Novel Ingredients: Hydroxytyrosol as a Neuroprotective Agent; What Is New on the Horizon?
Abstract
1. Introduction
2. Pharmacokinetics and Brain Bioavailability of Hydroxytyrosol
3. Neurovascular and Neuroimmune Pathways
4. Dopaminergic Pathways and Motivation
5. Clinical Evidence and Translational Insights
6. Strategies for Developing Neuroprotective HXT-Enriched Foods
7. Future Research in Food Development and Clinical Perspectives
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Martínez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; Estruch, R.; Salas-Salvadó, J.; San Julián, B.; Sánchez-Tainta, A.; Ros, E.; Valls-Pedret, C.; Martínez-González, M.A. Mediterranean Diet Improves Cognition: The PREDIMED-NAVARRA Randomised Trial. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1318–1325. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Nutrition and Fitness: Mental Health, Aging, and the Implementation of a Healthy Diet and Physical Activity Lifestyle; Karger: Basel, Switzerland, 2005; ISBN 3805579454. [Google Scholar]
- WHO. World Mental Health Report: Transforming Mental Health for All; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Singh, M. Mood, Food and Obesity. Front. Psychol. 2014, 5, 925. [Google Scholar] [CrossRef]
- Bayes, J.; Schloss, J.; Sibbritt, D. The Effect of a Mediterranean Diet on the Symptoms of Depression in Young Males (the “AMMEND: A Mediterranean Diet in MEN with Depression” Study): A Randomized Controlled Trial. Am. J. Clin. Nutr. 2022, 116, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Açik, M.; Altan, M.; Çakiroğlu, F.P. A Cross-Sectionally Analysis of Two Dietary Quality Indices and the Mental Health Profile in Female Adults. Curr. Psychol. 2022, 41, 5514–5523. [Google Scholar] [CrossRef]
- Kessler, R.C.; Berglund, P.; Demler, O.; Ma, R.; Jin, M.A.; Merikangas, K.R.; Walters, E.E. Lifetime Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Akbaraly, T.N.; Brunner, E.J.; Ferrie, J.E.; Marmot, M.G.; Kivimaki, M.; Singh-Manoux, A. Dietary Pattern and Depressive Symptoms in Middle Age. Br. J. Psychiatry 2009, 195, 408–413. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Toledo, E.; De Irala, J.; Ruiz-Canela, M.; Pla-Vidal, J.; Martínez-González, M.A. Fast-Food and Commercial Baked Goods Consumption and the Risk of Depression. Public Health Nutr. 2012, 15, 424–432. [Google Scholar] [CrossRef]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean Diet, Its Components, and Cardiovascular Disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.N.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and Potential Health Benefits of the Mediterranean Diet: Views from Experts around the World. BMC Med. 2014, 12, 112. [Google Scholar] [CrossRef]
- Batuecas, E.; Tommasi, T.; Battista, F.; Negro, V.; Sonetti, G.; Viotti, P.; Fino, D.; Mancini, G. Life Cycle Assessment of Waste Disposal from Olive Oil Production: Anaerobic Digestion and Conventional Disposal on Soil. J. Environ. Manag. 2019, 237, 94–102. [Google Scholar] [CrossRef]
- Bertelli, M.; Kiani, A.K.; Paolacci, S.; Manara, E.; Kurti, D.; Dhuli, K.; Bushati, V.; Miertus, J.; Pangallo, D.; Baglivo, M.; et al. Hydroxytyrosol: A Natural Compound with Promising Pharmacological Activities. J. Biotechnol. 2020, 309, 29–33. [Google Scholar] [CrossRef]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M. Hydroxytyrosol: Bioavailability, Toxicity, and Clinical Applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ai, Q.-D.; Wei, Y.-H. Potential Role of Hydroxytyrosol in Neuroprotection. J. Funct. Foods 2021, 82, 104506. [Google Scholar] [CrossRef]
- Boronat, A.; Serreli, G.; Rodríguez-Morató, J.; Deiana, M.; de la Torre, R. Olive Oil Phenolic Compounds’ Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence. Antioxidants 2023, 12, 1472. [Google Scholar] [CrossRef] [PubMed]
- Kaddoumi, A.; Denney, T.S.; Deshpande, G.; Robinson, J.L.; Beyers, R.J.; Redden, D.T.; Praticò, D.; Kyriakides, T.C.; Lu, B.; Kirby, A.N.; et al. Extra-Virgin Olive Oil Enhances the Blood–Brain Barrier Function in Mild Cognitive Impairment: A Randomized Controlled Trial. Nutrients 2022, 14, 5102. [Google Scholar] [CrossRef]
- Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of Hydroxytyrosol as a Novel Food Pursuant to Regulation (EC) No 258/97. EFSA J. 2017, 15, 4728. [Google Scholar] [CrossRef]
- Food and Drug Administration. GRAS Notice (GRN) No. 837. Summary of Information Supporting the Generally Recognized as Safe (GRAS) Status of Hydroxytyrosol (>99% Pure) for Use as an Ingredient in Selected Foods; Nova Mentis Ltd.: Dublin, Irland, 2018. [Google Scholar]
- Barat Baviera, M.; Ferrús Pérez, M.; Hardisson de la Torre, A.; Herrera Mar-teache, A.; Lorente Toledano, F.; Marcos Sánchez, A.; Marti del Moral, A.; Rosario Martín de Santos, M.; Martínez López, A.; Martínez de Victoria Muñoz, E.; et al. Report of the Scientific Committee of the Spanish Agency for Consumer Affairs, Food Safety and Nutrition (AECOSAN) on a Request for Initial Assessment for Marketing of Synthetic under Regulation (EC) No 258/97 Concerning Novel and Novel Food Ingredients; AECOSAN: Madrid, Spain, 2015. [Google Scholar]
- Alemán-Jiménez, C.; Domínguez-Perles, R.; Medina, S.; Prgomet, I.; López-González, I.; Simonelli-Muñoz, A.; Campillo-Cano, M.; Auñón, D.; Ferreres, F.; Gil-Izquierdo, Á. Pharmacokinetics and Bioavailability of Hydroxytyrosol Are Dependent on the Food Matrix in Humans. Eur. J. Nutr. 2021, 60, 905–915. [Google Scholar] [CrossRef]
