Is Common Dandelion (Taraxacum officinale agg.) Foraged for Food in Vineyards Pesticide Residues Free?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chemicals
2.3. Extraction and Clean-Up of Pesticide Residues
2.4. Determination of Pesticide Residues
2.5. Method Validation
2.5.1. Precision
2.5.2. Uncertainty of Repeatability and Uncertainty of Reproducibility
2.5.3. Accuracy
2.6. Risk Assessment
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PR | Pesticide residues |
IPM | Integrated pest and disease management |
ORG | Organic |
BIOD | Biodynamic |
LOQ | Limit of quantification |
MRL | Maximum residue limit |
ADI | Acceptable Daily Intake |
References
- De Cortes Sánchez-Mata, M.; Tardío, J. Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; Springer: New York, NY, USA, 2016; p. 3273, ISBN 978149393. [Google Scholar]
- Pinela, J.; Carvalho, A.M.; Ferreira, I.C.F.R. Wild Edible Plants: Nutritional and Toxicological Characteristics, Retrieval Strategies and Importance for Today’s Society. Food Chem. Toxicol. 2017, 110, 165–188. [Google Scholar] [CrossRef]
- Baldi, A.; Bruschi, P.; Campeggi, S.; Egea, T.; Rivera, D.; Obón, C.; Lenzi, A. The Renaissance of Wild Food Plants: Insights from Tuscany (Italy). Foods 2022, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Agri-Environmental Indicator—Consumption of Pesticides. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_consumption_of_pesticides#Analysis_at_EU_and_country_level (accessed on 12 April 2024).
- Bidleman, T.F.; Leone, A.D. Soil-Air Exchange of Organochlorine Pesticides in the Southern United States. Environ. Pollut. 2004, 128, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, C.; Payraudeau, S.; Domange, N. Use and Fate of 17 Pesticides Applied on a Vineyard Catchment. Int. J. Environ. Anal. Chem. 2010, 90, 406–420. [Google Scholar] [CrossRef]
- Cerdà, A.; Daliakopoulos, I.N.; Terol, E.; Novara, A.; Fatahi, Y.; Moradi, E.; Salvati, L.; Pulido, M. Long-Term Monitoring of Soil Bulk Density and Erosion Rates in Two Prunus persica (L) Plantations under Flood Irrigation and Glyphosate Herbicide Treatment in La Ribera District, Spain. J. Environ. Manag. 2021, 282, 111965. [Google Scholar] [CrossRef] [PubMed]
- Beketov, M.A.; Kefford, B.J.; Schäfer, R.B.; Liess, M. Pesticides Reduce Regional Biodiversity of Stream Invertebrates. Proc. Natl. Acad. Sci. USA. 2013, 110, 11039–11043. [Google Scholar] [CrossRef]
- Maroni, M.; Fait, A. Health Effects in Man from Long-Term Exposure to Pesticides. A Review of the 1975–1991 Literature. Toxicology 1993, 78, 1–180. [Google Scholar]
- Galloway, T.; Handy, R. Immunotoxicity of Organophosphorous Pesticides. Ecotoxicology 2003, 12, 345–363. [Google Scholar] [CrossRef]
- Choi, S.M.; Yoo, S.D.; Lee, B.M. Toxicological Characteristics of Endocrine-Disrupting Chemicals: Developmental Toxicity, Carcinogenicity, and Mutagenicity. J. Toxicol. Environ. Health Part B 2004, 7, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Baldi, I.; Cordier, S.; Coumoul, X.; Elbaz, A.; Gamet-Payrastre, L.; Lebailly, P.; Multigner, L.; Rahmani, R.; Spinosi, J.; van Maele-Fabry, G. Pesticides: Effets Sur La Santé; HAL Id: Inserm-02102981; Institut National de la Santé et de la Recherche Médicale (INSERM) Éditions EDP Sciences: Paris, France, 2013; p. 1014. [Google Scholar]
- Alonso González, P.; Parga-Dans, E.; Pérez Luzardo, O. Big Sales, No Carrots: Assessment of Pesticide Policy in Spain. Crop Prot. 2021, 141, 105428. [Google Scholar] [CrossRef]
- EFSA; Carrasco Cabrera, L.; Medina Pastor, P. The 2019 European Union Report on Pesticide Residues in Food. EFSA J. 2021, 19, 6491. [Google Scholar] [CrossRef]
- Fermaud, M.; Smits, N.; Merot, A.; Roudet, J.; Thiéry, D.; Wery, J.; Delbac, L. New Multipest Damage Indicator to Assess Protection Strategies in Grapevine Cropping Systems. Aust. J. Grape Wine Res. 2016, 22, 450–461. [Google Scholar] [CrossRef]
- Taylor, A.S.; Cook, D.C. An Economic Assessment of the Impact on the Western Australian Viticulture Industry from the Incursion of Grapevine Downy Mildew. J. Plant Dis. Prot. 2018, 125, 397–403. [Google Scholar] [CrossRef]
- Calonnec, A.; Cartolar, P.; Poupot, C.; Dubourdieu, D.; Darriet, P. Effects of Uncinula Necator on the Yield and Quality of Grapes (Vitis vinifera) and Wine. Plant Pathol. 2004, 53, 434–445. [Google Scholar] [CrossRef]
- European Union Directive 2009/72/EC. Off. J. Eur. Union 2009, L211, 55–93.
