Discovery and Characterization of a Distinctive Theaflavin-3-Gallate Isomer from Camellia ptilophylla with Potent Anticancer Properties Against Human Colorectal Carcinoma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemical Reagents
2.2. Preparation of BCT Extracts
2.3. Preparation of PPO from Pears
2.4. Co-Oxidation of Trans-Catechins by PPO
2.5. HPLC Analysis
2.6. Isolation and Purification of BCT Theaflavins
2.7. Identification of BCT Theaflavins
2.8. Anticancer Activity of IsoneoTF-3-G
2.8.1. Cell Culture
2.8.2. Cell Viability Assay
2.8.3. Measurement of Intracellular ROS
2.8.4. MMP Assay
2.8.5. Activation of Caspase-3 and Caspase-9 Proteins
2.8.6. Western Blotting Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Composition of Theaflavins in BCT
3.2. Enzymatic Synthesis of BCT Theaflavins
3.3. Identification of Oxidation Products of GCG and C
3.4. Inhibition of HCT116 Cells by IsoneoTF-3-G
3.4.1. Proliferation Inhibitory Activity of IsoneoTF-3-G in HCT116 Cells
3.4.2. Induction of Intracellular ROS in HCT116 Cells by IsoneoTF-3-G
3.4.3. Activation of Mitochondrial Apoptosis in HCT116 Cells by IsoneoTF-3-G
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam. Part A 2003, 20, 1–30. [Google Scholar] [CrossRef]
- Chang, H.; Ye, C.; Zhang, R.; Ma, Y.; Zhang, P. A discovery of new tea resource—cocoa tea tree containing theobromine from China. Acta Sci. Nat. Univ. Sunyatseni 1988, 27, 131–133. [Google Scholar]
- Gao, X.; Li, X.; Ho, C.; Lin, X.; Zhang, Y.; Li, B.; Chen, Z. Cocoa tea (Camellia ptilophylla) induces mitochondria-dependent apoptosis in HCT116 cells via ROS generation and PI3K/Akt signaling pathway. Food Res. Int. 2020, 129, 108854. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Qin, D.; Fang, K.; Ni, E.; Wang, Q.; Pan, C.; Li, B.; Jiang, B.; Li, H. Investigation of wild resources of Camellia ptilophylla in Nankun mountain and study on their characters. J. Tea Commun. 2024, 51, 1–7. [Google Scholar]
- Luo, L.; Li, M.; Zeng, Z.; Zhou, M.; Cheng, C.; Yan, C.; Huang, Y. Study on the genetic variation of alkaloids and catechins in the distant hybridization of tea plant. J. Tea Commun. 2022, 49, 163–172. [Google Scholar]
- Yang, X.; Wang, Y.; Li, K.; Li, J.; Li, C.; Shi, X.; Ko, C.; Leung, P.; Ye, C.; Song, X. Cocoa tea (Camellia ptilophylla Chang), a natural decaffeinated species of tea-Recommendations on the proper way of preparation for consumption. J. Funct. Foods. 2011, 3, 305–312. [Google Scholar] [CrossRef]
- Li, K.; Zhou, X.; Yang, X.; Shi, X.; Song, X.; Ye, C.; Ko, C. Subacute oral toxicity of cocoa tea (Camellia ptilophylla) water extract in SD rats. Int. J. Food Sci. Tech. 2015, 50, 2391–2401. [Google Scholar] [CrossRef]
- Lin, X.; Chen, Z.; Zhang, Y.; Gao, X.; Luo, W.; Li, B. Interactions among chemical components of Cocoa tea (Camellia ptilophylla Chang), a naturally low caffeine-containing tea species. Food Funct. 2014, 5, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Lin, X.; Ho, C.; Zhang, Y.; Li, B.; Chen, Z. Chemical composition and anti-inflammatory activity of water extract from black cocoa tea (Camellia ptilophylla). Food Res. Int. 2022, 161, 111831. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liu, C.; Tam, J.C.; Kwok, H.; Lau, C.; Leung, P.; Ko, C.; Ye, C. In vitro and in vivo mechanistic study of a novel proanthocyanidin, GC-(4→8)-GCG from cocoa tea (Camellia ptilophylla) in antiangiogenesis. J. Nutr. Biochem. 2014, 25, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Lin, X.; Li, X.; Zhang, Y.; Chen, Z.; Li, B. Cellular antioxidant, methylglyoxal trapping, and anti-inflammatory activities of cocoa tea (Camellia ptilophylla Chang). Food Funct. 2017, 8, 2836–2846. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, H.; Shibata, H.; Fukui, Y.; Kiso, Y.; Xu, J.; Yao, X.; Fukami, H. Evaluation of the hypolipemic property of Camellia sinensis Var. ptilophylla on postprandial hypertriglyceridemia. J. Agric. Food Chem. 2006, 54, 4977–4981. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Wang, X.; Shi, X.; Li, C.; Ye, C.; Song, X. Characterization of the constituents and antioxidative activity of cocoa tea (Camellia ptilophylla). Food Chem. 2011, 129, 1475–1482. [Google Scholar] [CrossRef]
- Owuor, P.O.; McDowell, I. Changes in theaflavin composition and astringency during black tea fermentation. Food Chem. 1994, 51, 251–254. [Google Scholar] [CrossRef]
- Liang, Y.; Lu, J.; Zhang, L.; Wu, S.; Wu, Y. Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem. 2003, 80, 283–290. [Google Scholar] [CrossRef]
- Obanda, M.; Owuor, P.O.; Mang Oka, R.; Kavoi, M.M. Changes in thearubigin fractions and theaflavin levels due to variations in processing conditions and their influence on black tea liquor brightness and total colour. Food Chem. 2004, 85, 163–173. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, L.; Wang, Y. Theaflavins with health-promoting properties: From extraction, synthesis to medicinal application. Trends Food Sci. Tech. 2025, 155, 104804. [Google Scholar] [CrossRef]
- Tan, Q.; Peng, L.; Huang, Y.; Huang, W.; Bai, W.; Shi, L.; Li, X.; Chen, T. Structure-activity relationship analysis on antioxidant and anticancer actions of theaflavins on human colon cancer cells. J. Agric. Food Chem. 2019, 67, 159–170. [Google Scholar] [CrossRef]
- Sharma, N.; Phan, H.T.; Chikae, M.; Takamura, Y.; Azo Oussou, A.F.; Vestergaard, M.C. Black tea polyphenol theaflavin as promising antioxidant and potential copper chelator. J. Sci. Food Agric. 2020, 100, 3126–3135. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.; Lo, C.; Wang, B.; Chiou, R.Y.; Lin, S. Theaflavin-3,3′-digallate, a black tea polyphenol, stimulates lipolysis associated with the induction of mitochondrial uncoupling proteins and AMPK-FoxO3A-MnSOD pathway in 3T3-L1 adipocytes. J. Funct. Foods 2015, 17, 271–282. [Google Scholar] [CrossRef]
- Li, M.; Zhang, C.; Xiao, X.; Zhu, M.; Quan, W.; Liu, X.; Zhang, S.; Liu, Z. Theaflavins in black tea mitigate aging-associated cognitive dysfunction via the microbiota-gut-brain axis. J. Agric. Food Chem. 2023, 71, 2356–2369. [Google Scholar] [CrossRef]