- Kundisová, I.; Colom, H.; Juan, M.E.; Planas, J.M. Pharmacokinetics of Hydroxytyrosol and Its Sulfate and Glucuronide Metabolites after the Oral Administration of Table Olives to Sprague-Dawley Rats. J. Agric. Food Chem. 2024, 72, 2154–2164. [Google Scholar] [CrossRef]
- Bender, C.; Strassmann, S.; Golz, C. Oral Bioavailability and Metabolism of Hydroxytyrosol from Food Supplements. Nutrients 2023, 15, 325. [Google Scholar] [CrossRef]
- Rubió, L.; Serra, A.; Macià, A.; Piñol, C.; Romero, M.P.; Motilva, M.J. In Vivo Distribution and Deconjugation of Hydroxytyrosol Phase II Metabolites in Red Blood Cells: A Potential New Target for Hydroxytyrosol. J. Funct. Foods 2014, 10, 139–143. [Google Scholar] [CrossRef]
- Bender, C.; Candi, I.; Rogel, E. Efficacy of Hydroxytyrosol-Rich Food Supplements on Reducing Lipid Oxidation in Humans. Int. J. Mol. Sci. 2023, 24, 5521. [Google Scholar] [CrossRef]
- González-Santiago, M.; Fonollá, J.; Lopez-Huertas, E. Human Absorption of a Supplement Containing Purified Hydroxytyrosol, a Natural Antioxidant from Olive Oil, and Evidence for Its Transient Association with Low-Density Lipoproteins. Pharmacol. Res. 2010, 61, 364–370. [Google Scholar] [CrossRef]
- Weksler, B.; Romero, I.A.; Couraud, P.O. The HCMEC/D3 Cell Line as a Model of the Human Blood Brain Barrier. Fluids Barriers CNS 2013, 10, 16. [Google Scholar] [CrossRef]
- Mursaleen, L.; Noble, B.; Somavarapu, S.; Zariwala, M.G. Micellar Nanocarriers of Hydroxytyrosol Are Protective against Parkinson’s Related Oxidative Stress in an in Vitro Hcmec/D3-sh-sy5y Co-culture System. Antioxidants 2021, 10, 887. [Google Scholar] [CrossRef]
- Taggi, V.; Schäfer, A.M.; Dolce, A.; Meyer zu Schwabedissen, H.E. A Face-to-Face Comparison of the BBB Cell Models HCMEC/D3 and HBMEC for Their Applicability to Adenoviral Expression of Transporters. J. Neurochem. 2024, 168, 2611–2620. [Google Scholar] [CrossRef]
- Fan, L.; Peng, Y.; Li, X. Brain Regional Pharmacokinetics of Hydroxytyrosol and Its Molecular Mechanism against Depression Assessed by Multi-Omics Approaches. Phytomedicine 2023, 112, 154712. [Google Scholar] [CrossRef]
- Ávila-Gálvez, M.Á.; Garay-Mayol, B.; Marín, A.; Brito, M.A.; Giménez-Bastida, J.A.; Espín, J.C.; González-Sarrías, A. Metabolic Profiling of a Mediterranean-Inspired (Poly)Phenol-Rich Mixture in the Brain: Perfusion Effect and In Vitro Blood-Brain Barrier Transport Validation. J. Agric. Food Chem. 2025, 73, 11056–11066. [Google Scholar] [CrossRef]
- Gallardo-Fernandez, M.; Garcia, A.R.; Hornedo-Ortega, R.; Troncoso, A.M.; Garcia-Parrilla, M.C.; Brito, M.A. In Vitro Study of the Blood-Brain Barrier Transport of Bioactives from Mediterranean Foods. Food Funct. 2024, 15, 3420–3432. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Galli, C.; Grande, S.; Colonnelli, K.; Patelli, C.; Galli, G.; Caruso, D. Nutrient Metabolism-Research Communication Hydroxytyrosol Excretion Differs between Rats and Humans and Depends on the Vehicle of Administration. J. Nutr. 2003, 133, 2612–2615. [Google Scholar] [CrossRef] [PubMed]
- Marković, A.K.; Torić, J.; Barbarić, M.; Brala, C.J. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef] [PubMed]
- López de las Hazas, M.C.; Godinho-Pereira, J.; Macià, A.; Almeida, A.F.; Ventura, M.R.; Motilva, M.J.; Santos, C.N. Brain Uptake of Hydroxytyrosol and Its Main Circulating Metabolites: Protective Potential in Neuronal Cells. J. Funct. Foods 2018, 46, 110–117. [Google Scholar] [CrossRef]
- Calabriso, N.; Gnoni, A.; Stanca, E.; Cavallo, A.; Damiano, F.; Siculella, L.; Carluccio, M.A. Hydroxytyrosol Ameliorates Endothelial Function under Inflammatory Conditions by Preventing Mitochondrial Dysfunction. Oxid. Med. Cell Longev. 2018, 2018, 9086947. [Google Scholar] [CrossRef] [PubMed]
- Vijakumaran, U.; Shanmugam, J.; Heng, J.W.; Azman, S.S.; Yazid, M.D.; Haizum Abdullah, N.A.; Sulaiman, N. Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review. Molecules 2023, 28, 1861. [Google Scholar] [CrossRef]
- Zrelli, H.; Matsuoka, M.; Kitazaki, S.; Araki, M.; Kusunoki, M.; Zarrouk, M.; Miyazaki, H. Hydroxytyrosol Induces Proliferation and Cytoprotection against Oxidative Injury in Vascular Endothelial Cells: Role of Nrf2 Activation and HO-1 Induction. J. Agric. Food Chem. 2011, 59, 4473–4482. [Google Scholar] [CrossRef]
- Martin, M.A.; Ramos, S.; Granado-Serrano, A.B.; Rodriguez-Ramiro, I.; Trujillo, M.; Bravo, L.; Goya, L. Hydroxytyrosol Induces Antioxidant/Detoxificant Enzymes and Nrf2 Translocation via Extracellular Regulated Kinases and Phosphatidylinositol-3-Kinase/ Protein Kinase B Pathways in HepG2 Cells. Mol. Nutr. Food Res. 2010, 54, 956–966. [Google Scholar] [CrossRef]
- Njike, V.Y.; Ayettey, R.; Treu, J.A.; Doughty, K.N.; Katz, D.L. Post-Prandial Effects of High-Polyphenolic Extra Virgin Olive Oil on Endothelial Function in Adults at Risk for Type 2 Diabetes: A Randomized Controlled Crossover Trial. Int. J. Cardiol. 2021, 330, 171–176. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Yang, J.; Ronaldson, P.T.; Davis, T.P. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front. Physiol. 2020, 11, 914. [Google Scholar] [CrossRef]
- Gallardo-Fernández, M.; Hornedo-Ortega, R.; Alonso-Bellido, I.M.; Rodríguez-Gómez, J.A.; Troncoso, A.M.; García-Parrilla, M.C.; Venero, J.L.; Espinosa-Oliva, A.M.; de Pablos, R.M. Hydroxytyrosol Decreases Lps-and α-Synuclein-Induced Microglial Activation in Vitro. Antioxidants 2020, 9, 36. [Google Scholar] [CrossRef]
