Dynamic Trends in Aquatic Product Supply and Consumption in China: Implications for Sustainable Diets and Environmental Impact Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis Methods
2.2.1. Conversion Method of Carbon Footprint and Water Footprint
2.2.2. Statistical Analytical Strategy
3. Results
3.1. Dynamic Characteristics of Aquatic Product Supply and Consumption in China
3.2. Aquatic Product Supply Trend and Potential in China
3.2.1. China’s Aquatic Product Supply Potential
3.2.2. Dynamic Changes in the Supply and Consumption of Aquatic Products
3.3. Environmental Sustainability of Aquatic Food Consumption
4. Discussions
4.1. The Role of Aquatic Products in Food System Transformation in China and Other Countries
4.2. Implications of This Study
4.3. Limitations of This Study
4.4. Potential Directions for Future Research
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2024—Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar]
- Yu, J.; Han, Q. Food security of mariculture in China: Evolution, future potential and policy. Mar. Policy 2020, 115, 103892. [Google Scholar] [CrossRef]
- Willett, W.J.; Rockström, B.; Loken, M.; Springmann, T.; Lang, S.; Vermeulen, T.; Garnett, D.; Tilman, F.; DeClerck, A.; Wood, M.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Lucas, T.; Horton, R. The 21st-century great food transformation. Lancet 2019, 393, 386–387. [Google Scholar] [CrossRef] [PubMed]
- Ahern, M.; Thilsted, S.; Oenema, S.; Kühnhold, H. The Role of Aquatic Foods in Sustainable Healthy Diets; UN Nutrition Discussion Paper; UN-Nutrition: Rome, Italy, 2021. [Google Scholar]
- Naylor, R.L.; Kishore, A.; Sumaila, U.R.; Issifu, I.; Hunter, B.P.; Belton, B.; Bush, S.R.; Cao, L.; Gelcich, S.; Gephart, J.A. Blue food demand across geographic and temporal scales. Nat. Commun. 2021, 12, 5413. [Google Scholar] [CrossRef] [PubMed]
- Crona, B.; Wassenius, E.; Troell, M.; Barclay, K.; Mallory, T.; Fabinyi, M.; Zhang, W.; Lam, V.W.; Cao, L.; Henriksson, P.J. China at a crossroads: An analysis of China’s changing seafood production and consumption. One Earth 2020, 3, 32–44. [Google Scholar] [CrossRef]
- Zhao, K.; Gaines, S.D.; Molinos, J.G.; Zhang, M.; Xu, J. Effect of trade on global aquatic food consumption patterns. Nat. Commun. 2024, 15, 1412. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Chen, Y.; Dong, S.; Hanson, A.; Huang, B.; Leadbitter, D.; Little, D.C.; Pikitch, E.K.; Qiu, Y.; de Mitcheson, Y.S. Opportunity for marine fisheries reform in China. Proc. Natl. Acad. Sci. USA 2017, 114, 435–442. [Google Scholar] [CrossRef]
- Bellmann, C.; Tipping, A.; Sumaila, U.R. Global trade in fish and fishery products: An overview. Mar. Policy 2016, 69, 181–188. [Google Scholar] [CrossRef]
- Liu, G.; Verdegem, M.; Ye, Z.; Zhao, J.; Xiao, J.; Liu, X.; Liang, Q.; Xiang, K.; Zhu, S. Advancing Aquaculture Sustainability: A Comprehensive Review of Biofloc Technology Trends, Innovative Research Approaches, and Future Prospects. Rev. Aquac. 2024, 17, e12970. [Google Scholar] [CrossRef]
- Mustafa, S.; Shapawi, R. Aquaculture Ecosystems: Adaptability and Sustainability; Wiley Online Library: New York, NY, USA, 2015. [Google Scholar]