- European Commission Regulation (EU) 2018/848 on Organic Production and Labelling of Organic Product. Off. J. Eur. Union 2018, L150, 1–92.
- Hauptman, S.; Štrukelj, M.M.; Škvarč, A.; Martinčič, J.; Torič, M. Slovenski Vinogradi. In Proceedings of the 6. Slovenski Vinogradniško-Vinarski Kongres Ptuj, Ptuj, Slovenia, 21–22 April 2023; Vršič, S., Ed.; Kmetijsko Gozdarski Zavod: Ptuj, Slovenia, 2023; pp. 12–46. [Google Scholar]
- Tehnološka Navodila Za Integrirano Pridelavo Grozdja. Ur. List Repub. Slov. 2024, 56, 5937–5969.
- European Commission EU 2021/1165. Commission Implementing Regulation (EU) 2021/1165 of 15 July 2021 Authorising Certain Products and Substances for Use in Organic Production and Establishing Their Lists C/2021/5149. Off. J. Eur. Union 2021, L253, 13–48. [Google Scholar]
- Production, Processing and Labelling. In International Standard Fort the Use and Certification of Deemeter, Biodynamic and Related Trademarks (as of: October 2021); Biodynamic Federation – Demeter International e.V.: Darmstadt, Germany, 2021.
- Čuš, F.; Baša Česnik, H.; Velikonja Bolta, Š. Pesticide Residues, Copper and Biogenic Amines in Conventional and Organic Wines. Food Control 2022, 132, 108534. [Google Scholar] [CrossRef]
- Schusterova, D.; Hajslova, J.; Kocourek, V.; Pulkrabova, J. Pesticide Residues and Their Metabolites in Grapes and Wines from Conventional and Organic Farming System. Foods 2021, 10, 307. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Couso, A.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C.; López-Periago, E.; Soto-González, B.; Simal-Gándara, J. Seasonal Distributions of Fungicides in Soils and Sediments of a Small River Basin Partially Devoted to Vineyards. Water Res. 2007, 41, 4515–4525. [Google Scholar] [CrossRef]
- Arias, M.; Paradelo, M.; López, E.; Simal-Gándara, J. Influence of PH and Soil Copper on Adsorption of Metalaxyl and Penconazole by the Surface Layer of Vineyard Soils. J. Agric. Food Chem. 2006, 54, 8155–8162. [Google Scholar] [CrossRef] [PubMed]
- El Din, A.S.; Azab, M.M.; Shalaby, M.A. Pesticide Residues Monitoring of Organophosphorus and Carbamates in Grapes in Three Egyptian Governorates. Arch. Curr. Res. Int. 2018, 12, 1–12. [Google Scholar] [CrossRef]
- Hamzawy, A.H. Residual Pesticides in Grape Leaves (Vitis vinifera L.) on the Egyptian Market and Human Health Risk. Food Addit. Contam. Part B 2022, 15, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Zorlu Ünlü, T.; Topuz, S.; Bayram, M.; Balkan, T.; Kaya, C. Determination of Pesticide Residues in Pickled Vine (Vitis vinifera L.) Leaves by a Validated LC-MS/MS Method. Gıda 2023, 48, 1335–1350. [Google Scholar] [CrossRef]
- Holm, L.; Doll, J.; Holm, E.; Pancho, J.; Herberger, J. World Weeds, Natural Histories and Distribution; John Wiley and Sons: New York, NY, USA, 1997. [Google Scholar]