- Chagnot, A.; Barnes, S.R.; Montagne, A. Magnetic Resonance Imaging of Blood–Brain Barrier Permeability in Dementia. Neuroscience 2021, 474, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Moyaert, P.; Padrela, B.E.; Morgan, C.A.; Petr, J.; Versijpt, J.; Barkhof, F.; Jurkiewicz, M.T.; Shao, X.; Oyeniran, O.; Manson, T.; et al. Imaging Blood-Brain Barrier Dysfunction: A State-of-the-Art Review from a Clinical Perspective. Front. Aging Neurosci. 2023, 15, 1132077. [Google Scholar] [CrossRef]
- Tsolaki, M.; Lazarou, E.; Kozori, M.; Petridou, N.; Tabakis, I.; Lazarou, I.; Karakota, M.; Saoulidis, I.; Melliou, E.; Magiatis, P. A Randomized Clinical Trial of Greek High Phenolic Early Harvest Extra Virgin Olive Oil in Mild Cognitive Impairment: The MICOIL Pilot Study. J. Alzheimer’s Dis. 2020, 78, 801–817. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Jiang, X.; Yang, L.; Zhang, Q.; Wang, B.; Cui, L.; Wang, X. Hydroxytyrosol Inhibits LPS-Induced Neuroinflammatory Responses via Suppression of TLR-4-Mediated NF-ΚB P65 Activation and ERK Signaling Pathway. Neuroscience 2020, 426, 189–200. [Google Scholar] [CrossRef]
- Zheng, A.; Li, H.; Xu, J.; Cao, K.; Li, H.; Pu, W.; Yang, Z.; Peng, Y.; Long, J.; Liu, J.; et al. Hydroxytyrosol Improves Mitochondrial Function and Reduces Oxidative Stress in the Brain of Db/Db Mice: Role of AMP-Activated Protein Kinase Activation. Br. J. Nutr. 2015, 113, 1667–1676. [Google Scholar] [CrossRef]
- Zou, X.; Zeng, M.; Zheng, Y.; Zheng, A.; Cui, L.; Cao, W.; Wang, X.; Liu, J.; Xu, J.; Feng, Z. Comparative Study of Hydroxytyrosol Acetate and Hydroxytyrosol in Activating Phase II Enzymes. Antioxidants 2023, 12, 1834. [Google Scholar] [CrossRef]
- Vargas, M.R.; Johnson, J.A. The Nrf2-ARE Cytoprotective Pathway in Astrocytes. Expert Rev. Mol. Med. 2009, 11, e17. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, M.; Wang, J.; Zhang, H.; Wang, Z.; Lei, Z.; Wang, C.; Chen, W. Hydroxytyrosol Ameliorates Colon Inflammation: Mechanistic Insights into Anti-Inflammatory Effects, Inhibition of the TLR4/NF-ΚB Signaling Pathway, Gut Microbiota Modulation, and Liver Protection. Foods 2025, 14, 1270. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Y.; Wang, Y.; Zhang, Y.; Wang, Z.; Xu, X.; Zhang, T.; Zhang, T.; Zhang, S.; Hu, R.; et al. Sleep Deprivation Triggers Mitochondrial DNA Release in Microglia to Induce Neural Inflammation: Preventative Effect of Hydroxytyrosol Butyrate. Antioxidants 2024, 13, 833. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Singh, M.K.; Shyam, H.; Mishra, A.; Kumar, S.; Kumar, A.; Kushwaha, J. Role of JAK/STAT in the Neuroinflammation and Its Association with Neurological Disorders. Ann. Neurosci. 2021, 28, 191–200. [Google Scholar] [CrossRef]
- Li, S.; Shao, H.; Sun, T.; Guo, X.; Zhang, X.; Zeng, Q.; Fang, S.; Liu, X.; Wang, F.; Liu, F.; et al. Anti-Neuroinflammatory Effect of Hydroxytyrosol: A Potential Strategy for Anti-Depressant Development. Front. Pharmacol. 2024, 15, 1366683. [Google Scholar] [CrossRef] [PubMed]
- Jacka, F.N.; O’Neil, A.; Opie, R.; Itsiopoulos, C.; Cotton, S.; Mohebbi, M.; Castle, D.; Dash, S.; Mihalopoulos, C.; Chatterton, M.L.; et al. A Randomised Controlled Trial of Dietary Improvement for Adults with Major Depression (the “SMILES” Trial). BMC Med. 2017, 15, 23. [Google Scholar] [CrossRef]
- Foshati, S.; Ghanizadeh, A.; Akhlaghi, M. Extra-Virgin Olive Oil Improves Depression Symptoms Without Affecting Salivary Cortisol and Brain-Derived Neurotrophic Factor in Patients with Major Depression: A Double-Blind Randomized Controlled Trial. J. Acad. Nutr. Diet. 2022, 122, 284–297.e1. [Google Scholar] [CrossRef]
- Liu, S.; Lu, Y.; Tian, D.; Zhang, T.; Zhang, C.; Hu, C.Y.; Chen, P.; Meng, Y. Hydroxytyrosol Alleviates Obesity-Induced Cognitive Decline by Modulating the Expression Levels of Brain-Derived Neurotrophic Factors and Inflammatory Factors in Mice. J. Agric. Food Chem. 2024, 72, 6250–6264. [Google Scholar] [CrossRef]
- Meiser, J.; Weindl, D.; Hiller, K. Complexity of Dopamine Metabolism. Cell Commun. Signal. 2013, 11, 34. [Google Scholar] [CrossRef]
- Jinsmaa, Y.; Florang, V.R.; Rees, J.N.; Anderson, D.G.; Strack, S.; Doorn, J.A. Products of Oxidative Stress Inhibit Aldehyde Oxidation and Reduction Pathways in Dopamine Catabolism Yielding Elevated Levels of a Reactive Intermediate. Chem. Res. Toxicol. 2009, 22, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S.; Sullivan, P.; Holmes, C.; Miller, G.W.; Alter, S.; Strong, R.; Mash, D.C.; Kopin, I.J.; Sharabi, Y. Determinants of Buildup of the Toxic Dopamine Metabolite DOPAL in Parkinson’s Disease. J. Neurochem. 2013, 126, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Masato, A.; Plotegher, N.; Boassa, D.; Bubacco, L. Impaired Dopamine Metabolism in Parkinson’s Disease Pathogenesis. Mol. Neurodegener. 2019, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Mañá, C.; Farré, M.; Pujadas, M.; Mustata, C.; Menoyo, E.; Pastor, A.; Langohr, K.; De La Torre, R. Ethanol Induces Hydroxytyrosol Formation in Humans. Pharmacol. Res. 2015, 95–96, 27–33. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Jinsmaa, Y.; Sullivan, P.; Holmes, C.; Kopin, I.J.; Sharabi, Y. 3,4-Dihydroxyphenylethanol (Hydroxytyrosol) Mitigates the Increase in Spontaneous Oxidation of Dopamine During Monoamine Oxidase Inhibition in PC12 Cells. Neurochem. Res. 2016, 41, 2173–2178. [Google Scholar] [CrossRef]
