Green and Innovative Extraction: Phenolic Profiles and Biological Activities of Underutilized Plant Extracts Using Pulsed Electric Fields and Maceration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Samples Extraction
2.3.1. Maceration
2.3.2. Pulsed Electric Fields
2.4. Chemical Characterization
2.5. In Vitro Biological Activities
2.5.1. Cytotoxicity
2.5.2. Anti-Inflammatory Activity
2.5.3. Antibacterial Activity
2.5.4. Antifungal Activity
2.5.5. Antioxidant Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Compounds Identification
3.2. Biological Activities of Algerian Medicinal Plants Extracts
3.2.1. Cytotoxic Activity
3.2.2. Anti-Inflammatory Activity
3.2.3. Antioxidant Capacity
3.2.4. Antibacterial Activity
3.2.5. Antifungal Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sprynskyy, M.; Monedeiro, F.; Monedeiro-Milanowski, M.; Nowak, Z.; Krakowska-Sieprawska, A.; Pomastowski, P.; Gadzała-Cinder, R.; Buszewski, B. Isolation of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid-EPA and docosahexaenoic acid-DHA) from diatom biomass using different extraction methods. Algal Res. 2022, 62, 102615. [Google Scholar] [CrossRef]
- Molino, A.; Martino, M.; Larocca, V.; Di Sanzo, G.; Spagnoletta, A.; Marino, T.; Karatza, D.; Iovine, A.; Mehariya, S.; Musmarra, D. Eicosapentaenoic Acid Extraction from Nannochloropsis gaditana Using Carbon Dioxide at Supercritical Conditions. Mar. Drugs 2019, 17, 132. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Pecora, F.; Persico, F.; Argentiero, A.; Neglia, C.; Esposito, S. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients 2020, 12, 3198. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.N.; Bohra, J.S.; Dubey, T.P.; Shivahre, P.R.; Singh, R.K.; Singh, T.; Jaiswal, D.K. Common foods for boosting human immunity: A review. Food Sci. Nutr. 2023, 11, 6761–6774. [Google Scholar] [CrossRef]
- Znini, M.; Cristofari, G.; Majidi, L.; Mazouz, H.; Tomi, P.; Paolini, J.; Costa, J. Antifungal activity of essential oil from Asteriscus graveolens against postharvest phytopathogenic fungi in apples. Nat. Prod. Commun. 2011, 6, 1763–1768. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Falco, T.; Bonesi, M.; Sicari, V.; Tundis, R.; Bruno, M. Ruta chalepensis L. (Rutaceae) leaf extract: Chemical composition, antioxidant and hypoglicaemic activities. Nat. Prod. Res. 2018, 32, 521–528. [Google Scholar] [CrossRef]
- Lachkar, N.; Lamchouri, F.; Bouabid, K.; Boulfia, M.; Senhaji, S.; Stitou, M.; Toufik, H. Mineral Composition, Phenolic Content, and In Vitro Antidiabetic and Antioxidant Properties of Aqueous and Organic Extracts of Haloxylon scoparium Aerial Parts. Evid. Based Complement. Altern. Med. 2021, 2021, 9011168. [Google Scholar] [CrossRef]
- Sedova, I.; Kiseleva, M.; Tutelyan, V. Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation. Toxins 2018, 10, 444. [Google Scholar] [CrossRef] [PubMed]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic Plants as a Source of Bioactive Compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef]
