Antioxidant, Physiochemical, and Sensory Properties of Functional Marshmallow Produced from Honey, Strawberry Concentrates, and Hibiscus Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients of Marshmallows
2.2. Preparation of Marshmallow Confection
2.3. Nutritional Value and Cost of Modified Marshmallows
2.4. Chemical Analysis
2.4.1. Chemicals
2.4.2. Sample Preparation for Analysis
2.4.3. Moisture Content
2.4.4. Determination of Total Phenolic Content
2.4.5. Determination of Total Flavonoid Content
2.5. Determination of Antioxidant Activities
2.5.1. DPPH Free Radical Scavenging Assay
2.5.2. Reducing Power Assay
2.6. Textural Analysis
2.7. Sensory Analysis
2.8. Statistical Analysis
3. Results
3.1. Moisture Contents and Texture Analysis
3.2. Total Phenolic and Flavonoid Contents of the Modified Marshmallows
3.2.1. DPPH Inhibition Activity of the Modified Marshmallows
3.2.2. Reducing Power Activity of the Modified Marshmallows
3.2.3. Sensory Analysis
3.2.4. Production Cost and Nutritional Value of the Modified Marshmallows
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Efe, N.; Dawson, P. A Review: Sugar-Based Confectionery and the Importance of Ingredients. Eur. J. Agric. Food Sci. 2022, 4, 1–8. [Google Scholar] [CrossRef]
- Hernandez, E.; Moore, A.M.; Rollins, B.Y.; Tovar, A.; Savage, J.S. Sorry Parents, Children Consume High Amounts of Candy before and after a Meal: Within-Person Comparisons of Children’s Candy Intake and Associations with Temperament and Appetite. Children 2023, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Juliani, J.; Irmayati, I. Chemical Characteristics of Low-Calories Hard Candy Contains Trigona’s Honey and Patchouli Oil as Functional Confectionery. In Proceedings of the International Conference on Multidiciplinary Research, The Ravenala Attitude Hotel, Balaclava, Mauritius, 30 October 2022; Volume 5, pp. 2808–6929. [Google Scholar]
- Qin, P.; Li, Q.; Zhao, Y.; Chen, Q.; Sun, X.; Liu, Y.; Li, H.; Wang, T.; Chen, X.; Zhou, Q.; et al. Sugar and Artificially Sweetened Beverages and Risk of Obesity, Type 2 Diabetes Mellitus, Hypertension, and All-Cause Mortality: A Dose–Response Meta-Analysis of Prospective Cohort Studies. Eur. J. Epidemiol. 2020, 35, 655–671. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhu, Y.; Malik, V.; Li, X.; Peng, X.; Zhang, F.F.; Shan, Z.; Liu, L. Intake of Sugar-Sweetened and Low-Calorie Sweetened Beverages and Risk of Cardiovascular Disease: A Meta-Analysis and Systematic Review. Adv. Nutr. 2021, 12, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, M.J.; Waterhouse, B.; Aggarwal, V.R.; Bloor, K.; Doran, T. Effect of Sugar-Sweetened Beverages on Oral Health: A Systematic Review and Meta-Analysis. Eur. J. Public Health 2021, 31, 122–129. [Google Scholar] [CrossRef]
- Li, Y.; Guo, L.; He, K.; Huang, C.; Tang, S. Consumption of Sugar-Sweetened Beverages and Fruit Juice and Human Cancer: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. J. Cancer 2021, 12, 3077–3088. [Google Scholar] [CrossRef]
- World Health Organization. Sugars Intake for Adults and Children. 2018. Available online: https://www.who.int/publications/i/item/9789241549028/ (accessed on 24 November 2024).