- Letchamo, W.; Gosselin, A. Root and Shoot Growth and Chlorophyll Content of Taraxacum officinale Provenances as Affected by Defoliation and Debudding under Organic and Hydroponic Cultivation. J. Hortic. Sci. 1995, 70, 279–285. [Google Scholar] [CrossRef]
- González, J.A.; García-Barriuso, M.; Amich, F. The Consumption of Wild and Semi-Domesticated Edible Plants in the Arribes Del Duero (Salamanca-Zamora, Spain): An Analysis of Traditional Knowledge. Genet. Resour. Crop Evol. 2011, 58, 991–1006. [Google Scholar] [CrossRef]
- Ghirardini, M.P.; Carli, M.; del Vecchio, N.; Rovati, A.; Cova, O.; Valigi, F.; Agnetti, G.; Macconi, M.; Adamo, D.; Traina, M.; et al. The Importance of a Taste. A Comparative Study on Wild Food Plant Consumption in Twenty-One Local Communities in Italy. J. Ethnobiol. Ethnomed. 2007, 3, 22. [Google Scholar] [CrossRef]
- Łuczaj, Ł.; ZovkoKončić, M.; Miličević, T.; Dolina, K.; Pandža, M. Wild Vegetable Mixes Sold in the Markets of Dalmatia (Southern Croatia). J. Ethnobiol. Ethnomed. 2013, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Dogan, Y. Traditionally Used Wild Edible Greens in the Aegean Region of Turkey. Acta Soc. Bot. Pol. 2012, 81, 329–342. [Google Scholar] [CrossRef]
- Černe, M. Wild Plants from Slovenia Used as Vegetables. Acta Hortic. 1992, 318, 87–96. [Google Scholar] [CrossRef]
- Grlić, L. Enciklopedija Samoniklog Jestivog Bilja, 2nd ed.; August Cesarec Zagreb: Zagreb, Croatia, 1990. [Google Scholar]
- Malawska, M.; Wiłkomirski, B. Stopień kumulacji polichlorowanych bifenyli (PCB) w mniszku lekarskim (Taraxacum officinale) w warunkach zanieczyszczenia gleby substancjami ropopochodnymi. Rocz. Państwowego Zakładu Hig. 2001, 52, 12–20. [Google Scholar]
- Muntean, E.; Muntean, N. Polycyclic Aromatic Hydrocarbons in Commercial Herbal Teas. In Proceedings of the 1st International Electronic Conference on Plant Science, 1–15 December 2020. [Google Scholar]
- Hrynko, I.; Łozowicka, B.; Kaczyński, P. Comprehensive Analysis of Insecticides in Melliferous Weeds and Agricultural Crops Using a Modified QuEChERS/LC-MS/MS Protocol and of Their Potential Risk to Honey Bees (Apis mellifera L.). Sci. Total Environ. 2019, 657, 16–27. [Google Scholar] [CrossRef]
- Boguś, M.I.; Wrońska, A.K.; Kaczmarek, A.; Drozdowski, M.; Laskowski, Z.; Myczka, A.; Cybulska, A.; Gołȩbiowski, M.; Chwir-Gołȩbiowska, A.; Siecińska, L.; et al. A Comprehensive Analysis of Chemical and Biological Pollutants (Natural and Anthropogenic Origin) of Soil and Dandelion (Taraxacum officinale) Samples. PLoS ONE 2023, 18, e0280810. [Google Scholar] [CrossRef] [PubMed]
- ARSO. Arhiv—Opazovani in Merjeni Meteorološki Podatki Po Sloveniji. Available online: https://meteo.arso.gov.si/met/sl/archive/ (accessed on 20 August 2024).