- Lezoul, N.E.H.; Belkadi, M.; Habibi, F.; Guillén, F. Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants. Molecules 2020, 25, 4672. [Google Scholar] [CrossRef]
- Marone, P.A.; Birkenbach, V.L.; Hayes, A.W. Newer Approaches to Identify Potential Untoward Effects in Functional Foods. Int. J. Toxicol. 2016, 35, 186–207. [Google Scholar] [CrossRef] [PubMed]
- Çakmakçı, S.; Polatoğlu, B.; Çakmakçı, R. Foods of the Future: Challenges, Opportunities, Trends, and Expectations. Foods 2024, 13, 2663. [Google Scholar] [CrossRef]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds from Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Picart-Palmade, L.; Cunault, C.; Chevalier-Lucia, D.; Belleville, M.-P.; Marchesseau, S. Potentialities and Limits of Some Non-thermal Technologies to Improve Sustainability of Food Processing. Front. Nutr. 2018, 5, 130. [Google Scholar] [CrossRef]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.-V.N.; Prabhakar, S. Techniques and modeling of polyphenol extraction from food: A review. Environ. Chem. Lett. 2021, 19, 3409–3443. [Google Scholar] [CrossRef]
- Soliva-Fortuny, R.; Balasa, A.; Knorr, D.; Martín-Belloso, O. Effects of pulsed electric fields on bioactive compounds in foods: A review. Trends Food Sci. Technol. 2009, 20, 544–556. [Google Scholar] [CrossRef]
- Knorr, D.; Froehling, A.; Jaeger, H.; Reineke, K.; Schlueter, O.; Schoessler, K. Emerging Technologies in Food Processing. Annu. Rev. Food Sci. Technol. 2011, 2, 203–235. [Google Scholar] [CrossRef]
- Niu, D.; Zeng, X.A.; Ren, E.F.; Xu, F.Y.; Li, J.; Wang, M.S.; Wang, R. Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Res. Int. 2020, 137, 109715. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Sun, D.W.; Zhu, Z. Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 2285–2298. [Google Scholar] [CrossRef] [PubMed]
- Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Pulsed electric field applications for the extraction of bioactive compounds from food waste and by-products: A critical review. Biomass 2023, 3, 367–401. [Google Scholar] [CrossRef]
- Cravotto, G.; Boffa, L.; Mantegna, S.; Perego, P.; Avogadro, M.; Cintas, P. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason. Sonochem. 2008, 15, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, F.; Gonçalves, J.C.; Ferrão, A.C.; Correia, P.; Guiné, R.P. Evaluation of phenolic compounds and antioxidant activity in some edible flowers. Open Agric. 2020, 5, 857–870. [Google Scholar] [CrossRef]
- dos Santos Silva, L.Y.; da Silva Ramos, A.; Cavalcante, D.N.; Kinupp, V.F.; da Silva Rodrigues, J.V.; Ventura, B.M.L.; de Oliveira Mendes, T.A.; Sanches, E.A.; Campelo, P.H.; de Araújo Bezerra, J. Hibiscus acetosella: An Unconventional Alternative Edible Flower Rich in Bioactive Compounds. Molecules 2023, 28, 4819. [Google Scholar] [CrossRef] [PubMed]
- Takebayashi, J.; Chen, J.; Tai, A. A method for evaluation of antioxidant activity based on inhibition of free radical-induced erythrocyte hemolysis. Methods Mol. Biol. 2010, 594, 287–296. [Google Scholar]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the Six Isomers of Dicaffeoylquinic Acid by LC-MSn. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef]
