Edible Insect Meals as Bioactive Ingredients in Sustainable Snack Bars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Treatment Edible Insect
Antimicrobial Activity and Minimum Inhibitory Concentration
- N_end = number of cells at the end of the observation period;
- N_0 = number of cells at the beginning of the observation period.
2.2. Food Design
2.2.1. Consumer Survey—Assessment of Consumer Attitudes
- -
- The first contained demographic questions regarding age, gender, level of education, and place of residence (city above or below 50,000 inhabitants or rural villages).
- -
- The second part of the survey included questions aimed at ascertaining knowledge of the possibility of eating insects and edible insect-based foods.
- -
- The third part included questions aimed at understanding the propensity to consume insect-based foods and the characteristics (nutritional, environmental, sustainability) that should accompany such foods, as well as a specific question aimed at understanding the type of insect-based food most preferred.
2.2.2. Analysis of Factors Influencing Consumer Attitudes
2.3. Insect-Based Model Food: Preparation and Characterization
2.3.1. Ingredients and Bar-Snack Preparation
2.3.2. Chemical Composition
2.3.3. Physical–Chemical and Microbiological Analyses
2.3.4. Sensorial Characterization
- -
- Appearance, an attribute describing the overall look of the bar, including shape, surface perception, presence of visible insect fragments, and uniformity, was evaluated according to the following criteria: Does the bar look attractive and appetizing? Is the shape consistent and well modeled? Are visible insect components present and do they affect acceptability?
- -
- Color, aimed at describing the appropriateness and attractiveness of the color in relation to consumer expectations, was expressed as a summative judgment with respect to the following criteria: Is the color uniform and natural? Does the color correspond to the expectations of a protein/energy bar? Are there any discolorations or unattractive shades?
- -
- Aroma was reported as a summative judgement with respect to the following questions: Is the aroma inviting or neutral? Are there strong or unpleasant aromas related to insects? Is the aroma consistent with that of conventional protein bars?
- -
- Flavor, which expresses the overall taste profile, including sweetness, bitterness, umami, and potential off flavors, was reported as the summative result of the following evaluation criteria: Is the taste balanced and pleasant? Are there any off flavors? Does the bar have a desirable level of taste?
- -
- Texture, understood as mouthfeel and structural integrity of the bar (hardness, chewability, and softness) is expressed as a summative judgement of the following criteria: Is the texture soft, firm, or too hard? Does it crumble, does it stick to the teeth, or is it grainy? Is chewability acceptable?
- -
- Stickiness, the degree of adherence of the bar to the fingers and to the oral cavity during consumption, is expressed as a summative judgement of the following criteria: Is it excessively sticky when handled? Does the bar leave a sticky residue in the mouth? Does the level of stickiness affect overall acceptability?
- -
- Aftertaste, which identifies the residual taste that remains in the mouth after swallowing, is expressed as a summative judgment of the following criteria: Is it pleasant, neutral or undesirable? Is it long lasting? Does the aftertaste encourage or discourage further consumption?
- -
- Overall liking, that is, the overall acceptability of the bar based on all sensory attributes combined, is expressed as a summative judgment of the following criteria: Would the consumer consume the bar again? Is the bar as enjoyable as or better than conventional protein bars?