- Sun, L.; Song, Y.; Chen, Y.; Ma, Y.; Fu, M.; Liu, X. The galloyl moiety enhances the inhibitory activity of catechins and theaflavins against alpha-glucosidase by increasing the polyphenol-enzyme binding interactions. Food Funct. 2021, 12, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Kusano, R.; Matsuo, Y.; Saito, Y.; Tanaka, T. Oxidation mechanism of black tea pigment theaflavin by peroxidase. Tetrahedron Letter. 2015, 56, 5099–5102. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Q.; Luo, H.; Li, R.; Chen, L.; Jiang, B.; Liang, Z.; Wang, T.; Ma, Y.; Zhao, M. An in vitro catalysis of tea polyphenols by polyphenol oxidase. Molecules 2023, 28, 1722. [Google Scholar] [CrossRef]
- Abudureheman, B.; Yu, X.; Fang, D.; Zhang, H. Enzymatic oxidation of tea catechins and its mechanism. Molecules 2022, 27, 942. [Google Scholar] [CrossRef]
- Zhang, L.; Ho, C.T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Yang, C.S.; Ho, C.T. Peroxidase-mediated oxidation of catechins. Phytochem. Rev. 2004, 3, 229–241. [Google Scholar] [CrossRef]
- Matsuo, Y.; Oowatashi, R.; Saito, Y.; Tanaka, T. Nonenzymatic biomimetic synthesis of black tea pigment theaflavins. Synlett 2017, 28, 2505–2508. [Google Scholar] [CrossRef]
- Lewis, J.R.; Davis, A.L.; Cai, Y.; Davies, A.P.; Wilkins, J.P.G.; Pennington, M. Theaflavate B, isotheaflavin-3-O-gallate and neotheaflavin-3-O-gallate: Three polyphenolic pigments from black tea. Phytochemistry 1998, 49, 2511–2519. [Google Scholar] [CrossRef]
- Coxon, D.T.; Holmes, A.; Ollis, W.D. Isotheaflavin. A new black tea pigment. Tetrahedron Lett. 1970, 11, 5241–5246. [Google Scholar] [CrossRef]
- Kawabe, Y.; Aihara, Y.; Hirose, Y.; Sakurada, A.; Yoshida, A.; Inai, M.; Asakawa, T.; Hamashima, Y.; Kan, T. Synthesis of theaflavins via biomimetic oxidative coupling reactions. Synlett 2013, 24, 479–482. [Google Scholar]
- Tan, J.; de Bruijn, W.J.C.; van Zadelhoff, A.; Lin, Z.; Vincken, J. Browning of epicatechin (EC) and epigallocatechin (EGC) by auto-oxidation. J. Agric. Food Chem. 2020, 68, 13879–13887. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Lambert, J.D.; Tian, S.; Hong, J.; Hou, Z.; Ryu, J.; Stark, R.E.; Rosen, R.T.; Huang, M.; Yang, C.S.; et al. Enzymatic synthesis of tea theaflavin derivatives and their anti-inflammatory and cytotoxic activities. Bioorg. Med. Chem. 2004, 12, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Vural, N.; Cavuldak, Z.A.; Akay, M.A.; Anli, R.E. Determination of the various extraction solvent effects on polyphenolic profile and antioxidant activities of selected tea samples by chemometric approach. J. Food Meas. Charact. 2020, 14, 1286–1305. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, X.; Xu, Y.; Yin, J. Recent advances regarding polyphenol oxidase in Camellia sinensis: Extraction, purification, characterization, and application. Foods 2024, 13, 545. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xiao, Y.; Meng, X.; Liu, B. Full inhibition of whangkeumbae pear polyphenol oxidase enzymatic browning reaction by l-cysteine. Food Chem. 2018, 266, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Collier, P.D.; Bryce, T.; Mallows, R.; Thomas, P.E. The theaflavins of black tea. Tetrahedron 1973, 29, 125–142. [Google Scholar] [CrossRef]
- Davis, A.L.; Cai, Y.; Davies, A.P. 1H and 13C NMR assignment of theaflavin, theaflavin monogallate and theaflavin digallate. Magn. Reson. Chem. 2010, 33, 549–552. [Google Scholar] [CrossRef]