- Ziani, B.E.C.; Calhelha, R.C.; Barreira, J.C.M.; Barros, L.; Hazzit, M.; Ferreira, I.C.F.R. Bioactive properties of medicinal plants from the Algerian flora: Selecting the species with the highest potential in view of application purposes. Ind. Crops Prod. 2015, 77, 582–589. [Google Scholar] [CrossRef]
- Ramdane, F.; Essid, R.; Mkadmini, K.; Hammami, M.; Fares, N.; Mahammed, M.H.; El Ouassis, D.; Tabbene, O.; Limam, F.; Ould Hadj, M.D. Phytochemical composition and biological activities of Asteriscus graveolens (Forssk) extracts. Process Biochem. 2017, 56, 186–192. [Google Scholar] [CrossRef]
- Asgharian, S.; Hojjati, M.R.; Ahrari, M.; Bijad, E.; Deris, F.; Lorigooini, Z. Ruta graveolens and rutin, as its major compound: Investigating their effect on spatial memory and passive avoidance memory in rats. Pharm. Biol. 2020, 58, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, M.; Youcefi, F.; Keddari, S.; Saimi, Y.; Otsmane Elhaou, S.; Cacciola, F. Phenolic Content and in Vitro Antioxidant, Anti-Inflammatory and antimicrobial Evaluation of Algerian Ruta graveolens L. Chem. Biodivers. 2022, 19, e202200545. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, A.; Marino, A.; Molinari, J.; Ekiert, H.; Miceli, N. Phytochemical Characterization, and Antioxidant and Antimicrobial Properties of Agitated Cultures of Three Rue Species: Ruta chalepensis, Ruta corsica, and Ruta graveolens. Antioxidants 2022, 11, 592. [Google Scholar] [CrossRef]
- Belhadi, F.; Ouafi, S.; Bouguedoura, N. Phytochemical composition and pharmacological assessment of callus and parent plant of Asteriscus graveolens (Forssk.) Less. from Algerian Sahara. Trop. J. Pharm. Res. 2020, 19, 1895–1901. [Google Scholar] [CrossRef]
- El-Ouady, F.; Bachir, F.; Eddouks, M. Flavonoids Extracted from Asteriscus graveolens Improve Glucose Metabolism and Lipid Profile in Diabetic Rats. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Kozioł, E.; Luca, S.V.; Ağalar, H.G.; Sağlık, B.N.; Demirci, F.; Marcourt, L.; Wolfender, J.-L.; Jóźwiak, K.; Skalicka-Woźniak, K. Rutamarin: Efficient Liquid–Liquid Chromatographic Isolation from Ruta graveolens L. and Evaluation of Its In Vitro and In Silico MAO-B Inhibitory Activity. Molecules 2020, 25, 2678. [Google Scholar] [CrossRef]
- Al Qaisi, Y.T.; Khleifat, K.M.; Oran, S.A.; Al Tarawneh, A.A.; Qaralleh, H.; Al-Qaisi, T.S.; Farah, H.S. Ruta graveolens, Peganum harmala, and Citrullus colocynthis methanolic extracts have in vitro protoscolocidal effects and act against bacteria isolated from echinococcal hydatid cyst fluid. Arch. Microbiol. 2022, 204, 228. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, S.; Piccolella, S.; Galasso, S.; Fiorentino, A.; Kretschmer, N.; Pan, S.-P.; Bauer, R.; Monaco, P. Influence of harvest season on chemical composition and bioactivity of wild rue plant hydroalcoholic extracts. Food Chem. Toxicol. 2016, 90, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Bertin, R.L.; Gonzaga, L.V.; Borges, G.D.S.C.; Azevedo Mô, S.; Maltez, H.F.; Heller, M.; Micke, G.A.; Tavares, L.B.B.; Fett, R. Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC–ESI-MS/MS. Food Res. Int. 2014, 55, 404–411. [Google Scholar] [CrossRef]