- Konar, N.; Gunes, R.; Palabiyik, I.; Toker, O.S. Health Conscious Consumers and Sugar Confectionery: Present Aspects and Projections. Trends Food Sci. Technol. 2022, 123, 57–368. [Google Scholar] [CrossRef]
- Ungure, E.; Straumite, E.; Muižniece-Brasava, S.; Dukaļska, L. Consumer Attitude and Sensory Evaluation of Marshmallow. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2013, 67, 442–447. [Google Scholar] [CrossRef]
- Vignesh, A.; Amal, T.C.; Sarvalingam, A.; Vasanth, K. A Review on the Influence of Nutraceuticals and Functional Foods on Health. Food Chem. Adv. 2024, 5, 100749. [Google Scholar] [CrossRef]
- Montalvo-González, E.; Villagrán, Z.; González-Torres, S.; Iñiguez-Muñoz, L.E.; Isiordia-Espinoza, M.A.; Ruvalcaba-Gómez, J.M.; Arteaga-Garibay, R.I.; Acosta, J.L.; González-Silva, N.; Anaya-Esparza, L.M. Physiological Effects and Human Health Benefits of Hibiscus Sabdariffa: A Review of Clinical Trials. Pharmaceuticals 2022, 15, 464. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Turrini, F. Plant Foods and Underutilized Fruits as Source of Functional Food Ingredients: Chemical Composition, Quality Traits, and Biological Properties. Foods 2020, 9, 1474. [Google Scholar] [CrossRef] [PubMed]
- Newerli-Guz, J.; Śmiechowska, M.; Drzewiecka, A.; Tylingo, R. Bioactive Ingredients with Health-Promoting Properties of Strawberry Fruit (Fragaria x ananassa Duchesne). Molecules 2023, 28, 2711. [Google Scholar] [CrossRef]
- Abd El-Salam, M.H.; El-Shibiny, S. A Comprehensive Review on the Composition and Properties of Buffalo Milk. Dairy Sci. Technol. 2011, 91, 663–699. [Google Scholar] [CrossRef]
- Aga, M.B.; Sharma, V.; Dar, A.H.; Dash, K.K.; Singh, A.; Shams, R.; Khan, S.A. Comprehensive Review on Functional and Nutraceutical Properties of Honey. eFood 2023, 4, 71. [Google Scholar] [CrossRef]
- Kendall, P. Updating Food Preparation to Promote Health; Food and Nutrition Series|Preparation; Colorado State University: Fort Collins, CO, USA, 2008; Available online: https://extension.colostate.edu/docs/pubs/foodnut/09316.pdf (accessed on 25 November 2024).
- ElSaid Ali, N.M.; El Said Ali, N.M.; Al-Askalany, S.A.; Ghandor, H.M. Evaluation of Sensory, Physicochemical Changes of Marshmallow (Children Candy) by Addition Natural colors. Bull. Natl. Nutr. Inst. Arab. Repub. Egypt 2017, 50, 154. [Google Scholar]
- Tan, J.M.; Lim, M.H. Effects of Gelatine Type and Concentration on the Shelf-Life Stability and Quality of Marshmallows. Int. J. Food Sci. Technol. 2008, 43, 1699–1704. [Google Scholar] [CrossRef]
- USDA. USDA Food Composition Databases, the Food and Nutrient Database for Dietary Studies 2013–2014 and the National Nutrient Database for Standard Reference. 2022. Available online: https://fdc.nal.usda.gov/ (accessed on 25 November 2024).
- Duha, P.-D.; Yed, C. Antioxidative Activity of Three Herbal Water Extracts. Food Chem. 1997, 60, 639–645. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; Van Beek, T.A. Screening of Radical Scavenging Activity of Some Medicinal and Aromatic Plant Extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two New Flavonoids and Other Constituents in Licorice Root: Their Relative Astringency and Radical Scavenging Effects. Chem. Pharm. Bull. 1998, 36, 2090–2097. [Google Scholar] [CrossRef]
