Impact of Selected Starters and Cassava Varieties on the Proximate, Rheological, and Volatile Profiles of Lafun
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Raw Cassava Roots and Lafun Market Samples
2.2. Preparation of Cassava Roots
2.3. Preparation of Lactic Acid Bacteria Starter Cultures
2.4. Lafun Production
2.5. Proximate Analysis of Lafun Samples and Raw Cassava Roots
2.6. Lafun Gruel Rheological Measurements
2.7. Volatile Compound Analysis of Lafun Samples and Raw Cassava Roots
2.7.1. Sample Preparation
2.7.2. Gas Chromatography–Mass Spectrometry Analysis
2.7.3. Gas Chromatography–Olfactometry Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximate Analysis of Lafun Samples and Raw Cassava Roots
3.2. Lafun Gruel Rheological Properties
3.3. Volatile Compound Analysis of Lafun Samples and Raw Cassava Roots
3.3.1. Gas Chromatography-Mass Spectrometry Analysis
3.3.2. Gas Chromatography–Olfactometry Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiang, Y.W.; Ismail, M. Microbial diversity and proximate composition of tapai, A Sabah’ s fermented beverage. Malays. J. Microbiol. 2006, 2, 1–6. [Google Scholar]
- Ojokoh, A.O.; Orekoya, E.S. Effect of fermentation on the proximate composition of the epicarp of watermelon (Citrullus lanatus). Int. J. Swarm Intell. Evol. Comput. 2016, 5, 143–147. [Google Scholar] [CrossRef]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Franz, C.M.A.; Hummel, P.A.; Holzapfel, W.H. Problems related to the safety of lactic acid bacteria starter cultures and probiotics. Mitteilungen Aus Leb. Und Hyg. 2005, 96, 39–65. [Google Scholar] [CrossRef]
- Padonou, S.W.; Nielsen, D.S.; Akissoe, N.H.; Hounhouigan, J.D.; Nago, M.C.; Jakobsen, M. Development of starter culture for improved processing of Lafun, an African fermented cassava food product. J. Appl. Microbiol. 2010, 109, 1402–1410. [Google Scholar] [CrossRef] [PubMed]
- Kuye, A.; Sanni, L.O. Industrialization of fermented food processes: How far in Nigeria? J. Sci. Ind. Res. 1999, 58, 837–843. [Google Scholar]
- Daubert, C.R.; Foegeding, E.A. Physical properties of foods: Rheological. In Food Analysis; Springer Science + Business Media, LLC: Berlin/Heidelberg, Germany, 2010; pp. 541–554. [Google Scholar] [CrossRef]
- Tabilo-Munizaga, G.; Barbosa-Cánovas, G.V. Rheology for the food industry. J. Food Eng. 2005, 67, 147–156. [Google Scholar] [CrossRef]
- Bourne, M.C. Relationship between rheology and food texture. In Engineering and Food for the 21st Century; Taylor & Francis: Oxford, UK, 2002; pp. 291–306. [Google Scholar]
- Padonou, S.W.; Hounhouigan, J.D.; Nago, M.C. Physical, chemical and microbiological characteristics of Lafun produced in Benin Physical, chemical and microbiological characteristics of lafun produced in Benin. Afr. J. Biotechnol. 2009, 8, 3320–3332. [Google Scholar]
- Padonou, S.W.; Nielsen, D.S.; Hounhouigan, J.D.; Thorsen, L.; Nago, M.C.; Jakobsen, M. The microbiota of lafun, an African traditional cassava food product. Int. J. Food. Microbiol. 2009, 133, 22–30. [Google Scholar] [CrossRef]
- Oyewole, S.A.; Odunfa, O.B. Microbiological studies on cassava fermentation for lafun production. Food Microbiol. 1988, 5, 125–133. [Google Scholar] [CrossRef]
- Adebayo-Oyetoro, M.A.; Oyewole, A.O.; Obadina, O.B.; Omemu, A.O. Microbiological safety assessment of fermented cassava flour lafun available in Ogun and Oyo States of Nigeria. Int. J. Food Sci. 2013, 2013, 845324. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC, 17th ed.; Association of Analytical Communities: Gaithersburg, MD, USA, 2000; Volume 1. [Google Scholar]
- Montagnac, J.A.; Davis, C.R.; Tanumihardjo, S.A. Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr. Rev. Food Sci. Food Saf. 2009, 8, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Okigbo, B.N. Nutritional implications of projects giving high priority to the production of staples of low nutritive quality: The Case for Cassava (Manihot esculenta, Crantz) in the Humid Tropics of West Africa. Food Nutr. Policy Food Nutr. Bull. 1980, 2, 1–12. [Google Scholar] [CrossRef]
- Hermiati, E.; Azuma, J.; Mangunwidjaja, D.; Sunarti, T.C.; Suparno, O.; Prasetya, B. Hydrolysis of carbohydrates in cassava pulp and tapioca flour under microwave irradiation. Indo. J. Chem. 2011, 11, 238–245. [Google Scholar] [CrossRef]
