.04 ± 0.39 Aa | 3.56 ± 0.65 Aa | 3.13 ± 0.00 Aa | 3.75 ± 0.62 Aa | |
2 | 3.40 ± 0.12 Aa | 3.19 ± 0.06 Aa | 3.83 ± 0.84 Aa | 2.73 ± 0.30 Aa | 2.30 ± 0.35 Aa | |
3 | 3.10 ± 0.44 Aa | 3.79 ± 0.12 Aa | 4.09 ± 0.88 Aa | 3.41 ± 0.03 Aa | 3.44 ± 0.29 Aa | |
4 | 2.76 ± 0.33 ABa | 3.83 ± 0.23 Aa | 1.65 ± 0.00 Ba | 2.33 ± 0.68 ABa | 1.89 ± 0.24 ABa | |
5 | 3.17 ± 0.05 Aa | 3.45 ± 0.00 Aa | 2.28 ± 0.63 Aa | 3.43 ± 0.11 Aa | 3.85 ± 0.37 Aa | |
6 | 3.62 ± 1.49 Aa | 3.70 ± 0.97 Aa | 3.43 ± 0.37 Aa | 3.17 ± 0.21 Aa | 2.16 ± 0.50 Aa |
Parameter | Week | Control | Alginate | Chitosan | Pectin | Starch |
---|---|---|---|---|---|---|
Mesophiles (log CFU/g) | 0 | 2.00 ± 0.27 Aa | 2.00 ± 0.27 Aab | 2.00 ± 0.27 Aa | 2.00 ± 0.27 Aa | 2.00 ± 0.27 Aab |
1 | 2.06 ± 0.07 Aa | 1.26 ± 0.00 ABb | 0.95 ± 0.21 Ba | 1.21 ± 0.28 ABa | 0.84 ± 0.11 Bb | |
2 | 3.43 ± 0.00 Aa | 2.14 ± 0.70 ABab | 1.74 ± 0.00 ABa | 0.96 ± 0.00 Ba | 1.59 ± 0.33 ABab | |
3 | 1.20 ± 0.24 Aa | 2.06 ± 1.10 Aab | 2.11 ± 0.25 Aa | 1.74 ± 0.18 Aa | 3.56 ± 0.94 Aa | |
4 | 1.46 ± 0.50 Ba | 4.48 ± 0.00 Aa | 1.95 ± 0.34 Ba | 1.65 ± 0.39 Ba | 0.95 ± 0.00 Bb | |
5 | 2.89 ± 0.53 Aa | 2.80 ± 0.36 Aab | 1.26 ± 0.00 Aa | 2.41 ± 0.75 Aa | 1.59 ± 0.33 Aab | |
6 | 2.69 ± 1.43 Aa | 1.20 ± 0.24 Ab | 1.20 ± 0.24 Aa | 1.26 ± 0.30 Aa | 1.74 ± 0.00 Aab | |
Yeasts and Molds (log CFU/g) | 0 | <1 Aa | <1 Ab | <1 Ab | <1 Ab | <1 Aa |
1 | 2.50 ± 0.00 Ba | <1 Db | <1 Db | 2.66 ± 0.00 Aa | 1.66 ± 0.00 Cc | |
2 | 3.53 ± 0.24 Aa | 1.96 ± 0.30 Bab | 2.26 ± 0.00 ABa | 2.16 ± 0.35 Ba | 2.20 ± 0.06 Bbc | |
3 | 1.66 ± 0.00 Aa | 2.83 ± 0.69 Aa | 1.96 ± 0.60 Aa | 2.16 ± 0.20 Aa | 3.27 ± 0.50 Aa | |
4 | 2.98 ± 0.25 Aa | 2.31 ± 0.05 ABab | 1.66 ± 0.00 Bab | 1.96 ± 0.00 ABa | 2.98 ± 0.45 Aab | |
5 | 2.78 ± 0.52 Aa | 2.67 ± 0.41 Aab | 1.84 ± 0.11 Aa | 2.61 ± 0.00 Aa | 1.66 ± 0.00 Abc | |
6 | 3.16 ± 1.50 Aa | 2.56 ± 0.00 Aab | 1.96 ± 0.00 Aa | 2.13 ± 0.00 Aa | 2.56 ± 0.00 Aab |
Parameter | Week | Control | Alginate | Chitosan | Pectin | Starch |