- Stodt, U.W.; Blauth, N.; Niemann, S.; Stark, J.; Pawar, V.; Jayaraman, S.; Koek, J.; Engelhardt, U.H. Investigation of processes in black tea manufacture through model fermentation (oxidation) experiments. J. Agric. Food Chem. 2014, 62, 7854–7861. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.P.; Goodsall, C.; Cai, Y.; Davis, A.L.; Lewis, J.R.; Wilkins, J.; Wan, X.; Clifford, M.N.; Powell, C.; Parry, A.; et al. Black tea dimeric and oligomeric pigments-structures and formation. Plant Polyphen. 2 Chem. Biol. Pharmacol. Ecol. 1999, 33, 697–724. [Google Scholar]
- Scharbert, S.; Holzmann, N.; Hofmann, T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 2004, 52, 3498–3508. [Google Scholar] [CrossRef]
- Wang, Y.; Kan, Z.; Thompson, H.J.; Ling, T.; Ho, C.; Li, D.; Wan, X. Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43. J. Agric. Food Chem. 2019, 67, 5423–5436. [Google Scholar] [CrossRef]
- Matsuo, Y.; Tanaka, T.; Kouno, I. A new mechanism for oxidation of epigallocatechin and production of benzotropolone pigments. Tetrahedron 2006, 62, 4774–4783. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, S.; Li, Q.; Yuan, E.; Chen, R.; Yan, F.; Lai, X.; Zhang, Z.; Chen, Z.; Li, Q.; et al. Metabolomics and electronic tongue reveal the effects of different storage years on metabolites and taste quality of Oolong Tea. Food Control. 2023, 152, 109847. [Google Scholar] [CrossRef]
- O’Neill, E.J.; Termini, D.; Albano, A.; Tsiani, E. Anti-cancer properties of theaflavins. Molecules 2021, 26, 987. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Chatterjee, R.; Mandal, A.K.A.; Mukhopadhyay, A.; Basu, S.; Giri, A.K.; Chatterji, U.; Bhattacharjee, P. Theaflavin-containing black tea extract: A potential DNA methyltransferase inhibitor in human colon cancer cells and Ehrlich Ascites Carcinoma-induced solid tumors in mice. Nutr. Cancer 2021, 73, 2447–2459. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ho, C.T.; Ghai, G.; Chen, K.Y. Differential effects of theaflavin monogallates on cell growth, apoptosis, and Cox-2 gene expression in cancerous versus normal cells. Cancer Res. 2000, 60, 6465–6471. [Google Scholar] [PubMed]
- Imran, A.; Butt, M.S.; Xiao, H.; Imran, M.; Rauf, A.; Mubarak, M.S.; Ramadan, M.F. Inhibitory effect of black tea (Camellia sinensis) theaflavins and thearubigins against hct 116 colon cancer cells and ht 460 lung cancer cells. J. Food Biochem. 2019, 43, e12822. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, J.; Zhang, Q.; Xu, Q.; Lu, L.; Wang, J.; Xia, W. P4HB knockdown induces human HT29 colon cancer cell apoptosis through the generation of reactive oxygen species and inactivation of STAT3 signaling. Mol. Med. Rep. 2019, 19, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Huang, X.; Zhao, J.; Yang, C.S.; Zhang, S.; Huang, J.; Wang, K.; Liu, Z.; Zhu, M. Theaflavins: An underexploited functional compound in black tea. Trends Food Sci. Technol. 2024, 154, 104755. [Google Scholar] [CrossRef]
- Cheung, E.C.; Vousden, K.H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297. [Google Scholar] [CrossRef] [PubMed]