- Yasir, M.; Sultana, B.; Amicucci, M. Biological activities of phenolic compounds extracted from Amaranthaceae plants and their LC/ESI-MS/MS profiling. J. Funct. Foods 2016, 26, 645–656. [Google Scholar] [CrossRef]
- Benkherara, S.; Bordjiba, O.; Harrat, S.; Djahra, A.B. Antidiabetic Potential and Chemical Constituents of Haloxylon scoparium Aerial Part, An Endemic Plant from Southeastern Algeria. Int. J. Second. Metab. 2021, 8, 398–413. [Google Scholar] [CrossRef]
- Boulanouar, B.; Abdelaziz, G.; Aazza, S.; Gago, C.; Miguel, M.G. Antioxidant activities of eight Algerian plant extracts and two essential oils. Ind. Crops Prod. 2013, 46, 85–96. [Google Scholar] [CrossRef]
- Kozachok, S.; Kolodziejczyk-Czepas, J.; Marchyshyn, S.; Wojtanowski, K.K.; Zgórka, G.; Oleszek, W. Comparison of Phenolic Metabolites in Purified Extracts of Three Wild-Growing Herniaria, L. Species and Their Antioxidant and Anti-Inflammatory Activities In Vitro. Molecules 2022, 27, 530. [Google Scholar] [CrossRef] [PubMed]
- Khlifi, D.; Sghaier, R.M.; Amouri, S.; Laouini, D.; Hamdi, M.; Bouajila, J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem. Toxicol. 2013, 55, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.; Bouchmaa, N.; Aazza, S.; Gaamoussi, F.; Lyoussi, B. Antioxidant, anti-inflammatory and acetylcholinesterase inhibitory activities of propolis from different regions of Morocco. Food Sci. Biotechnol. 2014, 23, 313–322. [Google Scholar] [CrossRef]
- Mokhtari, M.; Chabani, S.; Mouffouk, S.; Aberkane, M.-C.; Dibi, A.; Benkhaled, M.; Haba, H. Phytochemicals, Antihemolytic, Anti-inflammatory, Antioxidant, and Antibacterial Activities from Thymus Algeriensis. J. Herbs Spices Med. Plants 2021, 27, 253–266. [Google Scholar] [CrossRef]
- Lekmine, S.; Boussekine, S.; Akkal, S.; Martín-García, A.I.; Boumegoura, A.; Kadi, K.; Djeghim, H.; Mekersi, N.; Bendjedid, S.; Bensouici, C.; et al. Investigation of Photoprotective, Anti-Inflammatory, Antioxidant Capacities and LC–ESI–MS Phenolic Profile of Astragalus gombiformis Pomel. Foods 2021, 10, 1937. [Google Scholar] [CrossRef]
- Althaher, A.R.; Oran, S.A.; Awadallah, M.W.; Ameen, H.H.; Shehabi, R.F.; Bourghli, L.M.; Mastinu, A. Chemical Composition, Antioxidant, and Antibacterial Activity of Ruta chalepensis L. Ethanolic Extract. Chem. Biodivers. 2024, 21, e202400026. [Google Scholar] [CrossRef]
- Amamra, A.; Reggami, Y.; Bouasla, I.; Benbouzid, H.; Becheker, I.; Berredjem, H. Phytochemical profile and biological screening of two Amaranthaceae plants: Atriplex halimus and Haloxylon scoparium. Nat. Prod. Res. 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zazouli, S.; Chigr, M.; Ramos, P.A.B.; Rosa, D.; Castro, M.M.; Jouaiti, A.; Duarte, M.F.; Santos, S.A.O.; Silvestre, A.J.D. Chemical Profile of Lipophilic Fractions of Different Parts of Zizyphus lotus L. by GC-MS and Evaluation of Their Antiproliferative and Antibacterial Activities. Molecules 2022, 27, 483. [Google Scholar] [CrossRef] [PubMed]
