Exploitation of the Nutraceutical Potential of the Infesting Seaweed Chaetomorpha linum as a Yellow Mealworms’ Feed: Focus on Nutrients and Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of the Experiment
2.3. Extraction of Polar Metabolites
2.4. Proximate Composition
2.5. Gastrointestinal Digestion
2.6. NMR Analysis
2.7. Fatty Acids
2.8. Lipid Quality Indices Determination
2.9. Amino Acid Determination
2.10. Determination of the Antioxidant Activity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Survival Rate and Body Weight
3.2. Analysis of Proximate Composition
3.3. Analysis of Fat
3.4. Analysis of Polar Secondary Metabolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission EUR-Lex—52022DC0592—Towards a Strong and Sustainable EU Algae Sector. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2022:592:FIN (accessed on 22 May 2024).
- European Commission Communication from the Commission. The European Green Deal. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640 (accessed on 6 April 2023).
- European Commission More Than 20 Algae Species Can Now Be Sold as Food or Food Supplements in the EU. Available online: https://oceans-and-fisheries.ec.europa.eu/news/more-20-algae-species-can-now-be-sold-food-or-food-supplements-eu-2024-02-26_en (accessed on 22 May 2024).
- Mendes, M.C.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Gao, F.; Gama, F.; Bombo, G.; Jacinto, R.; et al. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods 2022, 11, 1871. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, G.; Orlando-Bonaca, M. Chemical Elements in Mediterranean Macroalgae. A Review. Ecotoxicol. Environ. Saf. 2018, 148, 44–71. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Cifuentes, A.; Ibáñez, E. In the Search of New Functional Food Ingredients from Algae. Trends Food Sci. Technol. 2008, 19, 31–39. [Google Scholar] [CrossRef]
- Brai, A.; Poggialini, F.; Trivisani, C.I.; Vagaggini, C.; Tarchi, F.; Francardi, V.; Dreassi, E. Efficient Use of Agricultural Waste to Naturally Fortify Tenebrio molitor Mealworms and Evaluation of Their Nutraceutical Properties. J. Insects Food Feed. 2023, 9, 599–610. [Google Scholar] [CrossRef]
- Andreadis, S.S.; Panteli, N.; Mastoraki, M.; Rizou, E.; Stefanou, V.; Tzentilasvili, S.; Sarrou, E.; Chatzifotis, S.; Krigas, N.; Antonopoulou, E. Towards Functional Insect Feeds: Agri-Food by-Products Enriched with Post-Distillation Residues of Medicinal Aromatic Plants in Tenebrio molitor (Coleoptera: Tenebrionidae) Breeding. Antioxidants 2022, 11, 68. [Google Scholar] [CrossRef]
- George, D.R.; Sparagano, O.A.E.; Port, G.; Okello, E.; Shiel, R.S.; Guy, J.H. Repellence of Plant Essential Oils to Dermanyssus Gallinae and Toxicity to the Non-Target Invertebrate Tenebrio molitor. Vet. Parasitol. 2009, 162, 129–134. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Cola Zanuncio, J.; Eduardo Serrão, J.; Carlos Martínez, L.; Benelli, G. Origanum Vulgare Essential Oil against Tenebrio molitor (Coleoptera: Tenebrionidae): Composition, Insecticidal Activity, and Behavioral Response. Plants 2021, 10, 2513. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Martínez, L.C.; Dos Santos, M.H.; Fernandes, F.L.; Wilcken, C.F.; Soares, M.A.; Serrão, J.E.; Zanuncio, J.C. Insecticidal Activity of Garlic Essential Oil and Their Constituents against the Mealworm Beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Sci. Rep. 2017, 7, 46406. [Google Scholar] [CrossRef]