- Vrščaj, B.; Grčman, H.; Kralj, T. Klasifikacija Tal Slovenije 2019: Sistem Za Opisovanje in Poimenovanje Tal Slovenije; Pedološko Društvo Slovenije: Ljubljana, Slovenia, 2019. [Google Scholar]
- European Commission Commission Regulation (EU) 2018/62 of 17 January 2018 Replacing Annex I to Regulation (EC) No 396/2005 of the European Parliament and of the Council. Off. J. Eur. Union 2018, L18, 1–73.
- Guidance Document on Pesticide Analytical Methods for Risk Assessment and Post-Approval Control and Monitoring Purposes. Supersedes Guidance Documents SANCO/3029/99 and SANCO/825/00. Available online: https://food.ec.europa.eu/system/files/2021-03/pesticides_ppp_app-proc_guide_res_mrl-guidelines-2020-12830.pdf (accessed on 20 August 2022).
- Tehnološka Navodila Za Integrirano Pridelavo Grozdja; Republika Slovenija, Ministrstvo za Kmetijstvo, Gozdarstvo in Prehrano: Ljubljana, Slovenia, 2021. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.gov.si/assets/ministrstva/MKGP/PODROCJA/KMETIJSTVO/Tehnoloska-navodila/210402-Tehnoloska-navodila/Tehnoloska-navodila-za-integrirano-pridelavo-grozdja-2021.docx&ved=2ahUKEwiCwcm248SLAxXmlFYBHaIsFToQFnoECBIQAQ&usg=AOvVaw1zaBxGhh_5aC57jfiLmCtx (accessed on 12 February 2025).
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- EU Reference Laboratories for Residues of Pesticides. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed SANTE 11312/2021. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11813_2017-fin.pdf (accessed on 20 August 2022).
- ISO 5725-1:1994; Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions. International Organization for Standardization (ISO): Geneva, Switzerland, 1994.
- Alder, L.; Hill, A.; Holland, P.T.; Lantos, J.; Lee, S.M.; MacNeil, J.D.; O’Rangers, J.; van Zoonen, P.; Ambrus, A. Guidelines for Single-Laboratory Validation of Analytical Methods for Trace-Level Concentrations of Organic Chemicals. In Principles and Practices of Method Validation; Fajgelj, A., Ambrus, A., Eds.; The Royal Society of Chemistry: London, UK, 2000; pp. 179–252. [Google Scholar]
- EFSA; Anastassiadou, M.; Brancato, A.; Carrasco Cabrera, L.; Ferreira, L.; Greco, L.; Jarrah, S.; Kazocina, A.; Leuschner, R.; Magrans, J.O.; et al. Pesticide Residue Intake Model-EFSA PRIMo Revision 3.1. EFSA Support. Publ. 2019, 16, 1605E. [Google Scholar] [CrossRef]
- Čuš, F.; Bach, B.; Barnavon, L.; Pongrac, V.Ž. Analytical Determination of Dolenjska Region Wines Quality. Food Control 2013, 33, 274–280. [Google Scholar] [CrossRef]
- Poulsen, M.E.; Andersen, J.H.; Petersen, A.; Jensen, B.H. Results from the Danish Monitoring Programme for Pesticide Residues from the Period 2004–2011. Food Control 2017, 74, 25–33. [Google Scholar] [CrossRef]
- Bakirci, G.T.; Yaman Acay, D.B.; Bakirci, F.; Ötleş, S. Pesticide Residues in Fruits and Vegetables from the Aegean Region, Turkey. Food Chem. 2014, 160, 379–392. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Tebuconazole. EFSA J. 2014, 12, 3485. [Google Scholar] [CrossRef]
- Mai, S.; Ninga, E.; Mukaj, M.; Liti, A.; Cara, M. Dissipation Kinetics of Tebuconazole Residues in Grape. Eur. J. Eng. Res. Sci. 2018, 3, 28–30. [Google Scholar] [CrossRef]
- Gennari, M.; Zanini, E.; Cignetti, A.; Bicchi, C.; D’Amato, A.; Taccheo, M.B.; Spessotto, C.; De Paoli, M.; Flori, P.; Imbroglini, G.; et al. Vinclozolin Decay on Different Grapevines in Four Differing Italian Areas. J. Agric. Food Chem. 1985, 33, 1232–1237. [Google Scholar] [CrossRef]