- Chary, K.; van Riel, A.J.; Muscat, A.; Wilfart, A.; Harchaoui, S.; Verdegem, M.; Filgueira, R.; Troell, M.; Henriksson, P.J.; de Boer, I.J. Transforming sustainable aquaculture by applying circularity principles. Rev. Aquac. 2024, 16, 656–673. [Google Scholar] [CrossRef]
- Asche, F.; Pincinato, R.B.M.; Tveteras, R. Productivity in Global Aquaculture. In Handbook of Production Economics; Springer: Singapore, 2022; pp. 1525–1561. [Google Scholar]
- Albou, E.M.; Abdellaoui, M.; Abdaoui, A.; Boughrous, A.A. Agricultural Practices and their Impact on Aquatic Ecosystems—A Mini-Review. Ecol. Eng. Environ. Technol. 2024, 25, 321–331. [Google Scholar] [CrossRef]
- Erlandson, J.M.; Rick, T.C. Archaeology, marine ecology, and human impacts on marine environments. In Human Impacts on Ancient Marine Ecosystems: A Global Perspective; University of California Press: Oakland, CA, USA, 2008; pp. 1–19. [Google Scholar]
- Browman, H.I.; Stergiou, K.I.; Cury, P.; Hilborn, R.; Jennings, S.; Lotze, H.; Mace, P. Perspectives on ecosystem-based approaches to the management of marine resources. Mar. Ecol. Prog. Ser. 2004, 274, 269–303. [Google Scholar] [CrossRef]
- Benson, M.H.; Craig, R.K. The End of Sustainability: Resilience and the Future of Environmental Governance in the Anthropocene; University Press of Kansas: Lawrence, KS, USA, 2017. [Google Scholar]
- Hilborn, R.; Fulton, E.A.; Green, B.S.; Hartmann, K.; Tracey, S.R.; Watson, R.A. When is a fishery sustainable? Can. J. Fish. Aquat. Sci. 2015, 72, 1433–1441. [Google Scholar] [CrossRef]
- Islam, M.S. Confronting the Blue Revolution: Industrial Aquaculture and Sustainability in the Global South; University of Toronto Press: Toronto, ON, Canada, 2014. [Google Scholar]
- Hee, Y. Geography in Action: Translating International Biodiversity Policies into Sustainable Conservation Initiatives. Soc. Sci. Chron. 2023, 3, 1–25. [Google Scholar]
- Gable, F. A Large Marine Ecosystem Approach to Fisheries Management and Sustainability: Linkages and Concepts Towards Best Practices; U.S. Government Publishing Office: Washington, DC, USA, 2004. [Google Scholar]
- Pounds, A.; Kaminski, A.M.; Budhathoki, M.; Gudbrandsen, O.; Kok, B.; Horn, S.; Malcorps, W.; Mamun, A.-A.; McGoohan, A.; Newton, R. More than fish—Framing aquatic animals within sustainable food systems. Foods 2022, 11, 1413. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W. The water footprint of global food production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
- Castilla-Gavilán, M.; Guerra-García, J.M.; Hachero-Cruzado, I.; Herrera, M. Understanding Carbon Footprint in Sustainable Land-Based Marine Aquaculture: Exploring Production Techniques. J. Mar. Sci. Eng. 2024, 12, 1192. [Google Scholar] [CrossRef]
- Tom, M.S.; Fischbeck, P.S.; Hendrickson, C.T. Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environ. Syst. Decis. 2016, 36, 92–103. [Google Scholar] [CrossRef]
- Pradeepkiran, J.A. Aquaculture role in global food security with nutritional value: A review. Transl. Anim. Sci. 2019, 3, 903–910. [Google Scholar] [CrossRef]
- Crumlish, M.; Norman, R. Introduction to global aquatic food security. In Aquatic Food Security; CABI: Delémont, Switzerland, 2024; pp. 1–4. [Google Scholar]