- Morales-Ramos, J.A.; Rojas, M.G.; Shapiro-Nan, D.I.; Tedders, W.L. Developmental Plasticity in Tenebrio molitor (Coleoptera: Tenebrionidae): Analysis of Instar Variation in Number and Development Time under Different Diets. J. Entomol. Sci. 2010, 45, 75–90. [Google Scholar] [CrossRef]
- Brai, A.; Vagaggini, C.; Pasqualini, C.; Poggialini, F.; Tarchi, F.; Francardi, V.; Dreassi, E. Use of Distillery By-Products as Tenebrio molitor Mealworm Feed Supplement. J. Insects Food Feed 2023, 9, 611–623. [Google Scholar] [CrossRef]
- Melis, R.; Braca, A.; Sanna, R.; Spada, S.; Mulas, G.; Fadda, M.L.; Sassu, M.M.; Serra, G.; Anedda, R. Metabolic Response of Yellow Mealworm Larvae to Two Alternative Rearing Substrates. Metabolomics 2019, 15, 113. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Fratini, F.; Turchi, B.; Mattioli, S.; Dal Bosco, A.; Tuccinardi, T.; Nozic, S.; Paci, G. Former Foodstuff Products in Tenebrio molitor Rearing: Effects on Growth, Chemical Composition, Microbiological Load, and Antioxidant Status. Animals 2019, 9, 484. [Google Scholar] [CrossRef] [PubMed]
- Harsányi, E.; Juhász, C.; Kovács, E.; Huzsvai, L.; Pintér, R.; Fekete, G.; Varga, Z.I.; Aleksza, L.; Gyuricza, C. Evaluation of Organic Wastes as Substrates for Rearing Zophobas Morio, Tenebrio molitor, and Acheta Domesticus Larvae as Alternative Feed Supplements. Insects 2020, 11, 604. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for Livestock Diets: A Review. Anim. Feed. Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Saker, K.E.; Fike, J.H.; Veit, H.; Ward, D.L. Brown Seaweed- (TascoTM) Treated Conserved Forage Enhances Antioxidant Status and Immune Function in Heat-Stressed Wether Lambs. J. Anim. Physiol. Anim. Nutr. 2004, 88, 122–130. [Google Scholar] [CrossRef]
- Okab, A.B.; Samara, E.M.; Abdoun, K.A.; Rafay, J.; Ondruska, L.; Parkanyi, V.; Pivko, J.; Ayoub, M.A.; Al-Haidary, A.A.; Aljumaah, R.S.; et al. Effects of Dietary Seaweed (Ulva lactuca) Supplementation on the Reproductive Performance of Buck and Doe Rabbits. J. Appl. Anim. Res. 2013, 41, 347–355. [Google Scholar] [CrossRef]
- Katayama, M.; Fukuda, T.; Okamura, T.; Suzuki, E.; Tamura, K.; Shimizu, Y.; Suda, Y.; Suzuki, K. Effect of Dietary Addition of Seaweed and Licorice on the Immune Performance of Pigs. Anim. Sci. J. 2011, 82, 274–281. [Google Scholar] [CrossRef]
- Michiels, J.; Skrivanova, E.; Missotten, J.; Ovyn, A.; Mrazek, J.; De Smet, S.; Dierick, N. Intact Brown Seaweed (Ascophyllum Nodosum) in Diets of Weaned Piglets: Effects on Performance, Gut Bacteria and Morphology and Plasma Oxidative Status. J. Anim. Physiol. Anim. Nutr. 2012, 96, 1101–1111. [Google Scholar] [CrossRef]
- Mišurcová, L.; Kráčmar, S.; Klejdus, B.; Vacek, J. Nitrogen Content, Dietary Fiber, and Digestibility in Algal Food Products. Czech J. Food Sci. 2010, 28, 27–35. [Google Scholar] [CrossRef]
- Lahaye, M.; Jegou, D. Chemical and Physical-Chemical Characteristics of Dietary Fibres from Ulva lactuca (L.) Thuret and Enteromorpha compressa (L.) Grev. J. Appl. Phycol. 1993, 5, 195–200. [Google Scholar] [CrossRef]
- Evans, F.D.; Critchley, A.T. Seaweeds for Animal Production Use. J. Appl. Phycol. 2014, 26, 891–899. [Google Scholar] [CrossRef]