- Di Renzo, L.; Smeriglio, A.; Ingegneri, M.; Gualtieri, P.; Trombetta, D. The Pharmaceutical Formulation Plays a Pivotal Role in Hydroxytyrosol Pharmacokinetics. Pharmaceutics 2023, 15, 743. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Zhang, L.; Yin, H.; Shen, L.; Zheng, W.; Zhang, K.; Zeng, J.; Hu, C.; Liu, Y. Hydroxytyrosol Alleviates Oxidative Stress and Neuroinflammation and Enhances Hippocampal Neurotrophic Signaling to Improve Stress-Induced Depressive Behaviors in Mice. Food Funct. 2021, 12, 5478–5487. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Katogiannis, K.; Chania, C.; Iakovis, N.; Tsoumani, M.; Christodoulou, A.; Brinia, E.; Pavlidis, G.; Thymis, J.; Tsilivarakis, D.; et al. Association of Hydroxytyrosol Enriched Olive Oil with Vascular Function in Chronic Coronary Disease. Eur. J. Clin. Investig. 2023, 53, e13983. [Google Scholar] [CrossRef] [PubMed]
- Binou, P.; Stergiou, A.; Kosta, O.; Tentolouris, N.; Karathanos, V.T. Positive Contribution of Hydroxytyrosol-Enriched Wheat Bread to HbA1c Levels, Lipid Profile, Markers of Inflammation and Body Weight in Subjects with Overweight/Obesity and Type 2 Diabetes Mellitus. Eur. J. Nutr. 2023, 62, 2165–2176. [Google Scholar] [CrossRef]
- Morvaridzadeh, M.; Alami, M.; Zoubdane, N.; Sidibé, H.; Berrougui, H.; Fülöp, T.; Nguyen, M.; Khalil, A. High-Tyrosol/Hydroxytyrosol Extra Virgin Olive Oil Enhances Antioxidant Activity in Elderly Post-Myocardial Infarction Patients. Antioxidants 2025, 14, 867. [Google Scholar] [CrossRef] [PubMed]
- Quirós-Fernández, R.; López-Plaza, B.; Bermejo, L.M.; Milla, S.P.; Zangara, A.; Candela, C.G. Oral Supplement Containing Hydroxytyrosol and Punicalagin Improves Dyslipidemia in an Adult Population without Co-Adjuvant Treatment: A Randomized, Double-Blind, Controlled and Crossover Trial. Nutrients 2022, 14, 1879. [Google Scholar] [CrossRef] [PubMed]
- Victoria-Montesinos, D.; Arcusa, R.; García-Muñoz, A.M.; Pérez-Piñero, S.; Sánchez-Macarro, M.; Avellaneda, A.; López-Román, F.J. Effects of the Consumption of Low-Fat Cooked Ham with Reduced Salt Enriched with Antioxidants on the Improvement of Cardiovascular Health: A Randomized Clinical Trial. Nutrients 2021, 13, 1480. [Google Scholar] [CrossRef]
- Khandouzi, N.; Zahedmehr, A.; Nasrollahzadeh, J. Effect of Polyphenol-Rich Extra-Virgin Olive Oil on Lipid Profile and Inflammatory Biomarkers in Patients Undergoing Coronary Angiography: A Randomised, Controlled, Clinical Trial. Int. J. Food Sci. Nutr. 2021, 72, 548–558. [Google Scholar] [CrossRef]
- Boronat, A.; Mateus, J.; Soldevila-Domenech, N.; Guerra, M.; Rodríguez-Morató, J.; Varon, C.; Muñoz, D.; Barbosa, F.; Morales, J.C.; Gaedigk, A.; et al. Cardiovascular Benefits of Tyrosol and Its Endogenous Conversion into Hydroxytyrosol in Humans. A Randomized, Controlled Trial. Free Radic. Biol. Med. 2019, 143, 471–481. [Google Scholar] [CrossRef]
- Fonollá, J.; Maldonado-Lobón, J.A.; Luque, R.; Rodríguez, C.; Bañuelos, Ó.; López-Larramendi, J.L.; Olivares, M.; Blanco-Rojo, R. Effects of a Combination of Extracts from Olive Fruit and Almonds Skin on Oxidative and Inflammation Markers in Hypercholesterolemic Subjects: A Randomized Controlled Trial. J. Med. Food 2021, 24, 479–486. [Google Scholar] [CrossRef]
- Roberts, J.D.; Lillis, J.; Pinto, J.M.; Willmott, A.G.B.; Gautam, L.; Davies, C.; López-Samanes, Á.; Del Coso, J.; Chichger, H. The Impact of a Natural Olive-Derived Phytocomplex (OliPhenolia®) on Exercise-Induced Oxidative Stress in Healthy Adults. Nutrients 2022, 14, 5156. [Google Scholar] [CrossRef]
- Perrone, M.A.; Gualtieri, P.; Gratteri, S.; Ali, W.; Sergi, D.; Muscoli, S.; Cammarano, A.; Bernardini, S.; Renzo, L.D.; Romeo, F. Effects of Postprandial Hydroxytyrosol and Derivates on Oxidation of LDL, Cardiometabolic State and Gene Expression: A Nutrigenomic Approach for Cardiovascular Prevention. J. Cardiovasc. Med. 2019, 20, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Wauquier, F.; Mevel, E.; Krisa, S.; Richard, T.; Valls, J.; Hornedo-Ortega, R.; Granel, H.; Boutin-Wittrant, L.; Urban, N.; Berger, J.; et al. Chondroprotective Properties of Human-Enriched Serum Following Polyphenol Extract Absorption: Results from an Exploratory Clinical Trial. Nutrients 2019, 11, 3071. [Google Scholar] [CrossRef]
- Domenech, M.; Casas, R.; Ruiz-León, A.M.; Sobrino, J.; Ros, E.; Estruch, R. Effects of a Novel Nutraceutical Combination (Aquilea Colesterol®) on the Lipid Profile and Inflammatory Biomarkers: A Randomized Control Trial. Nutrients 2019, 11, 949. [Google Scholar] [CrossRef]
- García-Layana, A.; Recalde, S.; Hernandez, M.; Abraldes, M.J.; Nascimento, J.; Hernández-Galilea, E.; Olmedilla-Alonso, B.; Escobar-Barranco, J.J.; Zapata, M.A.; Silva, R.; et al. A Randomized Study of Nutritional Supplementation in Patients with Unilateral Wet Age-Related Macular Degeneration. Nutrients 2021, 13, 1253. [Google Scholar] [CrossRef] [PubMed]
- Loukou, S.; Papantoniou, G.; Pantazaki, A.; Tsolaki, M. The Role of Greek Olive Leaf Extract in Patients with Mild Alzheimer’s Disease (the GOLDEN Study): A Randomized Controlled Clinical Trial. Neurol. Int. 2024, 16, 1247–1265. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Sasaki, K.; Nishimura, I.; Hashimoto, H.; Okura, T.; Isoda, H. Effects of Desert Olive Tree Pearls Containing High Hydroxytyrosol Concentrations on the Cognitive Functions of Middle-Aged and Older Adults. Nutrients 2023, 15, 3234. [Google Scholar] [CrossRef]
- Yaskolka Meir, A.; Keller, M.; Hoffmann, A.; Rinott, E.; Tsaban, G.; Kaplan, A.; Zelicha, H.; Hagemann, T.; Ceglarek, U.; Isermann, B.; et al. The Effect of Polyphenols on DNA Methylation-Assessed Biological Age Attenuation: The DIRECT PLUS Randomized Controlled Trial. BMC Med. 2023, 21, 364. [Google Scholar] [CrossRef]