- Righi, N.; Boumerfeg, S.; Fernandes, P.A.R.; Deghima, A.; Baali, F.; Coelho, E.; Cardoso, S.M.; Coimbra, M.A.; Baghiani, A. Thymus algeriensis Bioss & Reut: Relationship of phenolic compounds composition with in vitro/in vivo antioxidant and antibacterial activity. Food Res. Int. 2020, 136, 109500. [Google Scholar]
- Saiah, H.; Allem, R.; El Kebir, F.Z. Antioxidant and antibacterial activities of six Algerian medicinal plants. Int. J. Pharm. Pharm. Sci. 2016, 8, 367–374. [Google Scholar]
- Aljeldah, M.M. Antioxidant and Antimicrobial Potencies of Chemically-Profiled Essential Oil from Asteriscus graveolens against Clinically-Important Pathogenic Microbial Strains. Molecules 2022, 27, 3539. [Google Scholar] [CrossRef] [PubMed]
- Mohammedi, Z.; Atik, F. Fungitoxic effect of natural extracts on mycelial growth, spore germination and aflatoxin B1 production of Aspergillus flavus. Aust. J. Crop Sci. 2013, 7, 293–298. [Google Scholar]
- Salhi, N.; Mohammed Saghir, S.A.; Terzi, V.; Brahmi, I.; Ghedairi, N.; Bissati, S. Antifungal Activity of Aqueous Extracts of Some Dominant Algerian Medicinal Plants. BioMed Res. Int. 2017, 2017, 7526291. [Google Scholar] [CrossRef] [PubMed]
Peak (Identified Signals) | Rt (min) | λmax (nm) | [M-H] (m/z) | MSn (m/z) | Tentative Identification |
---|---|---|---|---|---|
Asteriscus graveolens | |||||
1 | 6.17 | 320 | 707 | 353 (100), 191 (53) | 5-O-Caffeoylquinic acid |
2 | 8.72 | 327 | 593 | 503 (29.2), 474 (24), 473 (100), 383 (32.4), 353 (88.3) | Apigenin-di-C-glucoside |
3 | 13.52 | 325 | 489 | 467 (100), 285 (32) | Luteolin-O-acetylhexoside |
4 | 15.61 | 294 | 449 | 287 (20), 269 (100), 225 (2), 209 (2), 151 (27) | Eridictyol-O-hexoside |
5 | 16.55 | 333 | 609 | 301 (100) | Quercetin-3-O-rutinoside |
6 | 17.22 | 353 | 477 | 301 (100) | Quercetin-3-O-glucuronide |
7 | 19.26 | 328 | 515 | 353 (100), 335 (5), 191 (25), 179 (13), 135 (2) | 3,5-O-Dicaffeoylquinic acid |
8 | 19.81 | 330 | 549 | 505 (100), 463 (18), 301 (52) | Quercetin-O-malonylhexoside |
9 | 20.61 | 356 | 491 | 463 (100) | Tricin-O-glucoside |
Ruta chalepensis | |||||
10 | 5.53 | 311 | 337 | 191 (11), 163 (100) | 4-p-Coumaroylquinic acid |
11 | 6.23 | 324 | 367 | 193 (100) | 4-O-Feruloylquinic acid |
12 | 8.62 | 325 | 593 | 473 (100), 353 (52) | Apigenin-6-C-glucose-8-C-glucose |
13 | 10.0 | 330 | 593 | 473 (100), 353 (12) | Apigenin-8-C-glucose-6-C-glucose |
14 | 11.9 | 327 | 507 | 269 (100) | Apigenin-O-glucuronyl-hexoside |
15 | 12.4 | 328 | 959 | 735 (100), 529 (11), 511 (17) | Tri-sinapoyl-gentiobiose |
16 | 14.1 | 332 | 611 | 301 (100) | Quercetin-O-deoxyhexosyl-hexoside |
17 | 15.6 | 332 | 639 | 315 (100) | Isorhamnetin-O-di-hexoside |
18 | 16.6 | 345 | 609 | 301 (100) | Quercetin-3-O-rutinoside |
19 | 17.3 | 353 | 477 | 301 (100) | Quercetin-3-O-glucuronide |
20 | 19.7 | 336 | 653 | 287 (100) | Eriodictyol-O-acetyl-di-hexoside |
21 | 20.8 | 348 | 623 | 315 (100) | Isorhamnetin-3-O-rutinoside |
22 | 21.9 | 330 | 753 | 529 (100), 223 (14) | 1,2-Disinapoylgentiobioside |