- Dunlop, G. Feeding of Seaweed Meal to Lactating Cows. Nature 1953, 171, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Diler, I.; Tekinay, A.A.; Güroy, D.; Güroy, B.K.; Soyutürk, M. Effects of Ulva Rigida on the Growth, Feed Intake and Body Composition of Common Carp, Cyprinus carpio L. J. Biol. Sci. 2007, 7, 305–308. [Google Scholar] [CrossRef]
- Applegate, R.D.; Gray, P.B. Nutritional Value of Seaweed to Ruminants. Rangifer 1995, 15, 15. [Google Scholar] [CrossRef]
- Allen, V.G.; Pond, K.R.; Saker, K.E.; Fontenot, J.P.; Bagley, C.P.; Ivy, R.L.; Evans, R.R.; Brown, C.P.; Miller, M.F.; Montgomery, J.L.; et al. Tasco-Forage: III. Influence of a Seaweed Extract on Performance, Monocyte Immune Cell Response, and Carcass Characteristics in Feedlot-Finished Steers. J. Anim. Sci. 2001, 79, 1032–1040. [Google Scholar] [CrossRef]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Goncąlves, A.M.M.; Da Silva, G.J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef]
- Dierick, N.; Ovyn, A.; De Smet, S. Effect of Feeding Intact Brown Seaweed Ascophyllum Nodosum on Some Digestive Parameters and on Iodine Content in Edible Tissues in Pigs. J. Sci. Food Agric. 2009, 89, 584–594. [Google Scholar] [CrossRef]
- Asha, A.; Rathi, J.; Raja, D.; Biopest, K.S.-J. Biocidal Activity of Two Marine Green Algal Extracts against Third Instar Nymph of Dysdercus cingulatus (Fab.)(Hemiptera: Pyrrhocoridae). JBiopest 2012, 5, 129–134. [Google Scholar]
- El-Aziz, F.E.Z.A.A.; Hifney, A.F.; Mohany, M.; Al-Rejaie, S.S.; Banach, A.; Sayed, A.M. Insecticidal Activity of Brown Seaweed (Sargassum latifolium) Extract as Potential Chitin Synthase Inhibitors: Toxicokinetic and Molecular Docking Approaches. S. Afr. J. Bot. 2023, 160, 645–656. [Google Scholar] [CrossRef]
- Liland, N.S.; Biancarosa, I.; Araujo, P.; Biemans, D.; Bruckner, C.G.; Waagbø, R.; Torstensen, B.E.; Lock, E.J. Modulation of Nutrient Composition of Black Soldier Fly (Hermetia illucens) Larvae by Feeding Seaweed-Enriched Media. PLoS ONE 2017, 12, e0183188. [Google Scholar] [CrossRef]
- Brai, A.; Hasanaj, A.; Vagaggini, C.; Poggialini, F.; Dreassi, E. Infesting Seaweeds as a Novel Functional Food: Analysis of Nutrients, Antioxidants and ACE Inhibitory Effects. Int. J. Mol. Sci. 2024, 25, 7588. [Google Scholar] [CrossRef]
- Brai, A.; Neri, C.; Tarchi, F.; Poggialini, F.; Vagaggini, C.; Frosinini, R.; Simoni, S.; Francardi, V.; Dreassi, E. Upcycling Milk Industry Byproducts into Tenebrio molitor Larvae: Investigation on Fat, Protein, and Sugar Composition. Foods 2024, 13, 3450. [Google Scholar] [CrossRef] [PubMed]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Rumbos, C.I.; Athanassiou, C.G.; Lalas, S.I. Enhancing the Nutritional Profile of Tenebrio molitor Using the Leaves of Moringa Oleifera. Foods 2023, 12, 2612. [Google Scholar] [CrossRef]
- Ferri, I.; Dell’Anno, M.; Spano, M.; Canala, B.; Petrali, B.; Dametti, M.; Magnaghi, S.; Rossi, L. Characterisation of Tenebrio molitor Reared on Substrates Supplemented with Chestnut Shell. Insects 2024, 15, 512. [Google Scholar] [CrossRef]
- Gómez-Zorita, S.; González-Arceo, M.; Trepiana, J.; Eseberri, I.; Fernández-Quintela, A.; Milton-Laskibar, I.; Aguirre, L.; González, M.; Portillo, M.P. Anti-Obesity Effects of Macroalgae. Nutrients 2020, 12, 2378. [Google Scholar] [CrossRef] [PubMed]
- FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-search?query=lamb&type=SR%20Legacy (accessed on 17 September 2024).