- Nakaki, A.; Gomez, Y.; Castro-Barquero, S.; Conti, A.; Vellvé, K.; Casas, I.; Genero, M.; Youssef, L.; Segalés, L.; Benitez, L.; et al. The Mediterranean Diet in Pregnancy: Implications for Maternal Brain Morphometry in a Secondary Analysis of the IMPACT BCN Randomized Clinical Trial. Nutrients 2024, 16, 1604. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.S.; Man, E.; Wong, I.C.K.; Li, S.X.; Zhi, H.; Yeung, K.M.C.; Yip, K.Y.; Kwong, A.K.Y.; Belaramani, K.M.; Wong, S.N.; et al. Open-Label Pilot Study Using Hydroxytyrosol as Dietary Supplements in Patients with Mitochondrial Diseases. Orphanet J. Rare Dis. 2025, 20, 283. [Google Scholar] [CrossRef]
- Papadopoulou, P.; Polissidis, A.; Kythreoti, G.; Sagnou, M.; Stefanatou, A.; Theoharides, T.C. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int. J. Mol. Sci. 2024, 25, 11040. [Google Scholar] [CrossRef]
- Stergiou, A.; Binou, P.; Igoumenidis, P.E.; Chiou, A.; Yannakopoulou, K.; Karathanos, V. Host–Guest Inclusion Complexes of Hydroxytyrosol with Cyclodextrins: Development of a Potential Functional Ingredient for Food Application. J. Food Sci. 2022, 87, 2678–2691. [Google Scholar] [CrossRef]
- Kranz, P.; Braun, N.; Schulze, N.; Kunz, B. Sensory Quality of Functional Beverages: Bitterness Perception and Bitter Masking of Olive Leaf Extract Fortified Fruit Smoothies. J. Food Sci. 2010, 75, S308–S311. [Google Scholar] [CrossRef]
- Binou, P.; Stergiou, A.; Kosta, O.; Tentolouris, N.; Karathanos, V.T. Positive Postprandial Glycaemic and Appetite-Related Effects of Wheat Breads Enriched with Either α-Cyclodextrin or Hydroxytyrosol/α-Cyclodextrin Inclusion Complex. Eur. J. Nutr. 2022, 61, 3809–3819. [Google Scholar] [CrossRef]
- Martínez-Zamora, L.; Peñalver, R.; Ros, G.; Nieto, G. Olive Tree Derivatives and Hydroxytyrosol: Their Potential Effects on Human Health and Its Use as Functional Ingredient in Meat. Foods 2021, 10, 2611. [Google Scholar] [CrossRef]
- Nieto, G.; Martínez, L.; Castillo, J.; Ros, G. Effect of Hydroxytyrosol, Walnut and Olive Oil on Nutritional Profile of Low-Fat Chicken Frankfurters. Eur. J. Lipid Sci. Technol. 2017, 119, 1600518. [Google Scholar] [CrossRef]
- Cofrades, S.; Salcedo Sandoval, L.; Delgado-Pando, G.; López-López, I.; Ruiz-Capillas, C.; Jiménez-Colmenero, F. Antioxidant Activity of Hydroxytyrosol in Frankfurters Enriched with N-3 Polyunsaturated Fatty Acids. Food Chem. 2011, 129, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Zamora, L.M.; Peñalver, R.; Ros, G.; Nieto, G. Innovative Natural Functional Ingredients from Olive and Citrus Extracts in Spanish-Type Dry-Cured Sausage “Fuet”. Antioxidants 2021, 10, 180. [Google Scholar] [CrossRef]
- Martínez-Zamora, L.; Ros, G.; Nieto, G. A Comparative Study between Synthetic and Natural Hydroxytyrosol Extracts after Incorporation into Lamb Burger. Antioxidants 2020, 9, 851. [Google Scholar] [CrossRef]
- Bermúdez-Oria, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Fernández-Prior, Á.; Fernández-Bolaños, J. Effect of Edible Pectin-Fish Gelatin Films Containing the Olive Antioxidants Hydroxytyrosol and 3,4-Dihydroxyphenylglycol on Beef Meat during Refrigerated Storage. Meat Sci. 2019, 148, 213–218. [Google Scholar] [CrossRef]
- Martínez-Zamora, L.; Ros, G.; Nieto, G. Designing a Clean Label Fish Patty with Olive, Citric, Pomegranate, or Rosemary Extracts. Plants 2020, 9, 659. [Google Scholar] [CrossRef] [PubMed]
- Karadag, A.; Cakmakoglu, S.K.; Bekiroglu, H.; Karasu, S.; Ozer, H.; Sagdic, O.; Yildirim, R.M. Innovative Utilization of Olive Mill Wastewater Phenolics Extracted by Lecithin: Spray-Dried Powders in Cake Formulations. J. Food Meas. Charact. 2024, 18, 7979–7993. [Google Scholar] [CrossRef]
- Karadag, A.; Kayacan Cakmakoglu, S.; Metin Yildirim, R.; Karasu, S.; Avci, E.; Ozer, H.; Sagdic, O. Enrichment of Lecithin with Phenolics from Olive Mill Wastewater by Cloud Point Extraction and Its Application in Vegan Salad Dressing. J. Food Process Preserv. 2022, 46, e16645. [Google Scholar] [CrossRef]
- Silva, A.F.R.; Resende, D.; Monteiro, M.; Coimbra, M.A.; Silva, A.M.S.; Cardoso, S.M. Application of Hydroxytyrosol in the Functional Foods Field: From Ingredient to Dietary Supplements. Antioxidants 2020, 9, 1246. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Angulo, L.A.; Laaroussi, H.; Ousaaid, D.; Bakour, M.; Lyoussi, B.; Ferreira-Santos, P. Sustainable Valorization of Olive Oil By-Products: Green Extraction of Phytochemicals, Encapsulation Strategies, and Food Applications. J. Food Sci. 2025, 90, e70412. [Google Scholar] [CrossRef]
- Chatzidaki, M.D.; Arik, N.; Monteil, J.; Papadimitriou, V.; Leal-Calderon, F.; Xenakis, A. Microemulsion versus Emulsion as Effective Carrier of Hydroxytyrosol. Colloids Surf. B Biointerfaces 2016, 137, 146–151. [Google Scholar] [CrossRef]
- Kroll, J.; Rawel, H.M.; Rohn, S. Reactions of Plant Phenolics with Food Proteins and Enzymes under Special Consideration of Covalent Bonds. Food Sci. Technol. Res. 2003, 9, 205–218. [Google Scholar] [CrossRef]
- Cao, Y.; Xiong, Y.L. Interaction of Whey Proteins with Phenolic Derivatives Under Neutral and Acidic PH Conditions. J. Food Sci. 2017, 82, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Martínez-Carballo, E.; Cambeiro-Pérez, N.; Rial-Otero, R.; Figueiredo-González, M.; Cancho-Grande, B. Applicability of an In-Vitro Digestion Model to Assess the Bioaccessibility of Phenolic Compounds from Olive-Related Products. Molecules 2021, 26, 6667. [Google Scholar] [CrossRef]