2.4. Antimicrobial Validation of Insect Larvae Meal
2.5. Statistical Analyses
3. Results and Discussion
3.1. Meal Alphitobius diaperinus and Tenebrio molitor Larvae: Antimicrobial Activity
3.2. Use of Edible Insects as Antimicrobial Ingredients: Food Design
3.3. Insect-Based Bar-Type Snack: Chemical, Nutritional, Microbiological, and Sensorial Features
3.4. Antimicrobial Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruckmeier, K.; d’Andria, D.; Wiemers, J. Universal, Targeted or Both: Effects of Different Child Support Policies on Labour Supply and Poverty: A Simulation Study. J. Context. Econ. 2022, 142, 159–206. [Google Scholar] [CrossRef]
- Reisman, E.; Fairbairn, M. Agri-food systems and the Anthropocene. In The Anthropocene; Routledge: Abingdon, UK, 2021; pp. 57–67. [Google Scholar]
- Shannon, D. Food Insecurity. In Inequality Around the World: Understanding the Rich-Poor Divide from America to Zimbabwe [2 volumes]; Bloomsbury Publishing: London, UK, 2025; p. 180. [Google Scholar]
- Sattler, M. Rethinking peripheral geographies of innovation: Towards an ordinary periphery approach. Eurasian Geogr. Econ. 2024, 1–27. [Google Scholar] [CrossRef]
- Iori, E.; Masotti, M.; Falasconi, L.; Risso, E.; Segrè, A.; Vittuari, M. Tell me what you waste and I’ll tell you who you are: An eight-country comparison of consumers’ food waste habits. Sustainability 2022, 15, 430. [Google Scholar] [CrossRef]
- Tremonte, P.; Succi, M.; Coppola, R.; Sorrentino, E.; Tipaldi, L.; Picariello, G.; Pannella, G.; Fraternali, F. Homology-based modeling of universal stress protein from Listeria innocua up-regulated under acid stress conditions. Front. Microbiol. 2016, 7, 1998. [Google Scholar] [CrossRef]
- Lombardi, S.J.; Pannella, G.; Tremonte, P.; Mercurio, I.; Vergalito, F.; Caturano, C.; Maiuro, L.; Iorizzo, M.; Succi, M.; Sorrentino, E.; et al. Fungi occurrence in ready-to-eat hazelnuts (Corylus avellana) from different boreal hemisphere areas. Front. Microbiol. 2022, 13, 900876. [Google Scholar] [CrossRef]
- Colautti, A.; Orecchia, E.; Coppola, F.; Iacumin, L.; Comi, G. Cyberlindnera fabianii, an Uncommon Yeast Responsible for Gluten Bread Spoilage. Foods 2024, 13, 2381. [Google Scholar] [CrossRef]
- Comi, G.; Colautti, A.; Bernardi, C.E.M.; Stella, S.; Orecchia, E.; Coppola, F.; Iacumin, L. Leuconostoc gelidum Is the Major Species Responsible for the Spoilage of Cooked Sausage Packaged in a Modified Atmosphere, and Hop Extract Is the Best Inhibitor Tested. Microorganisms 2024, 12, 1175. [Google Scholar] [CrossRef]
- Tremonte, P.; Sorrentino, E.; Succi, M.; Tipaldi, L.; Pannella, G.; Ibanez, E.; Mendiola, J.A.; Di Renzo, T.; Reale, A.; Coppola, R. Antimicrobial effect of Malpighia punicifolia and extension of water buffalo steak shelf-life. J. Food Sci. 2016, 81, M97–M105. [Google Scholar] [CrossRef]
- Ombra, M.N.; Cozzolino, A.; Nazzaro, F.; d’Acierno, A.; Tremonte, P.; Coppola, R.; Fratianni, F. Biochemical and biological characterization of two Brassicaceae after their commercial expiry date. Food Chem. 2017, 218, 335–340. [Google Scholar] [CrossRef]
- Tremonte, P.; Pannella, G.; Lombardi, S.J.; Iorizzo, M.; Vergalito, F.; Cozzolino, A.; Maiuro, L.; Succi, M.; Sorrentino, E.; Coppola, R. Low-fat and high-quality fermented sausages. Microorganisms 2020, 8, 1025. [Google Scholar] [CrossRef]
- Picariello, L.; Errichiello, F.; Coppola, F.; Rinaldi, A.; Moio, L.; Gambuti, A. Effect of chitosan addition on acetaldehyde and polymeric pigments production after oxidation of red wines with different tannin/anthocyanins ratio. Eur. Food Res. Technol. 2023, 249, 2447–2455. [Google Scholar] [CrossRef]
- Lombardi, S.J.; Pannella, G.; Coppola, F.; Vergalito, F.; Maiuro, L.; Succi, M.; Tremonte, P.; Coppola, R. Plant-Based Ingredients Utilized as Fat Replacers and Natural Antimicrobial Agents in Beef Burgers. Foods 2024, 13, 3229. [Google Scholar] [CrossRef]