- Henrard, M.P.A. TIPS Options in the Jarrow-Yildirim Model. SSRN Electron. J. 2007, 1423. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques; CRC PRESS: Boca Raton, FL, USA, 1999; Volume 2, ISBN 9780367261788. [Google Scholar]
- Ergun, R.; Lietha, R.; Hartel, R.W. Moisture and Shelf Life in Sugar Confections. Crit. Rev. Food Sci. Nutr. 2010, 50, 162–192. [Google Scholar] [CrossRef]
- Sablani, S.S.; Kasapis, S.; Rahman, M.S. Evaluating Water Activity and Glass Transition Concepts for Food Stability. J. Food Eng. 2007, 78, 266–271. [Google Scholar] [CrossRef]
- Ali, M.R.; Mohamed, R.M.; Abedelmaksoud, T.G. Functional Strawberry and Red Beetroot Jelly Candies Rich in Fibers and Phenolic Compounds. Food Syst. 2021, 4, 82–88. [Google Scholar] [CrossRef]
- Tamer, C.E.; İncedayı, B.; Çopur, Ö.U.; Karınca, M. A Research on the Fortification Applications for Jelly Confectionery. J. Food Agric. Env. 2013, 11, 152–157. [Google Scholar]
- Rushikesh Shivnath, W.; Author, C.; Neha Kothawade, A.S. The Review on Medicinal Uses of Hibiscus Rosa-Sinensis. Int. J. Creat. Res. Thoughts 2022, 10, c352. [Google Scholar]
- Stevenson, D.E.; Hurst, R.D. Polyphenolic Phytochemicals—Just Antioxidants or Much More? Cell. Mol. Life Sci. 2007, 64, 2900–2916. [Google Scholar] [CrossRef] [PubMed]
- AlJaloudi, R.; Al-Dabbas, M.M.; Hamad, H.J.; Amara, R.A.; Al-Bashabsheh, Z.; Abughoush, M.; Choudhury, I.H.; Al-Nawasrah, B.A.; Iqbal, S. Development and Characterization of High-Energy Protein Bars with Enhanced Antioxidant, Chemical, Nutritional, Physical, and Sensory Properties. Foods 2024, 13, 259. [Google Scholar] [CrossRef] [PubMed]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the Phenolic Content, Antioxidant Activity and Colour of Slovenian Honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Facino, R.M. Standardization of Antioxidant Properties of Honey by a Combination of Spectrophotometric/Fluorimetric Assays and Chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Meyers, K.J.; Watkins, C.B.; Pritts, M.P.; Liu, R.H. Antioxidant and Antiproliferative Activities of Strawberries. J. Agric. Food Chem. 2003, 51, 6887–6892. [Google Scholar] [CrossRef] [PubMed]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the Total Phenolic, Flavonoid and Proline Contents in Burkina Fasan Honey, as Well as Their Radical Scavenging Activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Vankar, P.S.; Srivastava, J. Comparative Study of Total Phenol, Flavonoid Contents and Antioxidant Activity in Canna Indica and Hibiscus Rosa Sinensis: Prospective Natural Food Dyes. Int. J. Food Eng. 2008, 4, 1–17. [Google Scholar] [CrossRef]
- Al-Dabbas, M.M.; Moumneh, M.; Hamad, H.J.; Abughoush, M.; Abuawad, B.; Al-Nawasrah, B.A.; Al-Jaloudi, R.; Iqbal, S. Impact of Processing and Preservation Methods and Storage on Total Phenolics, Flavonoids, and Antioxidant Activities of Okra (Abelmoschus esculentus L.). Foods 2023, 12, 3711. [Google Scholar] [CrossRef] [PubMed]
- Villaño, D.; Fernández-Pachón, M.S.; Moyá, M.L.; Troncoso, A.M.; García-Parrilla, M.C. Radical Scavenging Ability of Polyphenolic Compounds towards DPPH Free Radical. Talanta 2007, 71, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Szeto, Y.T.; Tomlinson, B.; Benzie, I.F.F. Total Antioxidant and Ascorbic Acid Content of Fresh Fruits and Vegetables: Implications for Dietary Planning and Food Preservation. Br. J. Nutr. 2002, 87, 55–59. [Google Scholar] [CrossRef]