- Souilem, S.; Fki, I.; Kobayashi, I.; Khalid, N.; Neves, M.A.; Isoda, H.; Sayadi, S.; Nakajima, M. Emerging Technologies for Recovery of Value-Added Components from Olive Leaves and Their Applications in Food/Feed Industries. Food Bioproc. Technol. 2017, 10, 229–248. [Google Scholar] [CrossRef]
- Gallardo-Fernández, M.; Gonzalez-Ramirez, M.; Cerezo, A.B.; Troncoso, A.M.; Garcia-Parrilla, M.C. Hydroxytyrosol in Foods: Analysis, Food Sources, EU Dietary Intake, and Potential Uses. Foods 2022, 11, 2355. [Google Scholar] [CrossRef]
- Gullón, P.; Gullón, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Valorization of By-Products from Olive Oil Industry and Added-Value Applications for Innovative Functional Foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef]
- Monteiro, M.; Silva, A.F.R.; Resende, D.; Braga, S.S.; Coimbra, M.A.; Silva, A.M.S.; Cardoso, S.M. Strategies to Broaden the Applications of Olive Biophenols Oleuropein and Hydroxytyrosol in Food Products. Antioxidants 2021, 10, 444. [Google Scholar] [CrossRef]
- Otero, P.; Garcia-Oliveira, P.; Carpena, M.; Barral-Martinez, M.; Chamorro, F.; Echave, J.; Garcia-Perez, P.; Cao, H.; Xiao, J.; Simal-Gandara, J.; et al. Applications of By-Products from the Olive Oil Processing: Revalorization Strategies Based on Target Molecules and Green Extraction Technologies. Trends Food Sci. Technol. 2021, 116, 1084–1104. [Google Scholar] [CrossRef]
- Difonzo, G.; Squeo, G.; Pasqualone, A.; Summo, C.; Paradiso, V.M.; Caponio, F. The Challenge of Exploiting Polyphenols from Olive Leaves: Addition to Foods to Improve Their Shelf-Life and Nutritional Value. J. Sci. Food Agric. 2021, 101, 3099–3116. [Google Scholar] [CrossRef] [PubMed]
- Madureira, J.; Margaça, F.M.A.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Verde, S.C.; Barros, L. Applications of Bioactive Compounds Extracted from Olive Industry Wastes: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 453–476. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, M.; García-Béjar, B.; Burgos-Ramos, E.; Silva, P. Valorization of Olive Oil and Wine Industry Byproducts: Challenges and Opportunities in Sustainable Food Applications. Foods 2025, 14, 2475. [Google Scholar] [CrossRef]
- Castillo-Luna, A.; Priego-Capote, F. Phenolic Enrichment of Foods Curated in Olive Oil: Kinetics and Chemical Evaluation. Food Chem. X 2024, 22, 101398. [Google Scholar] [CrossRef] [PubMed]
- Fotiadou, R.; Vougiouklaki, D.; Houhoula, D.; Stamatis, H. Improvement of the Oxidative Stability of Edible Oils through Enzymatic Esterification with Hydroxytyrosol-Rich Extract. Eur. J. Lipid Sci. Technol. 2024, 126, 2400014. [Google Scholar] [CrossRef]
- Cappelin, E.; Meneguzzi, D.; Hendges, D.H.; Oldoni, T.L.C.; Daltoé, M.L.M.; Marchioro, M.L.K.; da Cunha, M.A.A. Low-Alcohol Light Beer Enriched with Olive Leaves Extract: Cold Mashing Technique Associated with Interrupted Fermentation in the Brewing Process. Electron. J. Biotechnol. 2024, 68, 81–89. [Google Scholar] [CrossRef]
- Aispuro-Pérez, A.; Pedraza-Leyva, F.J.; Ochoa-Acosta, A.; Arias-Gastélum, M.; Cárdenas-Torres, F.I.; Amezquita-López, B.A.; Terán, E.; Aispuro-Hernández, E.; Martínez-Téllez, M.Á.; Avena-Bustillos, R.J.; et al. A Functional Beverage from Coffee and Olive Pomace: Polyphenol-Flavonoid Content, Antioxidant, Antihyperglycemic Properties, and Mouse Behavior. Foods 2025, 14, 1331. [Google Scholar] [CrossRef]
- Lazzaroli, C.; Sordini, B.; Daidone, L.; Veneziani, G.; Esposto, S.; Urbani, S.; Selvaggini, R.; Servili, M.; Taticchi, A. Recovery and Valorization of Food Industry By-Products through the Application of Olea europaea L. Leaves in Kombucha Tea Manufacturing. Food Biosci. 2023, 53, 102551. [Google Scholar] [CrossRef]
- Fotiadou, R.; Fragkaki, I.; Pettas, K.; Stamatis, H. Valorization of Olive Pomace Using Ultrasound-Assisted Extraction for Application in Active Packaging Films. Int. J. Mol. Sci. 2024, 25, 6541. [Google Scholar] [CrossRef] [PubMed]





| Study Design | Population | Dose and Duration | Measured Parameters | Key Results | Ref. |
|---|---|---|---|---|---|
| Prospective, crossover, double-blind, placebo-controlled trial | Thirty adults with chronic coronary artery syndrome | HXT-enriched olive oil capsules (10 mg HXT/day); 1 month per period vs. control with crossover | Flow-mediated dilation, pulse wave velocity, perfused boundary region, coronary flow reserve, echocardiography, lipids, oxidized LDL, C-reactive protein | ↑ Flow-mediated dilation, ↓ pulse wave velocity, ↓ perfused boundary region, ↑ coronary flow reserve; ↓oxidized LDL and C-reactive protein; integrated improvement in endothelial function and oxidative/inflammatory status | [65] |
| Randomized, single-blinded, dietary intervention | Sixty adults with overweight/obesity and type 2 diabetes mellitus | An amount of 60 g of whole wheat bread enriched with HXT vs. MD; 12 weeks | HbA1c, blood lipid levels, inflammatory markers, and weight loss | ↓ body fat mass; ↓ fasting glucose, HbA1c and blood pressure; ↓ blood lipid, insulin, TNF-α and adiponectin | [66] |
| Randomized controlled clinical trial, part of LIPIMAGE cohort | Forty-eight older adults post-myocardial infarction and healthy controls; thirty-four completed | Total of 25 mL/day of olive oils differing in phenolic content (naturally HXT-rich vs. lower-phenolic); 26 weeks | Endothelial function, endothelial glycocalyx, oxidative stress indices; neuropsychiatric composite (reported) | Post-MI subgroup showed improved endothelial function and ↓ endothelial glycocalyx with high-phenolic EVOO; improved redox markers and signals on neuropsychiatric function | [67] |