23 | 31.6 | 327 | 959 | 735 (100), 529 (12) | 1,2,2′ -Trisinapoylgentiobiose |
24 | 32.2 | 323 | 929 | 735 (16), 705 (100) | 1,2-Disinapoyl-2-feruloylgentiobiose |
25 | 39.1 | 326 | 723 | 529 (19), 499 (100), 233 (6) | Sinapoyl-feruloylgentiobiose |
26 | 43.5 | 330 | 325 | 183 (100), 119 (11) | unknown |
Haloxylon scoparium | |||||
27 | 3.47 | 281 | 153 | 109 (100) | Protocatechuic acid |
28 | 3.77 | 320 | 179 | 135 (100) | Caffeic acid |
29 | 4.01 | 281 | 359 | 197 (100) | Glycosyringic acid |
30 | 4.78 | 282 | 325 | 163 (100) | p-Coumaric acid hexoside |
31 | 7.42 | 321 | 387 | 369 (25), 207 (100), 163 (49) | Caffeic acid acetylhexoside |
32 | 9.83 | 342 | 785 | 623 (100), 315 (33) | Isorhamnetin-O-hexoside-O-deoxyhexosyl-hexoside |
33 | 10.1 | 322 | 565 | 519 (68), 403 (100), 385 (22), 223 (41) | Caffeic acid-O-(sinapoyl-O-hexoside) |
34 | 11.8 | 334 | 917 | 873 (55), 669 (100), 505 (10), 315 (21) | Isorhamnetin-O-hydroxyferuloylhexoside-O-malonylhexoside isomer I |
35 | 12.7 | 333 | 917 | 873 (60), 669 (100), 505 (15), 315 (32) | Isorhamnetin-O-hydroxyferuloylhexoside-O-malonylhexoside isomer II |
36 | 14.0 | 345 | 639 | 477 (28), 315 (100) | Isorhamnetin-O-dihexoside |
37 | 14.6 | 340 | 741 | 609 (100), 301 (56) | Quercetin-O-pentoside-O-deoxyhexoside-hexoside |
38 | 16.3 | 347 | 769 | 315 (100) | Isorhamnetin-O-di-deoxyhexosyl-hexoside |
39 | 17.5 | 353 | 755 | 605 (46), 315 (100) | Isorhamentin-O-deoxyhexosyl-pentosyl-hexoside isomer I |
40 | 18.4 | 350 | 755 | 315 (100) | Isorhamentin-O-deoxyhexosyl-pentosyl-hexoside isomer II |
41 | 20.2 | 353 | 623 | 315 (100) | Isorhamnetin-O-deoxyhexoside-O-hexoside isomer I |
42 | 20.8 | 350 | 623 | 315 (100) | Isorhamnetin-O-deoxyhexoside-O-hexoside isomer II |
43 | 21.4 | 351 | 623 | 315 (100) | Isorhamnetin-3-O-rutinoside |
44 | 22.0 | 345 | 477 | 315 (100) | Isorhamnetin-O-glucoside |
Compounds | Quantification (mg/g Extract) | p-Value | |
---|---|---|---|
MAC | PEF | ||
Asteriscus graveolens | |||
5-O-Caffeoylquinic acid 1 | 19.3 ± 0.3 | 5.83 ± 0.1 | 0.002 |
Apigenin-di-C-glucoside 2 | 1.1 ± 0.1 | 1.6 ± 0.1 | 0.008 |
Luteolin-O-acetylhexoside 11 | 0.74 ± 0.01 | 0.66 ± 0.01 | 0.01 |
Eridictyol-O-hexoside 3 | 0.023 ± 0.001 | nd | 0.007 |
Quercetin-3-O-rutinoside 4 | 0.163 ± 0.003 | 0.0026 ± 0.0001 | 0.004 |
Quercetin-3-O-glucuronide 4 | 4.9 ± 0.2 | 2.15 ± 0.01 | 0.01 |
3,5-O-Dicaffeoylquinic acid 1 | 3.6 ± 0.1 | 0.75 ± 0.01 | 0.006 |
Quercetin-O-malonylhexoside 4 | 0.81 ± 0.05 | 2.59 ± 0.03 | 0.0004 |
Tricin-O-glucoside 4 | 0.24 ± 0.02 | 0.018 ± 0.001 | 0.01 |
Total phenolic acids # | 22.8 ± 0.4 | 6.6 ± 0.1 | 0.003 |
Total Flavonoids # | 7.9 ± 0.1 | 7.0 ± 0.1 | 0.01 |
Total phenolic compound # | 30.7 ± 0.4 | 13.6 ± 0.2 | 0.0004 |
Ruta chalepensis | |||
4-p-Coumaroylquinic acid 1 | 4.7 ± 0.1 | 4.7 ± 0.2 | 0.3 |
4-O-Feruloylquinic acid 5 | 1.7 ± 0.1 | 2.0 ± 0.1 | 0.08 |
Apigenin-6-C-glucose-8-C-glucose 2 | 5.3 ± 0.1 | 6.0 ± 0.1 | 0.006 |
Apigenin-8-C-glucose-6-C-glucose 2 | 1.7 ± 0.1 | 1.5 ± 0.1 | 0.05 |
Apigenin-O-glucuronyl-hexoside 2 | 1.224 ± 0.001 | 2.40 ± 0.03 | 0.005 |