- Panaite, C.V.; Criste, R.D.; Dragotoiu, D.; Panaite, T.D.; Olteanu, M. Effect of crude fibre concentration in pullet diets (9–16 weeks) on their subsequent performance. In Proceedings of the International Conference of the University of Agronomic Sciences and Veterinary Medicine of Bucharest Agriculture for Life, Life for Agriculture, Bucharest, Romania, 4–6 June 2015; pp. 1–8. [Google Scholar]
- Müller, M.; Canfora, E.E.; Blaak, E.E. Gastrointestinal transit time, glucose homeostasis and metabolic Health: Modulation by dietary fibers. Nutrients 2018, 10, 275. [Google Scholar] [CrossRef] [PubMed]
- Bello, M.O.; Falade, O.S.; Adewusi, S.R.A.; Olawore, N.O. Studies on the chemical compositions and anti nutrients of some lesser known Nigeria fruits. Afr. J. Biotechnol. 2008, 7, 3972–3979. [Google Scholar]
- Eromosele, O.; Ojokoh, A.; Ekundayo, O.; Ezem, L.; Chukwudum, A. Effect of fermentation on the proximate composition of ripe and unripe plantain flour. J. Adv. Microbiol. 2017, 2, 1–10. [Google Scholar] [CrossRef]
- Onuoha, E.C.; Orukotan, J.B.; Abimbola, A.A. Effect of fermentation (natural and starter) on the physicochemical, anti-nutritional and proximate composition of pearl millet used for flour production. Am. J. Biosci. Bioeng. 2017, 5, 12. [Google Scholar] [CrossRef]
- Chikwendu, J.N.; Obiakor-Okeke, P.N.; Nwabugo, M.A. Effect of fermentation on the nutrient and antinutrient composition of african yam bean (sphenostylisstenocarpa) seeds. Int. J. Sci. Technoledge 2014, 2, 169–175. [Google Scholar]
- Oduah, N.O.; Adepoju, P.A.; Longe, O.; Elemo, G.N.; Oke, O.V. Effects of fermentation on the quality and composition of cassava mash(gari). Int. J. Food Nutr. Saf. 2015, 6, 30–41. [Google Scholar]
- Irtwange, S.V.; Achimba, O. Effect of the duration of fermentation on the quality of gari. Curr. Res. J. Biol. Sci. 2009, 1, 150–154. [Google Scholar]
- Oyewole, O.B.; Odunfa, S.A. Effects of fermentation on the carbohydrate, mineral, and protein contents of cassava during ‘fufu’ production. J. Food Compos. Anal. 1989, 2, 170–176. [Google Scholar] [CrossRef]
- Çabuk, B.; Nosworthy, M.G.; Stone, A.K.; Korber, D.R.; Tanaka, T.; House, J.D.; Nickerson, M.T. Effect of fermentation on the protein digestibility and levels of non-nutritive compounds of pea protein concentrate. Food Technol. Biotechnol. 2018, 56, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Tefera, T.; Ameha, K.; Biruhtesfa, A. Cassava based foods: Microbial fermentation by single starter culture towards cyanide reduction, protein enhancement and palatability. Int. Food Res. J. 2014, 21, 1751–1756. [Google Scholar]
- Vyas, T.K.; Desai, P.; Patel, A.R.; Patel, K.G. “Exploration of Leuconostoc mesenteroides sub sp mesenteroides from Indian fermented food for curd preparation. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3137–3144. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, S.H.; Lee, H.J.; Seo, H.Y.; Park, W.S.; Jeon, C.O. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int. J. Food Microbiol. 2012, 153, 378–387. [Google Scholar] [CrossRef]
- Johanningsmeier, R.F.; McFeeters, H.P.; Thompson, R.L. Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. J. Food Sci. 2007, 72, 166–172. [Google Scholar] [CrossRef]
- Harbourne, N.; Jacquier, J.C.; O’Riordan, D. Effects of addition of phenolic compounds on the acid gelation of milk. Int. Dairy J. 2011, 21, 185–191. [Google Scholar] [CrossRef]
- He, H.; Hoseney, R.C. Gas retention of different cereal flours. Cereal. Chem. 1991, 68, 334–336. [Google Scholar]
- Hüttner, E.K.; Bello, F.D.; Arendt, E.K. Rheological properties and bread making performance of commercial wholegrain oat flours. J. Cereal Sci. 2010, 52, 65–71. [Google Scholar] [CrossRef]
- Lewinsohn, E.; Sitrit, Y.; Bar, E.; Azulay, Y.; Meir, A.; Zamir, D.; Tadmor, Y. Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J. Agric. Food Chem. 2005, 53, 3142–3148. [Google Scholar] [CrossRef] [PubMed]
- Grosch, W. Enzymatische hildung van neutralen carbonylverbindungen aus den lipoiden der erbse (Pisum sativum var. Got- tinga). Lebensm. Untersuch. Forschung 1967, 135, 75. [Google Scholar] [CrossRef]