- Siddeeg, A.; AlKehayez, N.M.; Abu-Hiamed, H.A.; Al-Sanea, E.A.; AL-Farga, A.M. Mode of Action and Determination of Antioxidant Activity in the Dietary Sources: An Overview. Saudi J. Biol. Sci. 2021, 28, 1633–1644. [Google Scholar] [CrossRef]
- Walton, G.P.; White, J.J.; Webb, B.H.; Hufnagel, C.F.; Stevens, A.H. Manufacture of Concentrated Milk and Honey Products. Food Technol. 2011, 5, 203–207. [Google Scholar]
- Singh, A.; Swami, S.; Panwar, N.R.; Kumar, M.; Shukla, A.K.; Rouphael, Y.; Sabatino, L.; Kumar, P. Development Changes in the Physicochemical Composition and Mineral Profile of Red-Fleshed Dragon Fruit Grown under Semi-Arid Conditions. Agronomy 2022, 12, 355. [Google Scholar] [CrossRef]
- Periche, A.; Heredia, A.; Escriche, I.; Andrés, A.; Castelló, M.L. Potential Use of Isomaltulose to Produce Healthier Marshmallows. LWT 2015, 62, 605–612. [Google Scholar] [CrossRef]
Trials | Gelatin (%) | Water (%) | Glucose Syrup (%) | Honey (%) | Milk (%) | Sugar (Sucrose) (%) | Hibiscus Extract (%) | Strawberry Concentrate, 60 Brix (%) |
---|---|---|---|---|---|---|---|---|
Control | 4 | 25 | 35 | - | - | 35 | - | - |
F1 * | 4 | 14 | 33 | 9 | 4 | 35 | 1 | - |
F2 | 4 | 13 | 25 | 10 | 4 | 30 | 1 | 13 |
F3 | 4 | 15 | 20 | 15 | 4 | 25 | 1 | 16 |
F4 | 4 | 12 | 15 | 20 | 4 | 20 | 1 | 24 |
F5 | 4 | 12 | 5 | 30 | 4 | 20 | 1 | 24 |
F6 | 4 | 15 | 25 | 10 | - | 30 | - | 16 |
Formulation * | Moisture Content (%) | Hardness (N) | Traveled Distance at 0.5 N (mm) |
---|---|---|---|
Control | 21.1 ± 2.2 a | 0.90 ± 0.05 bc | 5.15 ± 0.34 ab |
F1 | 11.9 ± 1.8 b | 1.17 ± 0.13 a | 2.61 ± 0.92 c |
F2 | 13.4 ± 1.9 b | 0.80 ± 0.08 cd | 4.65 ± 0.62 b |
F3 | 12.2 ± 2.5 b | 0.90 ± 0.09 b | 4.27 ± 0.46 b |
F4 | 13.8 ± 3.2 b | 0.88 ± 0.17 bc | 4.48 ± 0.73 b |
F5 | 14.2 ± 1.9 b | 0.95 ± 0.30 bc | 4.48 ± 1.12 b |
F6 | 12.9 ± 1.6 b | 0.62 ± 0.11 d | 6.05 ± 0.73 a |
Treatments | Phenolic Content as Gallic Acid (mgGAE/100 g) | Flavonoid Content as Rutin (mg RE/100 g) | IC50 Values for DPPH Inhibition (mg/mL) | Reducing Power (%) (30 µg Vitamin C Equivalent) |
---|---|---|---|---|
Control | 14.0 ± 1.8 f | 0.03 ± 0.01 f | 99.6 ± 1.9 a | 29.4 ± 5.9 g |
F1 | 44.6 ± 5.3 cd | 0.56 ± 0.33 de | 18.0 f± 2.4 f | 47.8 ± 2.8 f |
F2 | 58.7 ± 0.3 cd | 0.77 ± 0.22 cd | 31.3 ± 2.9 e | 52.0 ± 3.2 ef |
F3 | 63.7 ± 1.4 bc | 0.83 ± 0.06 c | 8.0 ± 4.3 g | 56.3 ± 1.3 de |
F4 | 74.3 ± 8.2 ab | 1.23 ± 0.14 b | 5.1 ± 3.1 g | 60.7 ± 1.1 d |
F5 | 89.8 ± 4.7 a | 1.62 ± 0.04 a | 64.0 ± 4.7 c | 197.8 ± 4.0 a |
F6 | 55.9 ± 5.1 de | 0.64 ± 0.29 cd | 58.0 ± 5.5 c | 97.0 ± 4.3 c |
Honey | 31.5 ± 2.9 ef | 0.16 ± 0.11 f | 72.1 ± 1.8 b | 127.3 ± 4.6 b |
Hibiscus extract | 57.7 ± 13.3 ab | 0.53 ± 0.18 e | 50.9 ± 2.6 d | 121.9 ± 1.0 b |
Strawberry concentrate | 90.5 ± 20.2 a | 1.18 ± 0.24 b | 4.1 ± 3.3 g | 90.0 ± 8.3 c |
Treatments * | Overall | Appearance | Softness | Lightness | Elasticity | Flavor |
---|---|---|---|---|---|---|
Control | 5.806 c | 6.097 bc | 6.839 a | 6.355 ab | 6.452 ab | 5.774 bc |
F1 | 6.709 a | 7.097 a | 6.548 ab | 6.323 ab | 6.709 a | 7.258 a |
F2 | 5.839 bc | 5.645 c | 5.903 b | 5.613 b | 5.645 b | 5.032 c |
F3 | 6.226 abc | 6.290 abc | 6.581 ab | 6.452 ab | 6.387 ab | 7.484 a |
F4 | 6.968 a | 7.129 a | 6.484 ab | 6.806 a | 6.709 a | 7.032 a |