- Cai, J.; Leung, P. Unlocking the potential of aquatic foods in global food security and nutrition: A missing piece under the lens of seafood liking index. Glob. Food Secur. 2022, 33, 100641. [Google Scholar] [CrossRef]
- Tacon, A.G.; Metian, M. Fish matters: Importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 2013, 21, 22–38. [Google Scholar] [CrossRef]
- Cojocaru, A.L.; Liu, Y.; Smith, M.D.; Akpalu, W.; Chávez, C.; Dey, M.M.; Dresdner, J.; Kahui, V.; Pincinato, R.B.; Tran, N. The “seafood” system: Aquatic foods, food security, and the Global South. Rev. Environ. Econ. Policy 2022, 16, 306–326. [Google Scholar] [CrossRef]
- Fabinyi, M.; Liu, N.; Song, Q.; Li, R. Aquatic product consumption patterns and perceptions among the Chinese middle class. Reg. Stud. Mar. Sci. 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Xu, H.; Wu, T.; Budhathoki, M.; Fang, D.S.; Zhang, W.; Wang, X. Consumption Patterns and Willingness to Pay for Sustainable Aquatic Food in China. Foods 2024, 13, 2435. [Google Scholar] [CrossRef]
- Liverman, D.; Kapadia, K. Food security, food systems and global environmental change. In Food Security and Global Environmental Change; Routledge: Abingdon, UK, 2012; pp. 3–24. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. China Fishery Statistics Bulletin 2023; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2024. [Google Scholar]
- Chinese Nutrition Society. Dietary Guidelines for Chinese Residents (2022); People’s Medical Publishing House: Beijing, China, 2022. [Google Scholar]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518. [Google Scholar] [CrossRef]
- Song, G.B.; Li, M.J.; Fullana-i-Palmer, P.; Williamson, D.; Wang, Y.X. Dietary changes to mitigate climate change and benefit public health in China. Sci. Total Environ. 2017, 577, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Ay, H. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. In Proceedings of the International Expert Meeting on Virtual Water Trade 12, Delft, The Netherlands, 12–13 December 2002. [Google Scholar]
- Xu, F.; Bai, J.; Zhang, C. Impact of meat consumption in urban China on water resources—A consistent two-step QUAIDS model. J. Agrotech. Econ. 2018, 9, 4–16, (In Chinese with English abstract). [Google Scholar]
- Hurni, H.; Giger, M.; Liniger, H.; Studer, R.M.; Messerli, P.; Portner, B.; Schwilch, G.; Wolfgramm, B.; Breu, T. Soils, agriculture and food security: The interplay between ecosystem functioning and human well-being. Curr. Opin. Environ. Sustain. 2015, 15, 25–34. [Google Scholar] [CrossRef]
- Kanianska, R. Agriculture and its impact on land-use, environment, and ecosystem services. In Landscape Ecology—The Influences of Land Use and Anthropogenic Impacts of Landscape Creation; InTechOpen: London, UK, 2016; pp. 1–26. [Google Scholar]
- Yang, W.; Zhen, L. Household perceptions of factors that affect food consumption in grassland areas: A case study in the Xilin Gol Grassland, China. Environ. Res. Lett. 2020, 15, 115007. [Google Scholar] [CrossRef]
- Yang, W.; Zhen, L.; Wei, Y. Food consumption and its local dependence: A case study in the Xilin Gol Grassland, China. Environ. Dev. 2020, 34, 100470. [Google Scholar] [CrossRef]
- Govindan, K. Sustainable consumption and production in the food supply chain: A conceptual framework. Int. J. Prod. Econ. 2018, 195, 419–431. [Google Scholar] [CrossRef]