---|---|---|---|---|---|---|
Mesophiles (log CFU/g) | 0 | 3.69 ± 0.79 Aa | 3.69 ± 0.79 Aa | 3.69 ± 0.79 Aa | 3.69 ± 0.79 Aa | 3.69 ± 0.79 Aa |
1 | 5.26 ± 0.00 Aa | 3.80 ± 0.55 ABa | 2.45 ± 0.21 Ba | 2.95 ± 0.00 Ba | 2.95 ± 0.00 Ba | |
2 | 3.04 ± 0.24 Aa | 2.92 ± 0.18 Aa | 2.72 ± 0.35 Aa | 2.65 ± 0.00 Aa | 2.45 ± 0.20 Aa | |
3 | 3.55 ± 0.39 Aa | 2.62 ± 0.25 ABa | 1.97 ± 0.17 Ba | 3.73 ± 0.00 Aa | 3.01 ± 0.05 ABa | |
4 | 4.01 ± 0.10 Aa | 3.10 ± 0.63 Aa | 2.31 ± 1.35 Aa | 3.77 ± 0.12 Aa | 2.83 ± 0.30 Aa | |
5 | 3.58 ± 0.21 ABa | 4.34 ± 0.07 Aa | 3.21 ± 0.00 ABa | 2.74 ± 0.49 Ba | 2.73 ± 0.00 Ba | |
6 | 5.28 ± 0.61 Aa | 3.54 ± 0.43 Aa | 3.14 ± 0.01 Aa | 3.00 ± 0.74 Aa | 3.11 ± 0.31 Aa | |
Yeasts and Molds (log CFU/g) | 0 | 1.61 ± 0.05 Ab | 1.61 ± 0.05 Ab | 1.61 ± 0.05 Acd | 1.61 ± 0.05 Ac | 1.61 ± 0.05 Ac |
1 | 3.52 ± 0.09 ABab | 3.35 ± 0.00 Bab | 1.21 ± 0.00 Cd | 3.94 ± 0.00 Aa | 3.15 ± 0.20 Bab | |
2 | 3.30 ± 0.07 Aab | 2.75 ± 0.62 ABab | 1.56 ± 0.00 Bd | 3.53 ± 0.20 Aab | 3.39 ± 0.03 Aab | |
3 | 3.78 ± 0.07 Aa | 3.75 ± 0.06 Aa | 2.73 ± 0.00 Aa | 3.39 ± 0.39 Aab | 3.47 ± 0.10 Aab | |
4 | 3.78 ± 0.70 Aa | 3.65 ± 0.20 Aa | 2.12 ± 0.24 Abc | 2.52 ± 0.09 Abc | 2.65 ± 0.15 Ab | |
5 | 3.33 ± 0.17 Aab | 3.81 ± 0.23 Aa | 2.13 ± 0.00 Bb | 3.03 ± 0.23 ABab | 3.23 ± 0.06 Aab | |
6 | 5.07 ± 0.66 Aa | 4.39 ± 0.65 Aa | 2.47 ± 0.03 Aab | 3.34 ± 0.43 Aab | 3.54 ± 0.29 Aa |
Parameter | Week | Control | Alginate | Chitosan | Pectin | Starch |
---|---|---|---|---|---|---|
Mesophiles (log CFU/g) | 0 | 2.67 ± 0.14 Aab | 2.67 ± 0.14 Aa | 2.67 ± 0.14 Aa | 2.67 ± 0.14 Aa | 2.67 ± 0.14 Aa |
1 | 0.95 ± 0.00 Ab | 1.69 ± 0.26 Aa | 1.56 ± 0.30 Ab | 1.41 ± 0.15 Aab | 0.95 ± 0.00 Ab | |
2 | 2.21 ± 0.00 Cab | 2.24 ± 0.00 Ba | 1.80 ± 0.00 Db | 0.96 ± 0.00 Eb | 2.37 ± 0.00 Aab | |
3 | 2.55 ± 0.17 Aab | 1.97 ± 0.17 ABa | 1.55 ± 0.11 BCb | 0.96 ± 0.00 Cab | 1.94 ± 0.13 ABab | |
4 | 2.00 ± 0.00 Aab | 1.67 ± 0.24 Aa | 1.44 ± 0.00 Ab | 1.31 ± 0.35 Aab | 1.58 ± 0.33 Aab | |