- Bloomfield, J.P.; Williams, R.J.; Gooddy, D.C.; Cape, J.N.; Guha, P. Impacts of Climate Change on the Fate and Behaviour of Pesticides in Surface and Groundwater-a UK Perspective. Sci. Total Environ. 2006, 369, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Hunsche, M.; Damerow, L.; Schmitz-Eiberger, M.; Noga, G. Mancozeb Wash-off from Apple Seedlings by Simulated Rainfall as Affected by Drying Time of Fungicide Deposit and Rain Characteristics. Crop Prot. 2007, 26, 768–774. [Google Scholar] [CrossRef]
- Xu, X.M.; Murray, R.A.; Salazar, J.D.; Hyder, K. The Effects of Temperature, Humidity and Rainfall on Captan Decline on Apple Leaves and Fruit in Controlled Environment Conditions. Pest Manag. Sci. 2008, 64, 296–307. [Google Scholar] [CrossRef]
- Otto, S.; Loddo, D.; Baldoin, C.; Zanin, G. Spray Drift Reduction Techniques for Vineyards in Fragmented Landscapes. J. Environ. Manag. 2015, 162, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Salyani, M.; Cromwell, R.P. Spray Drift from Ground and Aerial Applications. Trans. Am. Soc. Agric. Eng. 1992, 35, 1113–1120. [Google Scholar] [CrossRef]
- Tehnološka Navodila Za Integrirano Pridelavo Grozdja; Republika Slovenija, Ministrstvo za Kmetijstvo, Gozdarstvo in Prehrano: Ljubljana, Slovenia, 2022. Available online: https://www.gov.si/assets/ministrstva/MKGP/PODROCJA/KMETIJSTVO/NACINI-KMETIJSKE-PRIDELAVE/Tehnoloska-navodila-IP/2021/Tehnoloska-navodila-za-integrirano-pridelavo-grozdja-2022.docx (accessed on 12 February 2025).
- Tucker, S.; Dumitriu, G.D.; Teodosiu, C. Pesticides Identification and Sustainable Viticulture Practices to Reduce Their Use: An Overview. Molecules 2022, 27, 8205. [Google Scholar] [CrossRef]
- Baša Česnik, H.; Velikonja Bolta, Š.; Gregorčič, A. Ostanki Pesticidov v Vzorcih Jabolk, Solate in Krompirja v Integrirani Pridelavi v Sloveniji v Letih 2005–2009. Acta Agric. Slov. 2012, 99, 49–56. [Google Scholar] [CrossRef]
- Federal Office of Consumer Protection and Food Safety. Nicobifen, Alternative Common Name Proposed to ISO in August 2002: Boscalid. Available online: https://www.bvl.bund.de/SharedDocs/Downloads/04_Pflanzenschutzmittel/02_eu_berichte/Boscalid-DAR.html?nn=11010204 (accessed on 20 August 2022).
- Kanungo, D.; Dewhurst, I. Kresoxim-Methyl; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- EFSA Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Kresoxim-Methyl. EFSA J. 2010, 8, 1891. [CrossRef]
- Baša Česnik, H.; Gregorčič, A.; Čuš, F. Pesticide Residues in Grapes from Vineyards Included in Integrated Pest Management in Slovenia. Food Addit. Contam. Part A 2008, 25, 438–443. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Mandipropamid. EFSA J. 2012, 10, 2935. [Google Scholar] [CrossRef]
- EFSA. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Metalaxyl-M. EFSA J. 2015, 13, 3999. [Google Scholar] [CrossRef]
- Baša Česnik, H.; Velikonja Bolta, Š.; Bavčar, D.; Radeka, S.; Lisjak, K. Plant Protection Product Residues in White Grapes and Wines of “Malvasia Istriana” Produced in Istria. Food Addit. Contam. Part B Surveill. 2016, 9, 256–260. [Google Scholar] [CrossRef]
- EFSA. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Difenoconazole. EFSA J. 2011, 9, 1967. [Google Scholar] [CrossRef]
- EFSA. Conclusion Regarding the Peer Review of the Pesticide Risk Assessment of the Active Substance Dimethomorph. EFSA Sci. Rep. 2006, 82, 1–69. [Google Scholar] [CrossRef]
- European Commission Regulation (EC) No 396/2005, Maximum Residue Levels of Pesticides in/on Food and Feed of Plant and Animal. Off. J. Eur. Union 2005, L70, 1–16.