- Little, D.C.; Newton, R.; Beveridge, M. Aquaculture: A rapidly growing and significant source of sustainable food? Status, transitions and potential. Proc. Nutr. Soc. 2016, 75, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.F.; Kyne, P.M.; Jabado, R.W.; Leeney, R.H.; Davidson, L.N.; Derrick, D.H.; Finucci, B.; Freckleton, R.P.; Fordham, S.V.; Dulvy, N.K. Overfishing and habitat loss drive range contraction of iconic marine fishes to near extinction. Sci. Adv. 2021, 7, eabb6026. [Google Scholar] [CrossRef]
- O’Meara, L.; Cohen, P.J.; Simmance, F.; Marinda, P.; Nagoli, J.; Teoh, S.J.; Funge-Smith, S.; Mills, D.J.; Thilsted, S.H.; Byrd, K.A. Inland fisheries critical for the diet quality of young children in sub-Saharan Africa. Glob. Food Secur. 2021, 28, 100483. [Google Scholar] [CrossRef]
- Pauly, D.; Watson, R.; Alder, J. Global trends in world fisheries: Impacts on marine ecosystems and food security. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 5–12. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, M.; de Mitcheson, Y.S.; Cao, L.; Leadbitter, D.; Newton, R.; Little, D.C.; Li, S.; Yang, Y.; Chen, X. Fishing for feed in China: Facts, impacts and implications. Fish Fish. 2020, 21, 47–62. [Google Scholar] [CrossRef]
- Asche, F.; Yang, B.; Gephart, J.A.; Smith, M.D.; Anderson, J.L.; Camp, E.V.; Garlock, T.M.; Love, D.C.; Oglend, A.; Straume, H.-M. China’s seafood imports—Not for domestic consumption? Science 2022, 375, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Fabinyi, M. Historical, cultural and social perspectives on luxury seafood consumption in China. Environ. Conserv. 2012, 39, 83–92. [Google Scholar] [CrossRef]
- Kang, B.; Huang, X.; Li, J.; Liu, M.; Guo, L.; Han, C.-C. Inland fisheries in China: Past, present, and future. Rev. Fish. Sci. Aquac. 2017, 25, 270–285. [Google Scholar] [CrossRef]
- Han, Y. Experience and enlightenment of fishery resources management in major maritime countries around the world. China Dev. Obs. 2020, Z1, 112–115+119. (In Chinese) [Google Scholar]
- Laine, J.E.; Huybrechts, I.; Gunter, M.J.; Ferrari, P.; Weiderpass, E.; Tsilidis, K.; Aune, D.; Schulze, M.B.; Bergmann, M.; Temme, E.H. Co-benefits from sustainable dietary shifts for population and environmental health: An assessment from a large European cohort study. Lancet Planet. Health 2021, 5, e786–e796. [Google Scholar] [CrossRef] [PubMed]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Gaines, S.D.; Molinos, J.G.; Zhang, M.; Xu, J. Climate change and fishing are pulling the functional diversity of the world’s largest marine fisheries to opposite extremes. Glob. Ecol. Biogeogr. 2022, 31, 1616–1629. [Google Scholar] [CrossRef]
- Srinivasan, U.T.; Cheung, W.W.; Watson, R.; Sumaila, U.R. Food security implications of global marine catch losses due to overfishing. J. Bioeconomics 2010, 12, 183–200. [Google Scholar] [CrossRef]
- Mendenhall, E.; Hendrix, C.; Nyman, E.; Roberts, P.M.; Hoopes, J.R.; Watson, J.R.; Lam, V.W.; Sumaila, U.R. Climate change increases the risk of fisheries conflict. Mar. Policy 2020, 117, 103954. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Bellmann, C.; Tipping, A. Fishing for the future: An overview of challenges and opportunities. Mar. Policy 2016, 69, 173–180. [Google Scholar] [CrossRef]