- Kazeniac, S.J.; Hall, R.M. Flavor chemistry of tomato different varieties. J. Food Sci. 1970, 35, 519–530. [Google Scholar] [CrossRef]
- Elisia, I.A.; Kitts, D.D. Quantification of hexanal as an index of lipid oxidation in human milk and association with antioxidant components. J. Clin. Biochem. Nutr. 2011, 49, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Combet, E.; Henderson, J.; Eastwood, D.C.; Burton, K.S. Review of C8 volatiles in mushrooms and fungi and their formation. Mycoscience 2006, 47, 317–326. [Google Scholar] [CrossRef]
- García_Llatas, G.; Lagarda, M.J.; Romero, F.A.P.; Farré, R. A headspace solid-phase micro extraction method of use in monitoring hexanal and pentane during storage: Application to liquid infant foods and powdered infant formulas. Food Chem. 2007, 101, 1078–1086. [Google Scholar] [CrossRef]
- Fuentes, V.; Estévez, M.; Ventanas, J.; Ventanas, S. Impact of lipid content and composition on lipid oxidation and protein carbonylation in experimental fermented sausages. Food Chem. 2014, 147, 70–77. [Google Scholar] [CrossRef]
- Jeremiah, L.E. Packaging alternatives to deliver fresh meats using short- or long-term distribution. Food Res. Int. 2001, 34, 749–772. [Google Scholar] [CrossRef]
- Choi, Y.J.; Yong, S.; Lee, M.J.; Park, S.J.; Yun, Y.R.; Park, S.H.; Lee, M.A. Changes in volatile and non-volatile compounds of model kimchi through fermentation by lactic acid bacteria. LWT Food Sci. Technol. 2019, 105, 118–126. [Google Scholar] [CrossRef]
- ATSDR. Public Health Statement for Perfluoroalkyls. 2015; pp. 1–8. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp200-c1-b.pdf (accessed on 6 February 2025).
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008, 54, 712–732. [Google Scholar] [CrossRef] [PubMed]
- Smit, G.; Smit, B.A.; Engels, W.J.M. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef]
% Proximate | |||||||
---|---|---|---|---|---|---|---|
LAB Strain | Cassava Variety | Moisture Content | Ash | Crude Protein | Crude Lipid | Crude Fibre | Carbohydrate |
Unfermented (Raw Cassava) | Bitter | 2.3 ± 0.0 bc | 1.8 ± 0.2 fghij | 1.8 ± 0.1 de | 0.5 ± 0.14 fgh | 2.1 ± 0.04 hi | 91.5 cdefg |
Fortified | 2.3 ± 0.5 bc | 3.0 ± 0.0 de | 1.8 ± 0.1 de | 1.4 ± 0.01 bcd | 3.4 ± 0.03 efg | 88.1 hi | |
Sweet | 2.2 ± 0.2 bcd | 2.3 ± 0.0 efg | 2.2 ± 0.0 cd | 0.7 ± 0.14 efg | 1.4 ± 0.01 k | 91.2 defg | |
K1 | Bitter | 1.4 ± 0.1 bcd | 1.3 ± 0.1 hij | 1.1 ± 0.0 defg | 0.4 ± 0.00 gh | 3.1 ± 0.05 g | 92.7 abc |
Fortified | 2.3 ± 0.5 bc | 3.8 ± 0.2 abc | 3.0 ± 0.2 ab | 2.2 ± 0.00 a | 3.5 ± 0.10 efg | 85.2 hi | |
Sweet | 0.9 ± 0.1 cd | 1.5 ± 0.2 ghi | 1.4 ± 0.0 cdef | 0.2 ± 0.00 h | 2.5 ± 0.26 h | 93.5 a | |
L | Bitter | 1.2 ± 0.2 bcd | 1.5 ± 0.2 hij | 0.9 ± 0.0 fg | 0.5 ± 0.14 fgh | 3.6 ± 0.25 defg | 92.4 abcd |
Fortified | 1.9 ± 0.7 bcd | 3.8 ± 0.3 abc | 2.9 ± 0.1 ab | 1.7 ± 0.14 b | 6.6 ± 0.11 b | 83.1 ij | |
Sweet | 1.0 ± 0.90 bcd | 1.5 ± 0.19 ghi | 1.4 ± 0.07 cdef | 0.4 ± 0.00 gh | 2.1 ± 0.07 hi | 93.5 a | |
K2 | Bitter | 0.9 ± 0.38 bcd | 1.3 ± 0.09 hij | 1.5 ± 0.05 cde | 0.4 ± 0.00 gh | 1.9 ± 0.00 ij | 94.0 a |
Fortified | 2.3 ± 0.47 bc | 3.6 ± 0.05 bcd | 2.9 ± 0.06 ab | 1.5 ± 0.14 b | 4.8 ± 0.08 c | 84.9 hi | |
Sweet | 1.5 ± 0.71 bcd | 1.4 ± 0.05 hij | 1.3 ± 0.17 cdef | 1.1 ± 0.13 cd | 3.7 ± 0.22 def | 91.0 bcde | |
M | Bitter | 1.5 ± 0.19 bcd | 1.5 ± 0.19 hij | 0.9 ± 0.04 fg | 0.6 ± 0.00 fg | 3.2 ± 0.21 fg | 92.3 abcd |
Fortified | 1.8 ± 0.28 bcd | 4.4 ± 0.05 a | 3.1 ± 0.23 a | 1.4 ± 0.00 bc | 7.4 ± 0.18 a | 81.9 j | |
Sweet | 0.7 ± 0.09 d | 2.4 ± 0.33 ef | 1.5 ± 0.05 cde | 0.6 ± 0.00 fg | 3.4 ± 0.05 efg | 91.3 bcde | |
L + M | Bitter | 1.2 ± 0.61 bcd | 1.7 ± 0.10 fgh | 1.1 ± 0.01 efg | 0.5 ± 0.14 fgh | 3.4 ± 0.01 efg | 92.1 abcd |
Fortified | 1.7 ± 0.42 bcd | 3.9 ± 0.12 ab | 2.9 ± 0.05 ab | 1.7 ± 0.14 b | 6.7 ± 0.13 b | 83.1 ij | |
Sweet | 1.1 ± 0.14 bcd | 2.2 ± 0.28 fg | 1.6 ± 0.10 cde | 0.5 ± 0.14 fgh | 4.1 ± 0.09 d | 90.5 de | |
K + K | Bitter | 2.2 ± 0.24 bcd | 0.8 ± 0.24 j | 0.8 ± 0.06 g | 0.4 ± 0.00 gh | 2.3 ± 0.07 hi | 93.51 a |
Fortified | 2.2 ± 0.28 bcd | 3.6 ± 0.05 bcd | 2.6 ± 0.09 ab | 1.0 ± 0.00 de | 3.9 ± 0.25 de | 86.7 gh | |
Sweet | 2.0 ± 0.52 bcd | 3.0 ± 0.00 de | 1.8 ± 0.15 c | 0.4 ± 0.00 gh | 2.2 ± 0.01 hi | 90.6 cde | |
K1 + L | Bitter | 1.7 ± 0.00 bcd | 1.0 ± 0.00 ij | 0.6 ± 0.25 g | 0.5 ± 0.14 fgh | 2.1 ± 0.05 hi | 94.2 a |