- Liang, Z.; Mahmoud Abdelshafy, A.; Luo, Z.; Belwal, T.; Lin, X.; Xu, Y.; Wang, L.; Yang, M.; Qi, M.; Dong, Y.; et al. Occurrence, Detection, and Dissipation of Pesticide Residue in Plant-Derived Foodstuff: A State-of-the-Art Review. Food Chem. 2022, 384, 132494. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Kuhad, R.C.; Singh, A.; Lal, R.; Tripathi, K.K. Biochemical and Molecular Basis of Pesticide Degradation by Microorganisms. Crit. Rev. Biotechnol. 1999, 19, 197–225. [Google Scholar] [CrossRef]
Active Substance | Instrument | Retention Time [min] | MRM Transitions | Dwell time [ms] | Fragmentor (V) | CE [V] |
---|---|---|---|---|---|---|
Boscalid | GC-MS/MS | 34.3 | 342 → 112 | 148.9 | / | 30 |
140 → 112 | 30 | |||||
Difenoconazole | LC-MS/MS | 12.8 | 406.1 → 337 | 200.0 | 107 | 197 |
406.1 → 337 | 284 | |||||
Dimethomorph | LC-MS/MS | 10.6 | 388.1 → 301 | 200.0 | 142 | 20 |
10.9 | 388.1 → 165 | 36 | ||||
Kresoxim-methyl | GC-MS/MS | 28.9 | 206 → 131 | 149.2 | / | 30 |
206 → 116 | 30 | |||||
Mandipropamid | LC-MS/MS | 10.7 | 412.1 → 356.1 | 200.0 | 142 | 20 |
412.1 → 328.1 | 36 | |||||
Metalaxyl-M | GC-MS/MS | 14.4 | 206 → 132 | 199.3 | / | 35 |
206 → 105 | 35 | |||||
Tebuconazole | GC-MS/MS | 30.9 | 250 → 125 | 99.1 | / | 30 |
250 → 70 | 30 | |||||
Triadimenol | GC-MS/MS | 20.6 | 168 → 70 | 82.5 | / | 40 |
21.4 | 128 → 100 | 30 |
Active Substance | LOQ [mg/kg] | Linearity Range [mg/kg] | R2 | Recovery [%] | RSD [%] | N. rep. | Ur [mg/kg] | Ur [%] | UR [mg/kg] | UR [%] |
---|---|---|---|---|---|---|---|---|---|---|
Boscalid | 0.005 | 0.005–0.1 | 0.995 | 76.8 | 16.4 | 20 | 0.0005 | 10.0 | 0.0015 | 30.0 |
Difenoconazole | 0.005 | 0.005–0.1 | 0.995 | 75.2 | 6.9 | 20 | 0.0003 | 7.4 | 0.0006 | 11.9 |
Dimethomorph | 0.005 | 0.005–0.1 | 0.996 | 78.2 | 5.9 | 20 | 0.0003 | 6.7 | 0.0005 | 8.7 |
Kresoxim-methyl | 0.005 | 0.005–0.1 | 0.993 | 80.1 | 13.5 | 20 | 0.0005 | 10.0 | 0.0013 | 26.0 |
Mandipropamid | 0.005 | 0.005–0.1 | 0.999 | 80.4 | 7.9 | 20 | 0.0004 | 9.4 | 0.0007 | 17.9 |
Metalaxyl-M | 0.005 | 0.005–0.1 | 0.993 | 85.0 | 12.3 | 20 | 0.0004 | 8.0 | 0.0012 | 24.0 |
Tebuconazole | 0.005 | 0.005–0.1 | 0.995 | 71.5 | 15.2 | 20 | 0.0006 | 12.0 | 0.0013 | 26.0 |
Triadimenol | 0.005 | 0.005–0.1 | 0.995 | 82.6 | 17.7 | 20 | 0.0010 | 20.0 | 0.0017 | 34.0 |
Spring Sampling | Summer Sampling | Autumn Sampling | |||||||
---|---|---|---|---|---|---|---|---|---|