| Crossover, randomized, double-blind and placebo-controlled clinical trial | Eighty-four adults with cardiovascular risk (completed sixty-seven) | Oral supplement with HXT and punicalagin; 20 weeks | Triglycerides, HDL-C, LDL-C, high-sensitivity C-reactive protein, metabolic syndrome z-score | ↓ Triglycerides and LDL-C; ↑ HDL-C improved composite cardiometabolic risk (metabolic syndrome z-score) | [68] |
| Randomized, controlled, double-blind, and unicentric clinical trial. | Sixty-five adults with moderate hypercholesterolemia | Total of 100 g/day of BienStar® cooked ham enriched with olive phenolics (including HXT) vs. placebo ham; 8 weeks | Endothelin-1, oxidized LDL, blood lipids and inflammatory markers | ↓ systolic blood pressure and oxidized LDL; ↓ Malondialdehyde, ↓ total cholesterol, ↓ C-reactive protein, and ↓ interleukin 6 | [69] |
| Randomised, controlled, parallel arm, clinical trial | Fifty adults undergoing with coronary angiography (completed 42) | Total of 25 mL/day EVOO vs. refined olive oil; 6 weeks | LDL-C, HDL-C, TG, CRP; cytokines; ex vivo LPS-stimulated | ↓ LDL-C and CRP; reduced pro-inflammatory signalling and monocyte–endothelium adhesion with EVOO | [70] |
| Randomized, crossover, controlled trial | Thirty-three healthy adults (completed 32) | An amount of 135 mL white wine + 25 mg tyrosol capsules (endogenous bioconversion to HXT) vs. control | Endothelial function, HDL-C, antithrombin III, endothelin-1, homocysteine; PBMC inflammatory/oxidative gene expression | ↑ HDL-C and antithrombin III; ↓endothelin-1 and homocysteine; down-regulated endothelial inflammation genes | [71] |
| Randomized, parallel, double-blind, placebo-controlled | Thirty-two adults with moderate hypercholesterolemia (LDL > 100 mg/dL and/or total cholesterol > 200 mg/dL) | Total of 7.5 mg HXT + 210 mg almond skin polyphenols per day; 8 weeks | Oxidized LDL; LDL-C, HDL-C, TG; IL-1β, IL-6, IL-10; safety | ↓ Oxidized LDL Favourable cytokine modulation (↓ IL-1β/IL-6; ↑ IL-10) | [72] |
| Randomized, double-blind, placebo controlled crossover design | Fifteen healthy volunteers | An amount of 28 mL Olive fruit water phytocomplex (OliPhenolia®, HXT-rich) for 16 days (cohort) | Plasma HXT and conjugates (UPLC-MS/MS), antioxidant enzymes (SOD, CAT), MDA; exercise stress readouts | Good bioavailability; peak after 1 h consumption; ↑ SOD/CAT and ↓ MDA; mitigated exercise-induced oxidative stress | [73] |
| Randomized, controlled, and double-blinded trial | Twenty-two healthy adults | An amount of 25 g Phenolic-rich EVOO and common olive oil. Postprandial intervention (2 h after) | Oxidized LDL, malondialdehyde, triglycerides; leukocyte SOD1 and CAT expression | ↓ Oxidized LDL/MDA/TG within hours; ↑ SOD1 and CAT expression; rapid antioxidant/vascular signal | [74] |
| Exploratory clinical trail | Twenty healthy adults | Olive pomace polyphenol complex 3.2 g as 8 capsules; single dose | Circulating phenolic metabolites; NO, PGE2, MMP13 in human chondrocytes | Post-intake serum ↓ NO, PGE2, MMP13; confirms resveratrol and HXT absorption and anti-inflammatory bioactivity | [75] |
| Randomized, parallel-group, double-blind, placebo-controlled trial | Forty adults at low–moderate cardiovascular risk (n = 20) | An amount of 12.5 g nutraceutical combination Aquilea Colesterol® (olive-derived components including HXT) vs. placebo; 90 days | Inflammatory biomarkers, lipid profile, metabolic parameters | Improved inflammatory profile and cardiometabolic markers vs. placebo | [76] |
| Multicenter, randomized, observer-blinded trial | One hundred and nine patients >50 years diagnosed with unilateral exudative age-related macular degeneration (AREDS); ninety-three completed | AREDS-based supplement enriched with resveratrol and HXT (Retilut® and Theavit® for control group); 2 tablets/day; 12 months | Progression to neovascular age-related Macular Degeneration in the contralateral eye; visual function; inflammatory cytokines; fatty acid profile; and lutein-zeaxantin serum concentration. | Lower risk of contralateral neovascular Age related Macular Degeneration; improving fatty acid profile and increase carotenoid levels; improving proinflammatory and proangiogenic profile of patients | [77] |
| Randomized controlled clinical trial | Patients with mild Alzheimer’s disease; 55 enrolled, 23 completed | Olive leaf extract beverage (oleuropein/HXT-rich) vs. control MD; 6 months | MMSE, ADAS-Cog, CDR, functional scales, neuropsychiatric inventory, sleep | Maintained global cognition (MMSE) vs. decline in controls; improvements in neuropsychiatric symptoms thanks to olive leaf beverage consumption | [78] |
| Randomized, double-blind, placebo-controlled, parallel-group trial | Seventy-two participants (51–82 years old) | Total of 6 g of desert olive tree pearls per day (rich in HXT) vs. placebo; 12 weeks | Cognitrax test; cardiometabolic markers; safety | Improvements in memory composite and psychomotor speed vs. placebo; potential to alleviate cognitive problems; good adherence/safety | [79] |
| Randomized controlled trial (DIRECT-PLUS) | Two hundred and fifty-six adults (>30 years) with abdominal obesity or dyslipidemia | Dietary arms differing in polyphenol load (including high-polyphenol MD and physical activity); 18 months | DNA-methylation aging pace (DunedinPACE), urinary phenolics (HXT, tyrosol, and urolithin C), and cardiometabolic markers | ↑ urinary HXT associated with slower epigenetic aging pace; supports systemic anti-aging signature | [80] |