Tri-sinapoyl-gentiobiose 6 | 0.48 ± 0.03 | 0.31 ± 0.01 | 0.02 |
Quercetin-O-deoxyhexosyl-hexoside 4 | 1.24 ± 0.02 | 0.92 ± 0.02 | 0.001 |
Isorhamnetin-O-di-hexoside 4 | 23.1 ± 0.1 | 1.38 ± 0.01 | 0.001 |
Quercetin-3-O-rutinoside4 | 9.9 ± 0.5 | 28.9 ± 0.5 | 0.0004 |
Quercetin-3-O-glucuronide4 | 2.16 ± 0.02 | 2.21 ± 0.01 | 0.06 |
Eriodictyol-O-acetyl-di-hexoside 3 | 5.4 ± 0.3 | 1.00 ± 0.03 | 0.01 |
Isorhamnetin-3-O-rutinoside 4 | 3.9 ± 0.1 | 2.16 ± 0.03 | 0.01 |
1,2-Disinapoylgentiobioside 6 | 0.54 ± 0.02 | 2.11 ± 0.02 | 0.0002 |
1,2,2′ -Trisinapoylgentiobiose 6 | 0.62 ± 0.03 | 0.90 ± 0.01 | 0.01 |
1,2-Disinapoyl-2-feruloylgentiobiose 6 | 4.6 ± 0.2 | 1.15 ± 0.01 | 0.01 |
Sinapoyl-feruloylgentiobiose 6 | 4.8 ± 0.1 | 0.22 ± 0.01 | 0.001 |
Unknown* | nq | nq | - |
Total phenolic acids # | 18 ± 1 | 11.4 ± 0.3 | 0.006 |
Total flavonoids # | 54 ± 1 | 46.5 ± 0.3 | 0.03 |
Total phenolic compound # | 72 ± 2 | 58.01 ± 0.04 | 0.03 |
Haloxylon scoparium | |||
Protocatechuic acid 7 | 12.8 ± 0.2 | nd | 0.002 |
Caffeic acid 8 | 6.2 ± 0.3 | nd | 0.01 |
Glycosyringic acid 9 | 73.9 ± 1.5 | nd | 0.004 |
p-Coumaric acid hexoside 10 | 25.6 ± 0.2 | 10.8 ± 0.3 | 0.0005 |
Caffeic acid acetylhexoside 8 | 6.0 ± 0.2 | 10.5 ± 0.1 | 0.005 |
Isorhamnetin-O-hexoside-O-deoxyhexosyl-hexoside 4 | 6.9 ± 0.4 | nd | 0.01 |
Caffeic acid-O-(sinapoyl-O-hexoside) 8 | 0.063 ± 0.002 | nd | 0.007 |
Isorhamnetin-O-hydroxyferuloylhexoside-O-malonylhexoside isomer I 4 | 0.79 ± 0.02 | 0.91 ± 0.02 | 0.01 |
Isorhamnetin-O-hydroxyferuloylhexoside-O-malonylhexoside isomer II 4 | 0.686 ± 0.001 | 0.733 ± 0.001 | 0.0004 |
Isorhamnetin-O-dihexoside 4 | 0.67 ± 0.01 | 0.716 ± 0.002 | 0.01 |
Quercetin-O-pentoside-O-deoxyhexoside-hexoside 4 | 1.01 ± 0.01 | 0.946 ± 0.03 | 0.1 |
Isorhamnetin-O-di-deoxyhexosyl-hexoside 4 | 1.48 ± 0.02 | 1.30 ± 0.02 | 0.008 |
Isorhamentin-O-deoxyhexosyl-pentosyl-hexoside isomer I 4 | 3.15 ± 0.03 | 2.84 ± 0.02 | 0.01 |
Isorhamentin-O-deoxyhexosyl-pentosyl-hexoside isomer II 4 | 1.27 ± 0.02 | 1.27 ± 0.01 | 0.4 |
Isorhamnetin-O-deoxyhexoside-O-hexoside isomer I 4 | 1.72 ± 0.02 | 1.75 ± 0.02 | 0.1 |
Isorhamnetin-O-deoxyhexoside-O-hexoside isomer II 4 | 0.89 ± 0.02 | 0.87 ± 0.02 | 0.1 |
Isorhamnetin-3-O-rutinoside 4 | 0.25 ± 0.01 | 0.46 ± 0.03 | 0.02 |
Isorhamnetin-O-glucoside 4 | 0.656 ± 0.001 | 0.736 ± 0.002 | 0.0004 |
Total phenolic acids # | 125 ± 2 | 21.2 ± 0.4 | 0.003 |
Total flavonoids # | 19.4 ± 0.3 | 12.5 ± 0.1 | 0.005 |
Total phenolic compound # | 144 ± 2 | 33.8 ± 0.5 | 0.001 |
A. graveolens | H. scoparium | R. chalepensis | ||||
---|---|---|---|---|---|---|
MAC | PEF | MAC | PEF | MAC | PEF | |
Cytotoxic activity (GI50, µg/mL) | ||||||
AGS | 17 ± 2 a | 62 ± 2 b | 156 ± 14 c | 111 ± 8 d | 119 ± 2 d | >400 e |
CaCo-2 | 56 ± 3 a | 85 ± 4 b | 275 ± 12 c | 266 ± 10 d | 45 ± 3 e | >400 f |
MCF-7 | 43 ± 4 a | 69 ± 1 b | 250 ± 5 c | 242 ± 22 c | 39 ± 4 a | >400 d |
VERO | 43 ± 4 a | 74 ± 7 b | 146 ± 6 c | 81 ± 8 b | 136 ± 4 d | >400 e |
PLP2 | 13 ± 1 a | 56 ± 2 b | 209 ± 8 c | 201 ± 18 c | 55 ± 5 b | >400 d |
Anti-inflammatory activity (IC50, µg/mL) | ||||||
RAW 264.7 | 15 ± 1 a | 78 ± 2 b | >400 c | >400 c | 77 ± 1 b | >400 c |