Fortified | 1.8 ± 0.27 bcd | 3.9 ± 0.11 ab | 2.5 ± 0.33 b | 0.8 ± 0.00 def | 3.3 ± 0.07 efg | 87.6 fg | |
Sweet | 1.3 ± 0.09 bcd | 3.2 ± 0.23 cd | 1.8 ± 0.01 c | 0.7 ± 0.14 efg | 3.7 ± 0.13 defg | 89.4 ef | |
K2 + M | Bitter | 2.5 ± 0.24 bcd | 0.8 ± 0.24 j | 0.8 ± 0.13 g | 0.5 ± 0.14 fgh | 2.3 ± 0.06 hi | 93.2 ab |
Fortified | 2.4 ± 0.05 bc | 3.5 ± 0.19 bcd | 2.8 ± 0.10 ab | 0.8 ± 0.00 def | 3.7 ± 0.04 def | 86.9 gh | |
Sweet | 1.2 ± 0.24 bcd | 1.7 ± 0.09 gh | 1.6 ± 0.12 cd | 0.6 ± 0.00 fg | 3.6 ± 0.19 defg | 91.2 bcde | |
MKT1 | Market sample | 10.5 ± 0.24 a | 1.3 ± 0.00 hij | 0.9 ± 0.22 fg | 0.5 ± 0.14 fgh | 1.4 ± 0.04 j | 85.4 h |
LAB Strain(s) | Cassava Variety | Storage Modulus | Loss Modulus | δ Value |
---|---|---|---|---|
K1 | Bitter | 1378.73 fgh ± 21.19 | 287.89 cdef ± 4.29 | 0.21 |
Fortified | 2864.80 l ± 105.32 | 480.90 j ± 11.34 | 0.17 | |
Sweet | 1467.57 gh ± 170.91 | 356.27 fgh ± 41.47 | 0.24 | |
L | Bitter | 1215.97 def ± 84.35 | 284.56 cdef ± 12.29 | 0.23 |
Fortified | 2775.27 kl ± 234.98 | 489.91 j ± 39.32 | 0.18 | |
Sweet | 1283.63 efg ± 77.14 | 300.27 def ± 17.78 | 0.23 | |
K2 | Bitter | 869.46 a ± 61.49 | 205.25 a ± 10.73 | 0.24 |
Fortified | 4589.87 n ± 466.45 | 804.57 l ± 66.35 | 0.18 | |
Sweet | 999.64 abcd ± 62.95 | 241.09 abcd ± 9.92 | 0.24 | |
M | Bitter | 1260.83 efg ± 58.77 | 274.69 abcde ± 12.09 | 0.22 |
Fortified | 2324.40 i ± 334.78 | 382.09 ghi ± 58.3 | 0.16 | |
Sweet | 926.81 abc ± 86.34 | 228.18 abcd ± 15.34 | 0.25 | |
L + M | Bitter | 1197.10 cdef ± 19.77 | 268.96 abcde ± 1.28 | 0.22 |
Fortified | 2340.33 ij ± 82.14 | 390.51 ghi ± 9.79 | 0.17 | |
Sweet | 1329.67 efgh ± 29.93 | 288.32 cdef ± 3.79 | 0.22 | |
K + K | Bitter | 908.65 ab ± 41.81 | 226.29 abc ± 9.49 | 0.25 |
Fortified | 2561.83 jk ± 76.51 | 439.02 ij ± 13.45 | 0.17 | |
Sweet | 1275.67 efg ± 61.29 | 282.60 cde ± 9.74 | 0.22 | |
K1 + L | Bitter | 1093.03 abcde ± 22.05 | 239.95 abcd ± 3.24 | 0.22 |
Fortified | 3480.77 m ± 159.46 | 621.58 k ± 16.47 | 0.18 | |
Sweet | 1543.57 h ± 61.08 | 322.29 efg ± 10.36 | 0.21 | |
K2 + M | Bitter | 1303.20 efg ± 28.9 | 281.44 bcde ± 8.3 | 0.22 |
Fortified | 2292.30 i ± 57.57 | 397.48 hi ± 7.69 | 0.17 | |
Sweet | 1470.27 gh ± 29.28 | 335.22 efgh ± 2.87 | 0.23 | |
MKT1 | Market sample | 1130.13 bcde ± 8.2 | 208.07 ab ± 0.99 | 0.18 |
W. koreensis-1 | L. lactis | W. koreensis-2 | L. mesenteroides | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Code | Volatile Compound | B | F | S | B | F | S | B | F | S | B | F | S |
Aldehydes | |||||||||||||
a1 | Pentanal | 416 ± 93 abcde | 95 ± 48 def | 441 ± 30 abc | 420 ± 7 abcd | 269 ± 297 abcdef | 427 ± 88 abcd | 503 ± 110 a | 72 ± 8 f | 446 ± 60 abc | 436± 32 abc | 82 ± 23 ef | 443 ± 17 abc |
a2 | Hexanal | 12520 ± 2890 a | 1078 ± 16 b | 11117 ± 11 a | 11816 ± 1207 a | 3581 ± 4286 b | 11641 ± 1006 a | 13352 ± 1314 a | 315 ± 153 b | 11375 ± 2453 a | 12982 ± 323 a | 245 ± 96 b | 12154 ± 2864 a |
e1 | 2-Pentenal (E)- | 139 ± 3 bcd | 49 ± 24 bcd | 240 ± 133 abc | 188 ± 40 abcd | 82 ± 85 bcd | 156± 23 abcd | 180 ± 6 abcd | 13 ± 18 bcd | 176± 40 abcd | 181 ± 40 abcd | 25 ± 1 bcd | 216± 21 abcd |
a3 | Heptanal | 398 ± 0 abc | 10 ± 13 c | 510 ± 102 abc | 349 ± 62 abc | 248 ± 350 abc | 602 ± 120 ab | 475 ± 100 abc | 17 ± 24 c | 493 ± 178 abc | 490 ± 23 abc | ND | 487 ± 111 abc |
e2 | 2-Hexenal (E)- | 130 ± 38 abcd | 16 ± 7 cd | 109 ± 47 abcd | 129 ± 17 abcd | 55± 66 bcd | 100 ± 25 abc | 155 ± 35 abcd | 15 ± 8 d | 106 ± 60 abcd | 156 ± 9 abcd | 11 ± 6 d | 95 ± 23 abcd |
a4 | Octanal | 462 ± 167 abc | 57 ± 15 c | 736 ± 137 abc | 405 ± 171 abc | 348 ± 204 bc | 793 ± 8 abc | 593 ± 182 abc | 20 ± 28 c | 605 ± 406 abc | 648 ± 83 abc | 31 ± 6 c | 608 ± 229 abc |
e3 | 2-Heptenal (E)- | 932 ± 21 abcdef | 119 ± 34 fg | 818 ± 80 abcdefg | 1114 ± 256 abc | 348 ± 414 cdefg | 828 ± 37 abcdefg | 1110 ± 88 abc | 36 ± 33 g | 794 ± 110 abcdefg | 1145 ± 311 abc | 56 ± 18 g | 953 ± 96 abcde |
a5 | Nonanal | 542 ± 233 abc | 81 ± 17 c | 711 ± 136 abc | 499 ± 205 abc | 242 ± 243 abc | 424 ± 599 abc | 731 ± 180 abc | 150 ± 126 bc | 640 ± 476 abc | 722 ± 89 abc | 40 ± 1 c | 588 ± 67 abc |
e4 | 2-Octenal, (E)- | 1018 ± 163 a | 64 ± 17 cde | 722 ± 154 abcde | 1011 ± 45 a | 183 ± 212 bcde | 783 ± 60 abcd | 1178 ± 218 a | 17 ± 24 e | 663 ± 240 abcde | 1313 ± 373 a | 33 ± 9 e | 799 ± 142 abc |