- Amawi, A.; Alkasasbeh, W.; Jaradat, M.; Almasri, A.; Alobaidi, S.; Hammad, A.A.; Bishtawi, T.; Fataftah, B.; Turk, N.; Al Saoud, H.; et al. Athletes’ Nutritional Demands: A Narrative Review of Nutritional Requirements. Front. Nutr. 2024, 10, 1331854. [Google Scholar] [CrossRef]
- Pelly, F.E.; Thurecht, R. Evaluation of Athletes’ Food Choices during Competition with Use of Digital Images. Nutrients 2019, 11, 1627. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Ayad, A.A.; Williams, L.L.; Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O. Date Fruit: A Review of the Chemical and Nutritional Compounds, Functional Effects and Food Application in Nutrition Bars for Athletes. Int. J. Food Sci. Technol. 2021, 56, 1503–1513. [Google Scholar] [CrossRef]
- Stabili, L.; Acquaviva, M.I.; Angilé, F.; Cavallo, R.A.; Cecere, E.; Del Coco, L.; Fanizzi, F.P.; Gerardi, C.; Narracci, M.; Petrocelli, A. Screening of Chaetomorpha linum Lipidic Extract as a New Potential Source of Bioactive Compounds. Mar. Drugs 2019, 17, 313. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Kumar, M.; Kumari, P.; Trivedi, N.; Shukla, M.K.; Gupta, V.; Reddy, C.R.K.; Jha, B. Minerals, PUFAs and Antioxidant Properties of Some Tropical Seaweeds from Saurashtra Coast of India. J. Appl. Phycol. 2011, 23, 797–810. [Google Scholar] [CrossRef]
- Dellatorre, F.G.; Avaro, M.G.; Commendatore, M.G.; Arce, L.; Díaz de Vivar, M.E. The Macroalgal Ensemble of Golfo Nuevo (Patagonia, Argentina) as a Potential Source of Valuable Fatty Acids for Nutritional and Nutraceutical Purposes. Algal Res. 2020, 45, 101726. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Pires, M.A.; Rodrigues, I.; Barros, J.C.; Carnauba, G.; de Carvalho, F.A.L.; Trindade, M.A. Partial Replacement of Pork Fat by Echium Oil in Reduced Sodium Bologna Sausages: Technological, Nutritional and Stability Implications. J. Sci. Food Agric. 2020, 100, 410–420. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Kwiecień, M.; Kwiatkowska, K.; Baranowska-Wójcik, E.; Szwajgier, D.; Zaricka, E.; Winiarska-Mieczan, A.; Kwiecień, M.; Kwiatkowska, K.; Baranowska-Wójcik, E.; et al. Fatty Acid Profile, Antioxidative Status and Dietary Value of the Breast Muscle of Broiler Chickens Receiving Glycine-Zn Chelates. Anim. Prod. Sci. 2020, 60, 1095–1102. [Google Scholar] [CrossRef]
- Rincón-Cervera, M.Á.; González-Barriga, V.; Romero, J.; Rojas, R.; López-Arana, S. Quantification and Distribution of Omega-3 Fatty Acids in South Pacific Fish and Shellfish Species. Foods 2020, 9, 233. [Google Scholar] [CrossRef]
- Fasel, N.J.; Mè Ne-Saffrané, L.; Ruczyński, I.; Komar, E.; Christe, P. Diet Induced Modifications of Fatty-Acid Composition in Mealworm Larvae (Tenebrio molitor). J. Food Res. 2017, 6, 22–31. [Google Scholar] [CrossRef]
- Sánchez-Muros, M.J.; Barroso, F.G.; Manzano-Agugliaro, F. Insect Meal as Renewable Source of Food for Animal Feeding: A Review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Canavoso, L.E.; Jouni, Z.E.; Karnas, K.J.; Pennington, J.E.; Wells, M.A. Fat Metabolism in Insects. Annu. Rev. Nutr. 2001, 21, 23–46. [Google Scholar] [CrossRef]
- Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant Activity of Chlorophylls and Their Derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Senthilkumar, P.; Sudha, S. Antioxidant and Antibacterial Properties of Methanolic Extract of Green Seaweed Chaetomorpha Linum from Gulf of Mannar: Southeast Coast of India. Jundishapur J. Microbiol. 2012, 5, 411–415. [Google Scholar] [CrossRef]
- Adámková, A.; Mlček, J.; Adámek, M.; Borkovcová, M.; Bednářová, M.; Hlobilová, V.; Knížková, I.; Juríková, T. Tenebrio molitor (Coleoptera: Tenebrionidae)—Optimization of Rearing Conditions to Obtain Desired Nutritional Values. J. Insect Sci. 2020, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Brai, A.; Poggialini, F.; Vagaggini, C.; Pasqualini, C.; Simoni, S.; Francardi, V.; Dreassi, E. Tenebrio molitor as a Simple and Cheap Preclinical Pharmacokinetic and Toxicity Model. Int. J. Mol. Sci. 2023, 24, 2296. [Google Scholar] [CrossRef] [PubMed]
- Brai, A.; Tarchi, F.; Pasqualini, C.; Poggialini, F.; Vagaggini, C.; Frosinini, R.; Simoni, S.; Francardi, V.; Dreassi, E. The replacement of flour-based feed with pellets reduces dustiness and improves Tenebrio molitor breeders’ safety. Redia 2023, 106, 133–140. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.P.; Van Den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Brai, A.; Provenzani, M.P.; Pasqualini, C.; Poggialini, F.; Vagaggini, C.; Tarchi, F.; Frosinini, R.; Francardi, V.; Simoni, S.; Dreassi, E. Exploiting Fall Foliage By-Products to Optimize Tenebrio molitor Nutraceutical Value. J. Insects Food Feed. 2023, 10, 959–976. [Google Scholar] [CrossRef]
% Composition | CTRL ± SD | CL20% ± SD | CL50% ± SD | CL100% ± SD |
---|---|---|---|---|
Proteins (% DW) | 36.20 ± 1.73 a | 40.13 ± 1.66 a | 44.16 ± 1.96 b | 43.16 ± 1.91 b |
Fat (% DW) | 37.42 ± 1.40 c | 36.41 ± 2.14 c | 20.91 ± 1.61 b | 6.02 ± 0.52 a |
Carbohydrates (% DW) | 6.56 ± 0.55 a | 4.97 ± 0.62 a | 7.65 ± 0.71 a | 14.56 ± 0.98 b |
Energy (kcal/100 g DW) | 517.49 ± 22.53 c | 519.01 ± 28.79 c | 402.17 ± 25.64 b | 295.29 ± 14.70 a |
CTRL | CL20% | CL50% | CL100% | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
C10:0 | 0.010 | 0.000 | 0.021 | 0.000 | 0.020 | 0.010 | 0.011 | 0.000 |
C12:0 | 0.495 | 0.016 | 0.513 | 0.002 | 0.595 | 0.134 | 0.968 | 0.011 |
C13:0 | 0.041 | 0.000 | 0.036 | 0.005 | 0.049 | 0.001 | 0.032 | 0.001 |
C14:0 | 5.155 | 0.010 b | 4.948 | 0.362 b | 4.070 | 0.150 b | 2.210 | 0.074 a |
C15:0 | 0.051 | 0.000 | 0.062 | 0.000 | 0.175 | 0.012 | 0.075 | 0.001 |
C16:0 | 13.348 | 0.283 b | 12.336 | 0.131 a | 12.244 | 0.143 a | 16.792 | 1.063 c |
C17:0 | 0.056 | 0.005 | 0.062 | 0.000 | 0.117 | 0.002 | 0.128 | 0.002 |
C18:0 | 2.901 | 0.033 a | 2.761 | 0.229 a | 2.931 | 0.126 a | 4.668 | 0.270 b |
C20:0 | 0.092 | 0.010 | 0.113 | 0.011 | 0.117 | 0.011 | 0.214 | 0.025 |
Σ SFA | 22.148 | 0.295 b | 20.850 | 0.731 a | 20.317 | 0.303 a | 25.099 | 1.425 c |
C14:1 11 | 0.347 | 0.011 | 0.431 | 0.033 | 0.175 | 0.012 | 0.075 | 0.001 |
C16:1 9 | 1.851 | 0.068 a | 1.996 | 0.088 a | 2.527 | 0.145 ab | 3.466 | 0.050 b |
C16:1 11 | 1.178 | 0.047 | 1.329 | 0.053 | 0.866 | 0.002 | 0.476 | 0.019 |