- Brander, K.M. Global fish production and climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19709–19714. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
Year | Beijing | Tianjin | Hebei | Liaoning | Shanghai | Jiangsu | Zhejiang | Fujian | Shandong | Guangdong | Guangxi | Hainan |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 8960 | 38,986 | 582,600 | 3,497,366 | 121,464 | 1,364,468 | 3,812,332 | 5,127,982 | 6,463,345 | 4,015,032 | 1,544,481 | 1,178,877 |
2011 | 7532 | 38,342 | 563,281 | 3,657,958 | 121,586 | 1,420,840 | 4,109,846 | 5,261,619 | 6,647,212 | 4,182,257 | 1,593,225 | 1,240,420 |
2012 | 212,580 | 38,393 | 634,631 | 3,469,492 | 132,103 | 1,484,183 | 4,131,504 | 5,189,852 | 6,524,046 | 4,102,922 | 1,622,943 | 1,353,555 |
2013 | 232,023 | 68,377 | 682,809 | 3,642,478 | 134,782 | 1,505,920 | 4,249,060 | 5,434,711 | 6,654,179 | 4,195,353 | 1,683,926 | 1,439,888 |
2014 | 274,112 | 68,394 | 731,594 | 3,858,458 | 178,756 | 1,504,730 | 4,487,041 | 5,738,022 | 7,085,761 | 4,271,819 | 1,717,947 | 1,445,941 |
2015 | 298,020 | 66,510 | 760,931 | 3,833,843 | 169,530 | 1,481,856 | 4,676,922 | 6,053,890 | 7,352,063 | 4,351,448 | 1,769,963 | 1,507,990 |
2016 | 13,514 | 60,954 | 806,799 | 3,923,995 | 141,833 | 1,472,415 | 4,700,757 | 6,332,421 | 7,541,952 | 4,415,356 | 1,844,908 | 1,560,284 |
2017 | 9000 | 48,589 | 811,407 | 3,918,774 | 144,701 | 1,487,281 | 4,723,721 | 6,624,580 | 7,371,727 | 4,518,133 | 1,919,010 | 1,448,853 |
2018 | 1706 | 48,695 | 767,665 | 3,670,133 | 166,632 | 1,408,306 | 4,632,465 | 6,968,161 | 7,360,685 | 4,491,690 | 1,944,161 | 1,378,071 |
2019 | 6661 | 40,080 | 695,640 | 3,699,340 | 195,729 | 1,370,205 | 4,436,164 | 7,235,283 | 7,062,086 | 4,554,912 | 1,994,915 | 1,350,103 |
2020 | 5548 | 42,784 | 659,744 | 3,778,492 | 160,732 | 1,349,896 | 4,509,396 | 7,404,915 | 7,180,937 | 4,505,267 | 2,009,180 | 1,281,161 |
2021 | 7472 | 43,331 | 734,054 | 3,970,297 | 159,424 | 1,306,286 | 4,570,248 | 7,574,863 | 7,403,008 | 4,550,424 | 2,085,282 | 1,273,762 |
2022 | 4000 | 41,000 | 770,600 | 4,027,000 | 1,364,000 | 1,352,000 | 4,754,000 | 7,633,929 | 7,622,454 | 4,583,000 | 2,132,869 | 1,280,529 |
AAGR | −6.50 | 0.42 | 2.36 | 1.18 | 22.33 | −0.08 | 1.86 | 3.37 | 1.38 | 1.11 | 2.73 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W. Dynamic Trends in Aquatic Product Supply and Consumption in China: Implications for Sustainable Diets and Environmental Impact Reduction. Foods 2025, 14, 191. https://doi.org/10.3390/foods14020191
Yang W. Dynamic Trends in Aquatic Product Supply and Consumption in China: Implications for Sustainable Diets and Environmental Impact Reduction. Foods. 2025; 14(2):191. https://doi.org/10.3390/foods14020191
Chicago/Turabian StyleYang, Wanni. 2025. "Dynamic Trends in Aquatic Product Supply and Consumption in China: Implications for Sustainable Diets and Environmental Impact Reduction" Foods 14, no. 2: 191. https://doi.org/10.3390/foods14020191
APA StyleYang, W. (2025). Dynamic Trends in Aquatic Product Supply and Consumption in China: Implications for Sustainable Diets and Environmental Impact Reduction. Foods, 14(2), 191. https://doi.org/10.3390/foods14020191