Antioxidant activity (IC50, µg/mL) | ||||||
TBARS | 17 ± 4 e | 51 ± 1 b | 44.4 ± 8 ab | 35.6 ± 1 a | 79.5 ± 14 d | 50.5 ± 1 b |
OxHLIA | 88 ± 3 f | 25 ± 2 d | 19 ± 1 c | 6 ± 1 a | 12 ± 1 b | 67 ± 3 e |
Haloxylon scoparium | Asteriscus graveolens | Ruta chalepensis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PEF | MAC | PEF | MAC | PEF | MAC | |||||||
Antibacterial activity (mg/mL) | ||||||||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Gram-negative bacteria | ||||||||||||
Enterobacter Cloacae | 5 | >10 | 5 | >10 | 10 | >10 | 5 | >10 | 10 | >10 | 5 | >10 |
Escherichia coli | 5 | >10 | 2.5 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 |
Pseudomonas aeruginosa | >10 | >10 | 5 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 |
Salmonella enterica | 10 | >10 | 2.5 | >10 | >10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 |
Yersinia enterocolitica | 2.5 | >10 | 2.5 | >10 | 10 | >10 | 2.5 | >10 | 2.5 | >10 | 1.25 | >10 |
Gram-positive bacteria | ||||||||||||
Bacillus cereus | 5 | >10 | 5 | >10 | 10 | >10 | 2.5 | >10 | >10 | >10 | 0.6 | >10 |
Listeria monocytogenes | 5 | >10 | 2.5 | >10 | 10 | >10 | 5 | >10 | >10 | >10 | 5 | >10 |
Staphylococcus aureus | 2.5 | >10 | 1.25 | >10 | >10 | >10 | 5 | >10 | >10 | >10 | 2.5 | >10 |
Antifungal Activity mg/mL | ||||||||||||
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
Aspergillus brasiliensis | 10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 | 10 | >10 | >10 | >10 |
Aspergillus fumigatus | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 5 | >10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallarés, N.; Berrada, H.; Ferrer, E.; Rached, W.; Pinela, J.; Mandim, F.; Pires, T.C.S.P.; Finimundy, T.C.; Barba, F.J.; Barros, L. Green and Innovative Extraction: Phenolic Profiles and Biological Activities of Underutilized Plant Extracts Using Pulsed Electric Fields and Maceration. Foods 2025, 14, 222. https://doi.org/10.3390/foods14020222
Pallarés N, Berrada H, Ferrer E, Rached W, Pinela J, Mandim F, Pires TCSP, Finimundy TC, Barba FJ, Barros L. Green and Innovative Extraction: Phenolic Profiles and Biological Activities of Underutilized Plant Extracts Using Pulsed Electric Fields and Maceration. Foods. 2025; 14(2):222. https://doi.org/10.3390/foods14020222
Chicago/Turabian StylePallarés, Noelia, Houda Berrada, Emilia Ferrer, Wahiba Rached, José Pinela, Filipa Mandim, Tania C. S. P. Pires, Tiane C. Finimundy, Francisco J. Barba, and Lillian Barros. 2025. "Green and Innovative Extraction: Phenolic Profiles and Biological Activities of Underutilized Plant Extracts Using Pulsed Electric Fields and Maceration" Foods 14, no. 2: 222. https://doi.org/10.3390/foods14020222
APA StylePallarés, N., Berrada, H., Ferrer, E., Rached, W., Pinela, J., Mandim, F., Pires, T. C. S. P., Finimundy, T. C., Barba, F. J., & Barros, L. (2025). Green and Innovative Extraction: Phenolic Profiles and Biological Activities of Underutilized Plant Extracts Using Pulsed Electric Fields and Maceration. Foods, 14(2), 222. https://doi.org/10.3390/foods14020222