Active Substance | n | Portion [%] | Range [mg/kg] | n | Portion [%] | Range [mg/kg] | n | Portion [%] | Range [mg/kg] |
Boscalid | 0 | 0 | / | 10 | 100 | 0.005–0.254 | 0 | 0 | / |
Difenoconazole | 0 | 0 | / | 4 | 40 | 0.095–0.627 | 0 | 0 | / |
Dimethomorph | 0 | 0 | / | 1 | 10 | 0.005–0.005 | 0 | 0 | / |
Kresoxim-methyl | 0 | 0 | / | 6 | 60 | 0.007–0.029 | 0 | 0 | / |
Mandipropamid | 0 | 0 | / | 6 | 60 | 0.013–0.024 | 0 | 0 | / |
Metalaxyl-M | 0 | 0 | / | 4 | 40 | 0.005–0.007 | 0 | 0 | / |
Tebuconazole | 1 | 10 | 0.005 | 8 | 80 | 0.008–0.028 | 0 | 0 | / |
Triadimenol | 0 | 0 | / | 0 | 0 | / | 0 | 0 | / |
Spring Sampling | Summer Sampling | Autumn Sampling | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ActiveSubstance | MRL [mg/kg] | SamplePortion < LOQ [%] | Sample Portion ≤ MRL [%] | Sample Portion > MRL [%] | Sample Portion < LOQ [%] | Sample Portion ≤ MRL [%] | Sample Portion > MRL [%] | Sample Portion < LOQ [%] | Sample Portion ≤ MRL [%] | Sample Portion > MRL [%] |
Boscalid | 7 | 100 | 0 | 0 | 0 | 100 | 0 | 100 | 0 | 0 |
Difenoconazole | 4 | 100 | 0 | 0 | 60 | 40 | 0 | 100 | 0 | 0 |
Dimethomorph | 0.05 | 100 | 0 | 0 | 90 | 10 | 0 | 100 | 0 | 0 |
Kresoxim-methyl | 0.01 | 100 | 0 | 0 | 40 | 20 | 40 | 100 | 0 | 0 |
Mandipropamid | 0.15 | 100 | 0 | 0 | 40 | 60 | 0 | 100 | 0 | 0 |
Metalaxyl-M | 0.4 | 100 | 0 | 0 | 60 | 40 | 0 | 100 | 0 | 0 |
Tebuconazole | 0.15 | 90 | 10 | 0 | 20 | 80 | 0 | 100 | 0 | 0 |
Triadimenol | 0.01 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skubic, M.; Baša Česnik, H.; Velikonja Bolta, Š.; Rusjan, D.; Šircelj, H. Is Common Dandelion (Taraxacum officinale agg.) Foraged for Food in Vineyards Pesticide Residues Free? Foods 2025, 14, 684. https://doi.org/10.3390/foods14040684
Skubic M, Baša Česnik H, Velikonja Bolta Š, Rusjan D, Šircelj H. Is Common Dandelion (Taraxacum officinale agg.) Foraged for Food in Vineyards Pesticide Residues Free? Foods. 2025; 14(4):684. https://doi.org/10.3390/foods14040684
Chicago/Turabian StyleSkubic, Maruša, Helena Baša Česnik, Špela Velikonja Bolta, Denis Rusjan, and Helena Šircelj. 2025. "Is Common Dandelion (Taraxacum officinale agg.) Foraged for Food in Vineyards Pesticide Residues Free?" Foods 14, no. 4: 684. https://doi.org/10.3390/foods14040684
APA StyleSkubic, M., Baša Česnik, H., Velikonja Bolta, Š., Rusjan, D., & Šircelj, H. (2025). Is Common Dandelion (Taraxacum officinale agg.) Foraged for Food in Vineyards Pesticide Residues Free? Foods, 14(4), 684. https://doi.org/10.3390/foods14040684