d1 | 2,4-Heptadienal, (E,E)- | 42 ± 18 a | 31 ± 6 a | 67 ± 18 a | 57± 31 a | 48 ± 42 a | 58 ± 10 a | 53 ± 28 a | 13 ± 18 a | 72 ± 21 a | 55 ± 32 a | 17 ± 1 a | 84 ± 23 a |
d2 | 2,4-Heptadienal, (E,E)- | 153 ± 99 a | 43 ± 4 a | 171 ± 25 a | 221 ± 163 a | 78 ± 78 a | 152 ± 7 a | 183 ± 94 a | 18 ± 25 a | 168 ± 2 a | 197 ± 140 a | 21 ± 1 a | 233 ± 13 a |
e5 | 2-Nonenal, (E)- | 305 ± 213 a | ND | 91 ± 31 a | 263 ± 151 a | 66 ± 93 a | 175± 148 a | 344 ± 221 a | ND | 204 ± 246 a | 314 ± 86 a | ND | 66 ± 31 a |
e6 | 2-Decenal, (E)- | 485 ± 85 abcdef | 13 ± 18 ef | 677 ± 75 abcde | 469 ± 72 abcdef | 93 ± 132 cdef | 778 ± 118 ab | 597± 83 abcdef | 6 ± 8 ef | 567 ± 293 abcdef | 716 ± 203 abc | ND | 600 ± 54 abcdef |
d3 | 2,4-Nonadienal, (E,E)- | 63 ± 6 abcd | ND | 52 ± 16 abcd | 73 ± 12 a | 6 ± 8 cd | 57 ± 17 abcd | 76 ± 4 a | ND | 47 ± 23 abcd | 92 ± 33 a | ND | 51 ± 14 abcd |
e7 | 2-Undecenal, (E)- | 146 ± 30 abcde | ND | 215 ± 25 abcd | 150 ± 11 abcde | 19 ± 27 de | 240 ± 45 abc | 188 ± 29 abcde | ND | 180 ± 104 abcde | 225± 61 abcd | ND | 193 ± 8 abcde |
d4 | 2,4-Decadienal, (E,E) | 99 ± 28 ab | ND | 82 ± 4 ab | 77 ± 40 ab | 5 ± 7 b | 82 ± 6 ab | 77 ± 35 ab | ND | 76 ± 38 ab | 94 ± 44 ab | ND | 84 ± 58 ab |
Carotenoid derivatives | |||||||||||||
c1 | 6-Methyl-5-hepten-2-one | 90 ± 9 a | 126 ± 30 a | 85± 4 a | 104 ± 25 a | 166 ± 132 a | 97 ± 16 a | 108 ± 13 a | 104 ± 7 a | 83 ± 26 a | 106 ± 6 a | 81 ± 4 a | 113 ± 4 a |
c2 | 6,10-Dimethyl-5,9-undecadien-2-one, | 7 ± 3 b | 17 ± 2 ab | 4 ± 1 b | 5 ± 0 b | 16 ± 10 ab | 4 ± 0 b | 6 ± 2 b | 8 ± 3 ab | 6 ± 1 b | 10 ± 5 ab | 12 ± 6 ab | 7 ± 0 b |
Acids | |||||||||||||
v1 | Acetic acid | 1233 ± 238 a | 2330 ± 777 a | 1855 ± 97 a | 1088 ± 10 a | 1859 ± 171 a | 1507 ± 74 a | 1073 ± 30 a | 3241 ± 727 a | 1503 ± 124 a | 1897 ± 95 a | 2263 ± 127 a | 1472 ± 1113 a |
v2 | Butanoic acid | 9 ± 1 a | 79 ± 82 a | 44± 43 a | 13 ± 3 a | 26 ± 5 a | 18 ± 1 a | 8 ± 0 a | 25 ± 2 a | 10 ± 1 a | 12± 4 a | 32 ± 1 a | 11 ± 4 a |
v3 | Pentanoic acid | 36 ± 22 a | 11 ± 7 a | 20 ± 6 a | 30 ± 11 a | 13 ± 9 a | 23 ± 0 a | 38 ± 22 a | 10 ± 2 a | 19 ± 13 a | 35 ± 4 a | 7 ± 1 a | 19 ± 0 a |
v4 | Hexanoic acid | 549 ± 327 a | 77 ± 30 a | 196 ± 129 a | 455 ± 156 a | 109 ± 59 a | 378 ± 79 a | 581 ± 212 a | 88 ± 23 a | 260 ± 224 a | 551 ± 43 a | 76 ± 21 a | 258 ± 35 a |
v5 | Heptanoic acid | 79 ± 103 a | 41 ± 16 a | 73 ± 103 a | 94 ± 124 a | 23 ± 25 a | 2 ± 2 a | 109 ± 147 a | 24 ± 27 a | 2 ± 3 a | 180 ± 247 a | 43 ± 9 a | 115 ± 75 a |
Furan | |||||||||||||
f1 | 2-Pentylfuran | 214 ± 62 abc | 20 ± 8 de | 158 ± 27 abcde | 191 ± 52 abcd | 49 ± 63 cde | 140 ± 21 abcde | 235 ± 45 ab | 2 ± 3 e | 137 ± 64 abcde | 233 ± 41 ab | 10 ± 3 e | 148 ± 8 abcde |
Ketones | |||||||||||||
k1 | Acetone | 928 ± 70 abc | 1910 ± 488 abc | 142 ± 28 c | 1034 ± 485 abc | 1709 ± 352 abc | 294 ± 127 bc | 653 ± 636 abc | 1469 ± 825 abc | 160 ± 54 bc | 320 ± 128 bc | 2190 ± 1280 ab | 61 ± 18 c |
k2 | 2-Butanone | 619 ± 50 bcde | 2259 ± 694 ab | 147 ± 33 de | 731± 169 bcde | 1957 ± 84 abc | 280 ± 18 cde | 472 ± 305 cde | 1724 ± 1053 abcde | 221 ± 4 cde | 243 ± 50 cde | 899 ± 596 bcde | 19 ± 27 e |
k3 | 1-Penten-3-one | 63 ± 22 a | 89 ± 12 a | 110 ± 27 a | 76 ± 8 a | 139 ± 139 a | 82 ± 8 a | 79 ± 6 a | 14 ± 20 a | 65 ± 92 a | 80 ± 21 a | 22 ± 1 a | 151 ± 10 a |
k4 | 3-Penten-2-one | 48 ± 68 a | 116 ± 106 a | 262 ± 318 a | 47 ± 54 a | 32 ± 28 a | 41 ± 12 a | 108 ± 4 a | 102 ± 122 a | 171 ± 82 a | ND | 19 ± 8 a | 124 ± 133 a |
k5 | 1-Octen-3-one | 58 ± 4 abc | 15 ± 7 bc | 57 ± 2 abc | 66 ± 1 abc | 50 ± 59 abc | 60 ± 6 abc | 67 ± 4 abc | 6 ± 3 c | 62 ± 1 abc | 62 ± 5 abc | 12 ± 6 c | 69 ± 3 abc |
k6 | 3-Octen-2-one | 185 ± 95 abc | 8 ± 11 c | 169 ± 59 abc | 191 ± 94 abc | 32 ± 39 bc | 212 ± 64 abc | 219 ± 98 abc | ND | 162 ± 114 abc | 212 ± 54 abc | ND | 161 ± 44 abc |
k7 | 3,5-Octadien-2-one | 60 ± 3 a | 18 ± 13 a | 111 ± 79 a | 78 ± 17 a | 57 ± 81 a | 112 ± 41 a | 59 ± 13 a | 7 ± 10 a | 114 ± 13 a | 65 ± 6 a | 7 ± 4 a | 131 ± 85 a |
k8 | 3,5-Octadien-2-one, (E,E)- | 100 ± 28 bcdef | 7 ± 1 ef | 130 ± 46 abcde | 124 ± 21 abcdef | 25 ± 35 def | 146 ± 21 abcd | 114 ± 26 abcdef | 2 ± 2 ef | 144 ± 29 abcd | 119 ± 21 abcdef | 1 ± 0 f | 179 ± 86 ab |