F5 | 6.613 abc | 6.581 ab | 6.677 ab | 6.709 a | 6.935 a | 6.774 ab |
F6 | 6.677 ab | 6.645 ab | 6.871 a | 6.742 a | 6.581 ab | 6.613 ab |
Control | F1 | F2 | F3 | F4 | F5 | F6 | |
---|---|---|---|---|---|---|---|
Energy (Kcal) | 296.0 | 330.1 | 286.8 | 261.5 | 237.9 | 231.1 | 331.6 |
Carbohydrate (g) | 70.00 | 78.80 | 67.70 | 62.32 | 59.06 | 56.06 | 80.44 |
Lipid (g) | - | 0.032 | 0.110 | 0.128 | 0.176 | 0.176 | 0.128 |
Protein (g) | 4.000 | 5.456 | 5.536 | 5.568 | 5.628 | 5.658 | 5.588 |
Fiber (g) | - | 0.018 | 0.722 | 0.894 | 1.336 | 1.356 | 0.884 |
Minerals (mg) | |||||||
Calcium | - | 54.10 | 56.88 | 57.82 | 59.78 | 60.38 | 57.52 |
Iron | - | 0.053 | 0.085 | 0.113 | 0.152 | 0.194 | 0.092 |
Magnesium | - | 5.090 | 7.320 | 7.930 | 9.390 | 9.590 | 7.830 |
Phosphorous | - | 38.74 | 42.28 | 43.30 | 45.66 | 40.06 | 43.10 |
Potassium | - | 6.760 | 45.24 | 56.60 | 82.56 | 87.76 | 54.00 |
Sodium | - | 0.420 | 5.270 | 6.580 | 9.740 | 10.14 | 6.380 |
Zinc | - | 0.019 | 0.022 | 0.033 | 0.044 | 0.066 | 0.022 |
Vitamins | |||||||
Vitamin C (mg) | - | 3.160 | 7.980 | 9.116 | 9.150 | 12.15 | 9.046 |
Thiamin (µg) | - | 0.110 | 4.000 | 5.000 | 7.400 | 8.400 | 4.800 |
Riboflavin (µg) | - | 7.500 | 8.000 | 10.80 | 15.00 | 18.80 | 14.40 |
Niacin (µg) | - | 14.00 | 93.20 | 117.2 | 171.4 | 183.6 | 126.2 |
Vitamin B6 (µg) | - | 2.200 | 2.400 | 3.600 | 4.800 | 7.200 | 6.000 |
Folate (mg) | - | 0.1800 | 0.200 | 0.300 | 0.400 | 0.600 | 0.500 |
Vitamin B12 (µg) | - | - | - | - | - | - | - |
Vitamin A (µg) | - | 33.12 | 31.12 | 31.26 | 31.66 | 31.66 | 31.12 |
Vitamin D3 (µg) | - | 0.480 | 0.480 | 0.480 | 0.480 | 0.480 | 0.480 |
Vitamin E (µg) | - | - | - | - | - | - | - |
Cost (USD/100 g) | 0.37 | 0.55 | 0.55 | 0.56 | 0.60 | 0.61 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Dabbas, M.M.; Abu Samaan, E.G.; Iqbal, S.; Hamad, H.J.; Al-Jaloudi, R.; Shahein, M.; Al-Nawasrah, B.A.; Al-Zabt, A.; Al-Refaie, D.; Shehadeh, N.; et al. Antioxidant, Physiochemical, and Sensory Properties of Functional Marshmallow Produced from Honey, Strawberry Concentrates, and Hibiscus Extract. Foods 2025, 14, 265. https://doi.org/10.3390/foods14020265
Al-Dabbas MM, Abu Samaan EG, Iqbal S, Hamad HJ, Al-Jaloudi R, Shahein M, Al-Nawasrah BA, Al-Zabt A, Al-Refaie D, Shehadeh N, et al. Antioxidant, Physiochemical, and Sensory Properties of Functional Marshmallow Produced from Honey, Strawberry Concentrates, and Hibiscus Extract. Foods. 2025; 14(2):265. https://doi.org/10.3390/foods14020265
Chicago/Turabian StyleAl-Dabbas, Maher M., Etaf G. Abu Samaan, Sehar Iqbal, Hani J. Hamad, Rawan Al-Jaloudi, Mohammad Shahein, Bha’a Aldin Al-Nawasrah, Abdalrahman Al-Zabt, Doa`a Al-Refaie, Nisreen Shehadeh, and et al. 2025. "Antioxidant, Physiochemical, and Sensory Properties of Functional Marshmallow Produced from Honey, Strawberry Concentrates, and Hibiscus Extract" Foods 14, no. 2: 265. https://doi.org/10.3390/foods14020265
APA StyleAl-Dabbas, M. M., Abu Samaan, E. G., Iqbal, S., Hamad, H. J., Al-Jaloudi, R., Shahein, M., Al-Nawasrah, B. A., Al-Zabt, A., Al-Refaie, D., Shehadeh, N., & Abughoush, M. (2025). Antioxidant, Physiochemical, and Sensory Properties of Functional Marshmallow Produced from Honey, Strawberry Concentrates, and Hibiscus Extract. Foods, 14(2), 265. https://doi.org/10.3390/foods14020265