| Randomized clinical trial, IMPACT BCN | Seventy-one high-risk pregnant women | MD enriched in EVOO and walnuts; 14 weeks pregnancy duration | Brain cortical thickness by magnetic resonance imaging; maternal diet adherence; urinary HXT | MD subgroup showed larger cortical-surface areas (precuneus, superior parietal); urinary HXT positively associated with maternal brain structure | [81] |
| Open-label, longitudinal pilot study | Nine participants 8–13 years with mitochondrial disease, especially with MELAS (Mitochondrial encephalopathy, lactic acidosis, and stroke-like episode) | Total of 10–30 mg HXT/day; 12 + 6 months | Pediatric Quality of Life and International pediatric mitochondrial disease scores, biochemical markers; tolerability; brain magnetic resonance imaging | Largest gains in quality of life; signals of benefit in MELAS subgroup; good tolerability | [82] |
| Food | Form and Dose | Analysis | Main Findings | Ref. |
|---|---|---|---|---|
| Fish (salmon and cod), vegetables (cherry tomatoes and eggplants), and cheese (curated and soft) oils in curated oil | Immersion in EVOO. Curation for 30 days in EVOO | Tyrosol, HXT, and oleuropein content during curation | The HXT extraction efficiency was about 80–90% in all tested foods. The concentration of HXT reached the maximum after 8 days in cheese and fish, while 16 days were needed to reach maximum values in vegetables | [110] |
| Pomace olive oil and sunflower oil | The extract was the substrate for the one-step enzymatic modification of selected oils | Antioxidant and enzymatic activity, fatty acid, volatile, and phenolic composition during accelerated oxidation (thermal treatment at 60 °C for 28 days) | The recovery of HXT reached up to 81.2%. The extract-modified oils presented notable thermos-oxidative stability at 60 °C for 28 days | [111] |
| Low-alcohol light beer | Olive leaf extract at 0.5, 1, and 2% | Physical-chemical quality, antioxidant activity and phenolics | The addition of the extract enriched the content of total phenolics (437.4 mg GAE/mL) and polyphenolic (729.0 mg/L) | [112] |
| Functional beverage from coffee and olive | Amounts of 5%, 10%, 15%, and 20% coffee olive pomace | Phenolics, antioxidant capacity. The 10% brew was used to measure the behaviour in a murine model | Adding coffee–olive powder to ground coffee increased the total phenol content in the brews. The highest antioxidant activity was 6.62–8.17 mmol TE/L. The 10% brew had the highest acceptance in mice, with increased consumption, greater exploratory behaviour, and reduced resting time. It also showed 30.5% α-amylase inhibition at 200 µg/mL | [113] |
| Kombucha | Olive mill by-products as a fermentation substrate (25, 50, and 100%) | Physical–chemical quality, antioxidant capacity, and phenolics | High content of HXT (29–9 mg/L) and oleuropein (395 mg/L) | [114] |
| Active packaging films | Chitosan or Polyvinyl alcohol with olive pomace extract (0.01–0.1%, w/v) films. | Antibacterial and antioxidant activity, phenolic content | Olive pomace extract had a minimum inhibitory activity of 2.5 mg/mL against E. coli and 10 mg/m against B. subtilis. HXT and tyrosol were identified as the major phenolic compounds | [115] |
| Cake formulations | Lecithin-olive leaf extracts spray-dried using maltodextrin and whey protein at 1–3% | Physical–chemical quality, antioxidant capacity, and phenolics | The HXT and tyrosol contents of the powder were 42.60 ± 4.51 mg/100 g and 15.48 ± 2.50 mg/100 g, respectively. The addition of olive leaf extracts at a concentration of 3% to the powder cake premix positively affected the final product properties | [94] |
| BienStar® cooked ham | A total of 4.45 mg HXT/100 g cooked hamb | Blood lipids and inflammatory markers in 65 adults with moderate hypercholesterolemia in a randomized, controlled, double-blind clinical trial | ↓ systolic blood pressure and oxidized LDL; ↓ Malondialdehyde, ↓ total cholesterol, ↓ C-reactive protein, and ↓ interleukin 6 | [69] |
| Component | Translational Implication |
|---|---|
| Physicochemistry → Exposure | Limited passive permeability + rapid conjugation → guides dose and frequency |
| Matrix/formulation | Lipid carriers/microstructures ↑ bioaccessibility |
| Protein/fiber-rich matrices ↓ bioaccessibility | |
| Target engagement | Pair systemic conjugates with endothelial redox and neuroinflammation biomarkers |
| Population | Enrich higher oxidative/inflammatory baseline cohorts |
| Trial design | Pre-specify fed/fasted |
| Co-ingestion | |
| Sampling windows | |
| Consider efflux/transporters | |
| Outcomes | Combine vascular/neuroimmune endpoints with cognitive/neuromotor measures |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Zamora, L. Novel Ingredients: Hydroxytyrosol as a Neuroprotective Agent; What Is New on the Horizon? Foods 2025, 14, 3624. https://doi.org/10.3390/foods14213624
Martínez-Zamora L. Novel Ingredients: Hydroxytyrosol as a Neuroprotective Agent; What Is New on the Horizon? Foods. 2025; 14(21):3624. https://doi.org/10.3390/foods14213624
Chicago/Turabian StyleMartínez-Zamora, Lorena. 2025. "Novel Ingredients: Hydroxytyrosol as a Neuroprotective Agent; What Is New on the Horizon?" Foods 14, no. 21: 3624. https://doi.org/10.3390/foods14213624
APA StyleMartínez-Zamora, L. (2025). Novel Ingredients: Hydroxytyrosol as a Neuroprotective Agent; What Is New on the Horizon? Foods, 14(21), 3624. https://doi.org/10.3390/foods14213624