k9 | 2,3-Octanedione | 79 ± 4 abc | 18 ± 0 c | 64 ± 33 abc | 75 ± 13 abc | 29 ± 18 bc | 59 ± 19 abc | 94 ± 7 abc | 19 ± 6 c | 79 ± 19 abc | 93 ± 25 abc | 25 ± 8 c | 77 ± 40 abc |
L. lactis and L. mesenteroides | W. koreensis (Both Strains) | W. koreensis-1 and L. lactis | W. koreensis-2 and L. mesenteroides | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Code | Volatile Compound | B | F | S | B | F | S | B | F | S | B | F | S |
Aldehydes | |||||||||||||
a1 | Pentanal | 449 ± 3 abc | 138 ± 79 bcdef | 522 ± 20 a | 484 ± 76 a | 125 ± 108 cdef | 474 ± 45 ab | 538 ± 1 a | 283 ± 57 abcdef | 524 ± 28 a | 452 ± 27 abc | 242 ± 18 abcdef | 550 ± 81 a |
a2 | Hexanal | 11876 ± 1382 a | 871 ± 1059 b | 13408 ±602 a | 14112 ±1707 a | 1158 ± 1523 b | 12518 ± 2838 a | 14851 ± 942 a | 3927 ± 1498 b | 14164 ± 392 a | 12809 ± 2082 a | 3202 ± 377 b | 14985 ± 2024 a |
e1 | 2-Pentenal (E)- | 143 ± 50 abcd | 7 ± 10 cd | 231 ± 9 abcd | 182 ± 8 abcd | ND | 195 ± 4 abcd | 242 ± 50 abc | 110 ± 21 bcd | 248 ± 4 ab | 158 ± 35 abcd | 106 ± 1 bcd | 372 ± 168 a |
a3 | Heptanal | 342 ± 178 abc | 85 ± 120 bc | 592 ± 121 ab | 507 ± 91 abc | 102 ± 136 bc | 543 ± 238 abc | 474 ± 113 abc | 356 ± 91 abc | 655 ± 126 a | 476 ± 144 abc | 317 ± 8 abc | 794 ± 156 a |
e2 | 2-Hexenal (E)- | 120 ± 52 abcd | 24 ± 23 cd | 120 ± 62 abcd | 171 ± 14 abcd | 17 ± 23 cd | 137 ± 54 abcd | 178 ± 28 abcd | 50 ± 4 abcd | 179 ± 11 ab | 153 ± 40 abcd | 47 ± 6 abcd | 190 ± 20 a |
a4 | Octanal | 382 ± 194 abc | 184 ± 107 c | 757 ± 255 abc | 625 ± 115 abc | 126 ± 19 c | 716 ± 321 abc | 585 ± 233 abc | 420 ± 70 abc | 977 ± 99 ab | 576 ± 247 abc | 375 ± 52 c | 1090 ± 221 a |
e3 | 2-Heptenal (E)- | 966 ± 673 abcde | 150 ± 180 efg | 1057 ± 42 abc | 1313 ± 148 a | 157 ± 222 defg | 974 ± 87 abcd | 1187 ± 61 ab | 475 ± 74 bcdefg | 1200 ± 102 ab | 1010 ± 35 abc | 427 ± 76 bcdefg | 1239 ± 110 ab |
a5 | Nonanal | 443 ± 223 abc | 113 ± 99 bc | 767 ± 285 abc | 773 ± 116 abc | 151 ± 165 bc | 784 ± 350 abc | 704 ± 292 abc | 319 ± 53 abc | 1088 ± 106 ab | 699 ± 337 abc | 401 ± 107 abc | 1154 ± 257 a |
e4 | 2-Octenal, (E)- | 888 ± 347 ab | 55 ± 61 de | 1003 ± 127 a | 1265 ± 104 a | 57 ± 80 de | 799 ± 252 abc | 1251 ± 228 a | 209 ± 39 bcde | 1082 ± 32 a | 1088 ± 327 a | 207 ± 8 bcde | 1189 ± 190 a |
d1 | 2,4-Heptadienal, (E,E)- | 58 ± 17 a | 32 ± 30 a | 78 ± 23 a | 51 ± 8 a | 23 ± 33 a | 85 ± 13 a | 46 ± 1 a | 68 ± 8 a | 90 ± 27 a | 41 ± 15 a | 64 ± 17 a | 76 ± 8 a |
d2 | 2,4-Heptadienal, (E,E)- | 166 ± 139 a | 40 ± 41 a | 206 ± 28 a | 189 ± 65 a | 42 ± 59 a | 215 ± 13 a | 157 ± 23 a | 104 ± 18 a | 258 ± 84 a | 128 ± 30 a | 95 ± 9 a | 248 ± 21 a |
e5 | 2-Nonenal, (E)- | 235 ± 52 a | 40 ± 56 a | 258 ± 202 a | 348 ± 179 a | 49 ± 69 a | 226 ± 278 a | 321 ± 216 a | 119 ± 28 a | 297 ± 169 a | 333 ± 288 a | 111 ± 3 a | 341 ± 255 a |
e6 | 2-Decenal, (E)- | 352 ± 356 abcdef | 24 ± 33 def | 812 ± 83 a | 654 ± 48 abcdef | 27 ± 37 def | 687 ± 362 abcd | 604 ± 256 abcdef | 136 ± 40 bcdef | 981 ± 120 a | 566 ± 255 abcdef | 133 ± 5 bcdef | 978 ± 228 a |
d3 | 2,4-Nonadienal, (E,E)- | 60 ± 42 abcd | ND | 61 ± 5 abcd | 90 ± 8 a | 2 ± 3 d | 50 ± 28 abcd | 79 ± 15 a | 9 ± 5 bcd | 72 ± 5 ab | 68 ± 17 abc | 8 ± 4 cd | 77 ± 10 a |
e7 | 2-Undecenal, (E)- | 109 ± 107 bcde | ND | 238 ± 33 abc | 198 ± 19 abcde | ND | 199 ± 112 abcde | 187 ± 84 abcde | 32 ± 11 cde | 288 ± 48 ab | 176 ± 92 abcde | 30 ± 1 cde | 325 ± 56 a |
d4 | 2,4-Decadienal, (E,E) | 42 ± 46 ab | ND | 91 ± 0 ab | 111 ± 67 ab | ND | 101 ± 41 ab | 105 ± 78 ab | 5 ± 6 b | 155 ± 40 a | 94 ± 53 ab | 6 ± 1 b | 136 ± 23 ab |
Carotenoid derivatives | |||||||||||||
c1 | 6-Methyl-5-hepten-2-one | 99 ± 8 a | 149 ± 103 a | 121 ± 13 a | 118 ± 21 a | 160 ± 138 a | 95 ± 19 a | 129 ± 30 a | 243 ± 8 a | 171 ± 29 a | 101 ± 18 a | 226 ± 64 a | 139 ± 20 a |
c2 | 6,10-Dimethyl-5,9-undecadien-2-one | 9 ± 6 ab | 14 ± 5 ab | 7 ± 2 b | 7 ± 1 b | 13 ± 11 ab | 5 ± 2 b | 8 ± 1 ab | 25 ± 3 a | 11 ± 8 ab | 7 ± 0 b | 25 ± 1 a | 7 ± 1 b |
Acids | |||||||||||||
v1 | Acetic acid | 1596 ± 379 a | 3217 ± 1416 a | 1344 ± 631 a | 1587 ± 173 a | 3496 ± 2405 a | 1806 ± 120 a | 1777 ± 66 a | 2242 ± 361 a | 2070 ± 231 a | 1732 ± 631 a | 2281 ± 69 a | 1814 ± 193 a |
v2 | Butanoic acid | 11 ± 1 a | 29 ± 4 a | 11 ± 3 a | 11 ± 1 a | 20 ± 8 a | 11 ± 0 a | 13 ± 4 a | 22 ± 8 a | 18 ± 0 a | 10 ± 3 a | 22 ± 1 a | 11 ± 0 a |