- Govindarasu, M.; Abirami, P.; Rajakumar, G.; Ansari, M.A.; Alomary, M.N.; Alkhayl, F.; Aloliqi, A.A.; Thiruvengadam, M.; Vaiyapuri, M. Kaempferitrin inhibits colorectal cancer cells by inducing reactive oxygen species and modulating PI3K/AKT signalling pathway. Process Biochem. 2022, 116, 26–37. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Zhang, T.; Li, Y.; Xue, H.; Cao, J.; Hou, W.; Luo, Y.; Jin, C.; Jin, C. Schisandrin B exerts anticancer effects on human gastric cancer cells through ROS-mediated MAPK, STAT3, and NF-κB pathways. Biocell 2023, 47, 195–204. [Google Scholar] [CrossRef]
- Li, Y.; She, W.; Xu, X. AAZ2 induces mitochondrial-dependent apoptosis by targeting PDK1 in gastric cancer. Zhejiang Univ. Sci. B 2023, 24, 16. [Google Scholar] [CrossRef]
- Singh, M.; Singh, R.; Bhui, K.; Tyagi, S.; Mahmood, Z.; Shukla, Y. Tea polyphenols induce apoptosis through mitochondrial pathway and by inhibiting nuclear factor-kappa B and Akt activation in human cervical cancer cells. Oncol. Res. 2011, 19, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Maity, R.; Chatterjee, M.; Banerjee, A.; Das, A.; Mishra, R.; Mazumder, S.; Chanda, N. Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 104, 109909. [Google Scholar] [CrossRef] [PubMed]
- Abate, M.; Festa, A.; Falco, M.; Lombardi, A.; Misso, G. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin. Cell Dev. Biol. 2020, 98, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Jan, Y.; Matter, M.; Pai, J.T.; Chen, Y.L.; Pilch, J.; Komatsu, M.; Ong, E.; Fukuda, M.; Ruoslahti, E. A mitochondrial protein, Bit1, mediates apoptosis regulated by integrins and Groucho/TLE corepressors. Cell 2005, 122, 485–486. [Google Scholar] [CrossRef]
- Liu, S.; Ou, S.; Huang, H. Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis. J. Zhejiang Univ. Sci. B 2017, 18, 89–98. [Google Scholar] [CrossRef]
- Liu, L.; Zuo, J.; Wang, G. Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis in Ec9706 and Eca109 esophageal carcinoma cells. Oncol. Lett. 2017, 14, 4391–4395. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jeong, Y.J.; Lee, S.W.; Kim, D.; Oh, S.J.; Lim, H.S.; Oh, H.K.; Kim, S.H.; Kim, W.J.; Jung, J.Y. EGCG induces apoptosis in human laryngeal epidermoid carcinoma Hep2 cells via mitochondria with the release of apoptosis-inducing factor and endonuclease G. Cancer Lett. 2010, 290, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zheng, J.; Nussinov, R.; Ma, B. Release of cytochrome c from Bax pores at the mitochondrial membrane. Sci. Rep. 2017, 7, 2635. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yin, Z.; Gao, S.; Chen, M.; Ai, Q. Characterization of Caspase8 and its role in the regulation of apoptosis-related genes in large yellow croaker (Larimichthys crocea). Aquaculture 2021, 539, 736595. [Google Scholar] [CrossRef]
Compound | RT (min) Negative/ Positive Ion Modes | MS (m/z) [M−H]−/[M+H]+ | Formula | MS2 (m/z) [M−H]−/[M+H]+ | Tentative Identification |
---|---|---|---|---|---|
1 | 8.734/8.717 | 563.1206/565.1339 | C29H24O12 | 125.0249, 137.0239, 241.0510, 425.0863/ 139.0388, 277.0690, 427.1016, 565.1333 | Isoneotheaflavin |
2 | 10.437/10.446 | 715.1314/717.1435 | C36H28O16 | 125.0239, 169.0136, 321.0761, 545.1098, 563.1188/ 139.0388, 277.0696, 409.0896, 579.1118 | Isoneotheaflavin-3-gallate |