C18:1 9 | 53.225 | 0.230 | 53.782 | 0.800 | 51.012 | 0.340 | 41.632 | 1.604 |
C18:1 11 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
C20:1 11 | 2.239 | 0.323 | 1.747 | 0.706 | 1.272 | 0.177 | 2.058 | 0.810 |
Σ MUFA | 58.849 | 0.679 c | 58.853 | 0.130 c | 55.677 | 0.016 b | 47.631 | 0.863 a |
C14:2 9,11 | 0.163 | 0.000 | 0.149 | 0.015 | 0.127 | 0.002 | 0.048 | 0.005 |
C16:2 9,11 | 0.163 | 0.000 | 0.159 | 0.015 | 0.229 | 0.012 | 0.124 | 0.114 |
C18:2 9,12 | 18.646 | 0.354 a | 19.907 | 0.572 b | 23.247 | 0.297 c | 26.093 | 0.603 d |
C18 d3 6 9,12 | 0.194 | 0.030 | 0.231 | 0.014 | 0.531 | 0.021 | 1.053 | 0.074 |
Σ PUFA | 19.002 | 0.384 a | 20.297 | 0.601 a | 24.006 | 0.287 b | 27.270 | 0.562 c |
IA | 0.443 | 0.006 a | 0.413 | 0.024 a | 0.365 | 0.009 b | 0.355 | 0.025 b |
IT | 0.538 | 0.009 b | 0.495 | 0.023 a | 0.464 | 0.004 a | 0.590 | 0.049 b |
HH | 3.802 | 0.047 b | 4.166 | 0.195 c | 4.437 | 0.074 c | 3.462 | 0.304 a |
AA | CTRL | CL20% | CL50% | CL100% | FAO/WHO/UNU Reference Protein |
---|---|---|---|---|---|
His | 25.72 ± 1.68 | 46.20 ± 2.79 | 48.73 ± 1.54 | 65.02 ± 1.25 | 19 |
Thr | 32.14 ± 1.00 | 36.79 ± 1.16 | 42.98 ± 1.17 | 49.55 ± 0.99 | 34 |
Val | 38.65 ± 1.49 | 30.21 ± 1.73 | 30.36 ± 2.23 | 18.90 ± 1.38 | 35 |
Met + Cys | 12.64 ± 1.17 | 14.25 ± 1.39 | 11.76 ± 1.53 | 8.75 ± 1.01 | 25 |
Lys | 59.88 ± 2.21 | 52.50 ± 1.52 | 30.07 ± 1.89 | 79.17 ± 2.63 | 58 |
Ile | 30.65 ± 2.69 | 33.24 ± 1.39 | 31.05 ± 1.81 | 27.05 ± 1.97 | 28 |
Leu | 51.24 ± 0.59 | 56.35 ± 2.22 | 52.17 ± 1.75 | 43.87 ± 2.14 | 66 |
Phe + Tyr | 90.86 ± 4.42 | 86.39 ± 3.63 | 59.21 ± 4.31 | 70.72 ± 2.56 | 63 |
Total EAA | 341.78 ± 15.25 | 355.93 ± 15.82 | 306.33 ± 16.24 | 363.03 ± 13.93 | 328 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brai, A.; Brogi, E.; Tarchi, F.; Poggialini, F.; Vagaggini, C.; Simoni, S.; Francardi, V.; Dreassi, E. Exploitation of the Nutraceutical Potential of the Infesting Seaweed Chaetomorpha linum as a Yellow Mealworms’ Feed: Focus on Nutrients and Antioxidant Activity. Foods 2025, 14, 325. https://doi.org/10.3390/foods14020325
Brai A, Brogi E, Tarchi F, Poggialini F, Vagaggini C, Simoni S, Francardi V, Dreassi E. Exploitation of the Nutraceutical Potential of the Infesting Seaweed Chaetomorpha linum as a Yellow Mealworms’ Feed: Focus on Nutrients and Antioxidant Activity. Foods. 2025; 14(2):325. https://doi.org/10.3390/foods14020325
Chicago/Turabian StyleBrai, Annalaura, Edoardo Brogi, Franca Tarchi, Federica Poggialini, Chiara Vagaggini, Sauro Simoni, Valeria Francardi, and Elena Dreassi. 2025. "Exploitation of the Nutraceutical Potential of the Infesting Seaweed Chaetomorpha linum as a Yellow Mealworms’ Feed: Focus on Nutrients and Antioxidant Activity" Foods 14, no. 2: 325. https://doi.org/10.3390/foods14020325
APA StyleBrai, A., Brogi, E., Tarchi, F., Poggialini, F., Vagaggini, C., Simoni, S., Francardi, V., & Dreassi, E. (2025). Exploitation of the Nutraceutical Potential of the Infesting Seaweed Chaetomorpha linum as a Yellow Mealworms’ Feed: Focus on Nutrients and Antioxidant Activity. Foods, 14(2), 325. https://doi.org/10.3390/foods14020325