v3 | Pentanoic acid | 42 ± 27 a | 11 ± 4 a | 26 ± 8 a | 38 ± 8 a | 10 ± 8 a | 19 ± 11 a | 41 ± 16 a | 12 ± 1 a | 29 ± 8 a | 37 ± 22 a | 12 ± 1 a | 33 ± 8 a |
v4 | Hexanoic acid | 532 ± 183 a | 110 ± 21 a | 371 ± 88 a | 572 ± 106 a | 68 ± 42 a | 280 ± 223 a | 656 ± 209 a | 97 ± 20 a | 406 ± 155 a | 559 ± 336 a | 94 ± 23 a | 459 ± 129 a |
v5 | Heptanoic acid | 106 ± 142 a | 29 ± 35 a | 82 ± 109 a | 146 ± 198 a | 10 ± 8 a | 38 ± 48 a | 146 ± 197 a | 25 ± 31 a | 4 ± 1 a | 54 ± 66 a | 3 ± 1 a | 5 ± 2 a |
Furan | |||||||||||||
f1 | 2-Pentylfuran | 153 ± 103 abcde | 1 ± 1 e | 172 ± 12 abcde | 242 ± 14 a | 24 ± 32 de | 159± 58 abcde | 236 ± 32 ab | 67 ± 23 bcde | 205 ± 6 abc | 227 ± 74 ab | 67 ± 4 bcde | 241 ± 26 a |
Ketones | |||||||||||||
k1 | Acetone | 776 ± 954 abc | 1438 ± 347 abc | 63 ± 18 c | 783 ± 305 abc | 479 ± 445 abc | 226 ± 89 bc | 1005 ± 405 abc | 2508 ± 692 a | 264 ± 106 bc | 551 ± 656 abc | 2073 ± 495 abc | 88 ± 42 c |
k2 | 2-Butanone | 349 ± 189 cde | 1448 ± 1114 abcde | 178 ± 86 de | 538 ± 32 bcde | 1860 ± 899 abcd | 385 ± 179 cde | 767 ± 218 bcde | 2747 ± 141 a | 366 ± 152 cde | 297 ± 156 cde | 1167 ± 195 abcde | 166 ± 84 de |
k3 | 1-Penten-3-one | 83 ± 30 a | 94 ± 122 a | 134 ± 3 a | 78 ± 3 a | 101 ± 117 a | 141 ± 45 a | 98 ± 36 a | 140 ± 4 a | 133 ± 55 a | 87 ± 38 a | 194 ± 53 a | 130 ± 1 a |
k4 | 3-Penten-2-one | 20 ± 11 a | 32 ± 29 a | 46 ± 65 a | 159 ± 93 a | 16 ± 3 a | 234 ± 29 a | 90 ± 6 a | 50 ± 31 a | 138 ± 71 a | 32 ± 45 a | 48 ± 20 a | 101 ± 78 a |
k5 | 1-Octen-3-one | 61 ± 23 abc | 24 ± 27 abc | 72 ± 11 abc | 66 ± 11 abc | 18 ± 21 bc | 76 ± 6 abc | 72 ± 13 abc | 68 ± 11 abc | 90 ± 19 a | 69 ± 4 abc | 63 ± 29 abc | 84 ± 13 ab |
k6 | 3-Octen-2-one | 199 ± 62 abc | 9 ± 13 c | 223 ± 54 abc | 274 ± 110 ab | 10 ± 14 c | 242 ± 41 abc | 268 ± 100 ab | 36 ± 11 bc | 303 ± 27 a | 228 ± 91 abc | 32 ± 4 bc | 285 ± 24 ab |
k7 | 3,5-Octadien-2-one | 104 ± 40 a | 24 ± 34 a | 132± 48 a | 83 ± 1 a | 39 ± 54 a | 119 ± 10 a | 76 ± 12 a | 91 ± 16 a | 145 ± 33 a | 61 ± 13 a | 85 ± 22 a | 120 ± 16 a |
k8 | 3,5-Octadien-2-one, (E,E)- | 98 ± 43 bcdef | 6 ± 8 ef | 189 ± 13 ab | 148 ± 13 abcd | 10 ± 13 ef | 160 ± 41 abc | 140 ± 28 abcd | 33 ± 13 cdef | 231 ± 62 a | 105 ± 7 abcdef | 24 ± 1 def | 215 ± 23 ab |
k9 | 2,3-Octanedione | 67 ± 50 abc | 25 ± 4 c | 97 ± 4 abc | 97 ± 18 abc | 19 ± 6 c | 92 ± 31 abc | 87 ± 8 abc | 33 ± 13 abc | 114 ± 39 ab | 87 ± 1 abc | 26 ± 6 c | 117 ± 11 a |
M1 | M2 | M3 | ||
---|---|---|---|---|
Code | Volatile Compound | |||
Aldehydes | ||||
a1 | Pentanal | 256 ± 19 | 216 ± 10 | 37 ± 1 |
a2 | Hexanal | 6500 ± 396 | 2563 ± 130 | 481 ± 19 |
e1 | 2-Pentenal (E)- | 38 ± 2 | 170 ± 127 | ND |
a3 | Heptanal | 346 ± 18 | 328 ± 12 | 65 ± 4 |
e2 | 2-Hexenal (E)- | 55 ± 3 | 18 ± 1 | ND |
a4 | Octanal | 596 ± 40 | 498 ± 24 | 157 ± 1 |
e3 | 2-Heptenal (E)- | 236 ± 14 | 217 ± 8 | 22 ± 1 |
a5 | Nonanal | 541 ± 27 | 810 ± 52 | 309 ± 28 |
e4 | 2-Octenal, (E)- | 376 ± 11 | 119 ± 7 | 24 ± 0 |
d1 | 2,4-Heptadienal, (E,E)- | 28 ± 4 | 8 ± 0 | ND |
d2 | 2,4-Heptadienal, (E,E)- | 87 ± 1 | ND | ND |
e5 | 2-Nonenal, (E)- | 101 ± 3 | 137 ± 28 | 29 ± 3 |
e6 | 2-Decenal, (E)- | 151 ± 15 | 93 ± 3 | 0 |
d3 | 2,4-Nonadienal, (E,E)- | 73 ± 2 | 16 ± 0 | 7 ± 1 |
e7 | 2-Undecenal, (E)- | ND | ND | ND |
d4 | 2,4-Decadienal, (E,E) | 8 ± 0 | 19 ± 1 | 0 |
Carotenoid derivatives | ||||
c1 | 6-Methyl-5-hepten-2-one | 69 ± 2 | 252 ± 14 | 23 ± 1 |
c2 | 6,10-Dimethyl-5,9-undecadien-2-one, | ND | 8 ± 1 | 4 ± 0 |
Acids | ||||
v1 | Acetic acid | 580 ± 83 | 490 ± 14 | 686 ± 24 |
v2 | Butanoic acid | 90 ± 3 | 6097 ± 99 | 5653 ± 82 |
v3 | Pentanoic acid | 61 ± 6 | 46 ± 2 | 210 ± 2 |
v4 | Hexanoic acid | 819 ± 16 | 149 ± 5 | 129 ± 7 |
v5 | Heptanoic acid | 421 ± 73 | ND | ND |
Furan | ||||
f1 | 2-Pentylfuran | 223 ± 20 | 93 ± 9 | 17 ± 1 |
Ketones | ||||
k1 | Acetone | 29 ± 2 | 12 ± 0 | 40 ± 2 |
k2 | 2-Butanone | 23 ±1 | ND | ND |
k3 | 1-Penten-3-one | 22 ± 3 | 23 ± 2 | ND |
k4 | 3-Penten-2-one | 52 ± 1 | ND | ND |
k5 | 1-Octen-3-one | 21 ± 0 | 56 ± 0 | 5 ± 0 |
k6 | 3-Octen-2-one | 284 ± 4 | 30 ± 2 | 11 ± 1 |
k7 | 3,5-Octadien-2-one | 159 ± 23 | 26 ± 1 | 29 ± 1 |
k8 | 3,5-Octadien-2-one, (E,E)- | 122 ± 22 | 14 ± 1 | 7 ± 0 |