5 | 3.01 ± 0.93 Aa | 1.35 ± 0.09 Aa | 1.44 ± 0.00 Ab | 0.96 ± 0.00 Aab | 1.46 ± 0.50 Aab | |
6 | 2.50 ± 0.00 Aab | 2.42 ± 1.16 Aa | 2.09 ± 0.13 Aab | 2.62 ± 0.71 Aa | 1.83 ± 0.27 Aab | |
Yeasts and Molds (log CFU/g) | 0 | <1 Aa | <1 Ac | <1 Ab | <1 Ab | <1 Ab |
1 | 2.13 ± 0.00 Aa | <1 Ac | <1 Ab | 1.66 ± 0.00 Aab | 2.16 ± 0.48 Aa | |
2 | 2.36 ± 0.00 ABa | 2.26 ± 0.00 Bb | <1 Cb | 2.86 ± 0.00 Aa | 2.16 ± 0.20 Ba | |
3 | 2.46 ± 0.20 Aa | 2.01 ± 0.35 Ab | 2.44 ± 0.44 Aa | 2.56 ± 0.00 Aab | 2.13 ± 0.00 Aa | |
4 | 2.26 ± 0.00 Aa | 1.96 ± 0.30 Abc | 2.23 ± 0.27 Aa | 2.05 ± 0.09 Aab | 2.13 ± 0.00 Aa | |
5 | 2.70 ± 1.04 Aa | 2.26 ± 0.00 Ab | 1.66 ± 0.00 Aab | 1.66 ± 0.00 Aab | <1 Ab | |
6 | 2.83 ± 0.70 Aa | 3.41 ± 0.00 Aa | 1.66 ± 0.00 Aab | 2.42 ± 0.76 Aab | 1.96 ± 0.00 Aab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, C.; Polesca, C.; Bicalho, I.; Souza, V.G.L.; Coelhoso, I.; Fernando, A.L. Quality Preservation and Shelf-Life Extension of Prickly Pear (Opuntia ficus-indica L. Mill) Using Edible Coatings. Foods 2025, 14, 161. https://doi.org/10.3390/foods14020161
Rodrigues C, Polesca C, Bicalho I, Souza VGL, Coelhoso I, Fernando AL. Quality Preservation and Shelf-Life Extension of Prickly Pear (Opuntia ficus-indica L. Mill) Using Edible Coatings. Foods. 2025; 14(2):161. https://doi.org/10.3390/foods14020161
Chicago/Turabian StyleRodrigues, Carolina, Cariny Polesca, Isabela Bicalho, Victor Gomes Lauriano Souza, Isabel Coelhoso, and Ana Luísa Fernando. 2025. "Quality Preservation and Shelf-Life Extension of Prickly Pear (Opuntia ficus-indica L. Mill) Using Edible Coatings" Foods 14, no. 2: 161. https://doi.org/10.3390/foods14020161
APA StyleRodrigues, C., Polesca, C., Bicalho, I., Souza, V. G. L., Coelhoso, I., & Fernando, A. L. (2025). Quality Preservation and Shelf-Life Extension of Prickly Pear (Opuntia ficus-indica L. Mill) Using Edible Coatings. Foods, 14(2), 161. https://doi.org/10.3390/foods14020161