3 | 11.088/- | 867.1418/- | C43H32O20 | 169.0155, 389.0685, 527.0982, 545.1110, 715.1254/- | Theaflavin-3,3′-digallate 1 |
4 | 11.354/- | 867.1418/- | C43H32O20 | 169.0142, 389.0689, 527.0964, 545.1075, 697.1161, 715.1343/- | Theaflavin-3,3′-digallate 2 |
5 | 12.481/12.523 | 867.1418/869.1546 | C43H32O20 | 125.0238, 169.0143, 389.0664, 527.0977, 697.1220/ 139.0395, 277.0689, 391.0807, 529.1106, 743.1236 | Theaflavin-3,3′-digallate 3 |
6 | 8.175/9.296 | 427.0674/429.1508 | C21H16O10 | 289.0396, 427.0664/ 232.0701 | Theaflavic acid |
7 | 8.607/- | 579.0784/- | C28H20O14 | 169.0160, 289.0348, 347.8969, 427.0665/- | Epitheaflavic acid 3-gallate/Theaflavic acid 3-gallate |
8 | 8.837/- | 579.0784/- | C28H20O14 | 169.0148, 279.0662, 383.0763, 427.0679/- | Epitheaflavic acid 3-gallate/Theaflavic acid 3-gallate |
9 | 9.589/- | 579.0784/- | C28H20O14 | 246.0170, 289.0333, 427.0671/- | Epitheaflavic acid 3-gallate/Theaflavic acid 3-gallate |
10 | 9.253/9.288 | 399.0728/401.0851 | C20H16O9 | 165.0179, 233.0451/ 139.0387, 263.0537 | Theaflagallin |
11 | 11.016/11.024 | 551.084/553.0959 | C27H20O13 | 169.0139, 381.0616/ 139.0389, 233.0441, 383.0762 | Epitheaflagallin 3-O-gallate/Theaflagallin 3-O-gallate |
Product | Rt (min) | MS (m/z) | Formula | MS2 (m/z) |
---|---|---|---|---|
Major product 2 | 10.359 | 737 [M+Na−2H]− | C36H28O16 | 125.0236, 429.0576, 599.0818 |
10.346 | 739.1264 [M+Na]+ | C36H28O16 | 161.0213, 601.0955 | |
10.376 | 717.1449 [M+H]+ | C36H28O16 | 139.0390, 277.0704, 409.0905, 579.1130 | |
10.487 | 717.1449 [M+H]+ | C36H28O16 | 139.0389, 277.0706, 409.0910, 579.1134 | |
Secondary product | 10.027 | 715.1308 [M−H]− | C36H28O16 | 125.0244, 137.0252, 227.0345, 287.0566, 383.0774, 427.0675 |
10.001 | 717.1449 [M+H]+ | C36H28O16 | 139.0388, 289.0704, 429.0825, 591.1116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Gao, X.; Huang, Q.; Chen, Z.; Zhang, Y.; Zhu, F.; Li, B.; Lin, X. Discovery and Characterization of a Distinctive Theaflavin-3-Gallate Isomer from Camellia ptilophylla with Potent Anticancer Properties Against Human Colorectal Carcinoma Cells. Foods 2025, 14, 604. https://doi.org/10.3390/foods14040604
Zhou L, Gao X, Huang Q, Chen Z, Zhang Y, Zhu F, Li B, Lin X. Discovery and Characterization of a Distinctive Theaflavin-3-Gallate Isomer from Camellia ptilophylla with Potent Anticancer Properties Against Human Colorectal Carcinoma Cells. Foods. 2025; 14(4):604. https://doi.org/10.3390/foods14040604
Chicago/Turabian StyleZhou, Langhua, Xiong Gao, Qiuyan Huang, Zhongzheng Chen, Yuanyuan Zhang, Fuming Zhu, Bin Li, and Xiaorong Lin. 2025. "Discovery and Characterization of a Distinctive Theaflavin-3-Gallate Isomer from Camellia ptilophylla with Potent Anticancer Properties Against Human Colorectal Carcinoma Cells" Foods 14, no. 4: 604. https://doi.org/10.3390/foods14040604
APA StyleZhou, L., Gao, X., Huang, Q., Chen, Z., Zhang, Y., Zhu, F., Li, B., & Lin, X. (2025). Discovery and Characterization of a Distinctive Theaflavin-3-Gallate Isomer from Camellia ptilophylla with Potent Anticancer Properties Against Human Colorectal Carcinoma Cells. Foods, 14(4), 604. https://doi.org/10.3390/foods14040604