k9 | 2,3-Octanedione | 19 ± 1 | 14 ± 1 | 3 ± 0 |
Alcohol | ||||
1 | 1-Octen-3-ol | ND | 104 ± 5 | 33 ± 1 |
Phenols | ||||
p1 | p-cresol | ND | 9 ± 1 | ND |
p2 | m-cresol | ND | 6 ± 0 | ND |
Variety-Intensity D | ||||||
---|---|---|---|---|---|---|
Odour Description | Compound | LRI GC-O A | LRI GC-MS C | ID B | M | L |
green | Hexanal | 800 | 803 | A | 5 | 5 |
sweet | cis-3-Hexenal | 803 | 804 | A | 5 | 4.5 |
vegetable | Unknown | 807 | - | 4 | 3 | |
cheese | Butanoic acid | 810 | A | 5.5 | ND | |
meat | 2-Methyl-3-furanthiol | 865 | A | 4 | ND | |
fruity | 2-Heptanone | 898 | 898 | A | 4.5 | ND |
lamb fat | cis-4-Heptenal | 902 | 902 | A | 5 | 6.5 |
potato | Methional | 906 | 908 | A | ND | 4 |
cats pee | 3-Mercapto-3-methylbutanol | 941 | A | ND | 5 | |
fatty fruity | 2-Heptenal, (E)- | 955 | 959 | A | ND | 5 |
greenhouse | 2-Methoxy-3-methylpyrazine | 973 | 974 | A | 3 | ND |
mushroom | 1-Octen-3-one | 979 | 978 | A | 6 | 8 |
geranium | 1,5-Octadien-3-one, (E)- | 983 | B | 3.5 | 6 | |
orange | 6-Methyl-5-hepten-2-one | 986 | 987 | A | 5 | 5 |
orange | Octanal | 1006 | 1007 | A | 6 | 8 |
fried | 2,4-Heptadienal, (E,E)- | 1011 | 1012 | A | ND | 6 |
sharp green fuity viney | 2-Hexenyl acetate, (E)- | 1018 | A | ND | 3.5 | |
fruity ald | Phenylacetaldehyde | 1039 | A | 1.5 | ND | |
greenhouses | 2-Ethyl-3-methoxypyrazine | 1054 | 1055 | A | 4.5 | ND |
fried | 2-Octenal, (Z)- | 1059 | 1059 | A | 5.5 | 7 |
fried | 2-Octenal, (E)- | 1064 | 1063 | A | 5 | 6 |
manure | 4-Methylphenol (p-cresol) | 1077 | 1077 | A | 5 | ND |
earthy coffee | 2-Ethyl-3,6-dimethylpyrazine | 1081 | 1082 | A | 4 | 4 |
dry earthy | 2-Ethyl-3,5-dimethylpyrazine | 1087 | 1086 | A | ND | 3 |
medicinal | Guaiacol | 1091 | 1090 | A | 4 | ND |
fruity | 3,5-Octadien-2-one, (E,Z)- | 1095 | B | ND | 5 | |
greenhouses, pea | 2-Isopropyl-3-methoxypyrazine | 1096 | 1096 | A | 4 | ND |
waxy, fatty | 3-Nonenal, (E)- | 1100 | B | 2.5 | ND | |
fatty aldehyde | Nonanal | 1106 | 1105 | A | 3.5 | ND |
fried | 2,4-Octadienal, (E,Z)- | 1112 | A | ND | 4 | |
coriander | 2-Nonenal, (Z)- | 1148 | A | 2.5 | 4.5 | |
violets | 2,6-Nonadienal, (E,Z)- | 1155 | 1154 | A | 6 | 5 |
waxy + medicinal | 2-Nonenal, (E)- | 1160 | 1159 | A | 6 | 6.5 |
parma violets | 2,6-Nonadienal isomer | 1169 | B | 6 | ND | |
medicinal | 2,4/5-Dimethylphenol | 1173 | B | 3 | ND | |
meat | 2-Methyl-3-furyl methyl disulfide | 1174 | 1174 | A | 4.5 | ND |
greenhouse, bell pepper | 2-Isobutyl-3-methoxypyrazine | 1183 | 1181 | A | 4 | ND |
fries | 2,4-Nonadienal, (E,Z)- | 1194 | B | ND | 5 | |
fries | 2,4-Nonadienal, (E,E)- | 1214 | A | 6 | 6.5 | |
minty | 2-(2-Methylbutyl)-3-methylpyrazine | 1246 | 1246 | A | 5 | 4 |
dry cardboard, earthy | Unknown pyrazine | 1248 | ND | 4 | ||
coriander | 2-Decenal, (E) | 1264 | 1265 | A | 4 | 6.5 |
tea | Unknown | 1273 | 4 | 2 | ||
dry cardboard, earthy | Unknown pyrazine | 1279 | ND | 6 | ||
fatty | 2,4-Decadienal, (E,Z)- | 1296 | B | ND | 3 | |
fried | 2,4-Decadienal, (E,E)- | 1318 | A | 8 | 8 | |
fried | 2,4-Decadienal isomer | 1332 | A | ND | 3.5 | |
coriander | 2-Undecenal, (Z)- | 1352 | B | ND | 5.5 | |
coriander | 2-Undecenal, (E)- | 1367 | 1370 | A | 4.5 | 5.5 |
dry cardboard, earthy | Unknown pyrazine | 1380 | 5.5 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fawole, A.O.; Karatzas, K.-A.G.; Parker, J.K.; Fagan, C.C. Impact of Selected Starters and Cassava Varieties on the Proximate, Rheological, and Volatile Profiles of Lafun. Foods 2025, 14, 660. https://doi.org/10.3390/foods14040660
Fawole AO, Karatzas K-AG, Parker JK, Fagan CC. Impact of Selected Starters and Cassava Varieties on the Proximate, Rheological, and Volatile Profiles of Lafun. Foods. 2025; 14(4):660. https://doi.org/10.3390/foods14040660
Chicago/Turabian StyleFawole, Abosede O., Kimon-Andreas G. Karatzas, Jane K. Parker, and Colette C. Fagan. 2025. "Impact of Selected Starters and Cassava Varieties on the Proximate, Rheological, and Volatile Profiles of Lafun" Foods 14, no. 4: 660. https://doi.org/10.3390/foods14040660
APA StyleFawole, A. O., Karatzas, K.-A. G., Parker, J. K., & Fagan, C. C. (2025). Impact of Selected Starters and Cassava Varieties on the Proximate, Rheological, and Volatile Profiles of Lafun. Foods, 14(4), 660. https://doi.org/10.3390/foods14040660