- Zengin, G.; Uba, A.I.; Abul, N.; Gulcin, I.; Koyuncu, I.; Yuksekdag, O.; Sathish Kumar, M.; Ponnaiya, S.K.M.; Tessappan, S.; Nazzaro Fratianni, F.; et al. A multifunctional natural treasure based on a “one stone, many birds” strategy for designing health-promoting applications: Tordylium apulum. Food Biosci. 2024, 62, 105088. [Google Scholar] [CrossRef]
- Brai, A.; Trivisani, C.I.; Vagaggini, C.; Stella, R.; Angeletti, R.; Iovenitti, G.; Francardi, V.; Dreassi, E. Proteins from Tenebrio molitor: An interesting functional ingredient and a source of ACE inhibitory peptides. Food Chem. 2022, 393, 133409. [Google Scholar] [CrossRef]
- Bresciani, A.; Cardone, G.; Jucker, C.; Savoldelli, S.; Marti, A. Technological performance of cricket powder (Acheta domesticus L.) in wheat-based formulations. Insects 2022, 13, 546. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU). 1975 of 12 November 2021 authorising the placing on the market of frozen, dried and powder forms of Locusta migratoria as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council and amending Commission Implementing Regulation (EU) 2017/2470 (Text with EEA relevance), C/2021/7987. Orkesterjournalen L 2021, 402, 10–16. [Google Scholar]
- Commission Implementing Regulation (EU). 882 of 1 June 2021 authorising the placing on the market of dried Tenebrio molitor larva as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council and amending Commission Implementing Regulation (EU) 2017/2470 (Text with EEA relevance), C/2021/3744. Orkesterjournalen L 2021, 194, 16–20. [Google Scholar]
- Commission Implementing Regulation (EU). 169 of 8 February 2022 authorising the placing on the market of frozen, dried and powder forms of yellow mealworm (Tenebrio molitor larva) as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council and amending Commission Implementing Regulation (EU) 2017/2470 (Text with EEA relevance), C/2022/658. Orkesterjournalen L 2022, 28, 10–16. [Google Scholar]
- Commission Implementing Regulation (EU). 188 of 10 February 2022 authorising the placing on the market of frozen, dried and powder forms of Acheta domesticus as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council and amending Commission Implementing Regulation (EU) 2017/2470 (Text with EEA relevance), C/2022/695. Orkesterjournalen L 2022, 30, 108–113. [Google Scholar]
- Commission Implementing Regulation (EU). 5 of 3 January 2023 authorising the placing on the market of Acheta domesticus (house cricket) partially defatted powder as a novel food and amending Implementing Regulation (EU) 2017/2470 (Text with EEA relevance), C/2023/6. Orkesterjournalen L 2023, 2, 9–14. [Google Scholar]
- Commission Implementing Regulation (EU). 58 of 5 January 2023 authorising the placing on the market of the frozen, paste, dried and powder forms of Alphitobius diaperinus larvae (lesser mealworm) as a novel food and amending Implementing Regulation (EU) 2017/2470 (Text with EEA relevance), C/2023/20. Orkesterjournalen L 2023, 5, 10–15. [Google Scholar]
- Jucker, C.; Belluco, S.; Oddon, S.B.; Ricci, A.; Bonizzi, L.; Lupi, D.; Savoldelli, S.; Biasato, I.; Caimi, C.; Mascaretti, A.; et al. Impact of some local organic by-products on Acheta domesticus growth and meal production. J. Insects Food Feed 2022, 8, 631–640. [Google Scholar] [CrossRef]
- Blasi, A.; Verardi, A.; Lopresto, C.G.; Siciliano, S.; Sangiorgio, P. Lignocellulosic agricultural waste valorization to obtain valuable products: An overview. Recycling 2023, 8, 61. [Google Scholar] [CrossRef]
- Guiné, R.P.; Florença, S.G.; Costa, C.A.; Correia, P.M.; Cruz-Lopes, L.; Esteves, B.; Ferreira, M.; Fragata, A.; Cardoso, A.P.; Campos, S.; et al. Edible Insects: Consumption, Perceptions, Culture and Tradition Among Adult Citizens from 14 Countries. Foods 2024, 13, 3408. [Google Scholar] [CrossRef]
- Lisboa, H.M.; Nascimento, A.; Arruda, A.; Sarinho, A.; Lima, J.; Batista, L.; Dantas, M.F.; Andrade, R. Unlocking the Potential of Insect-Based Proteins: Sustainable Solutions for Global Food Security and Nutrition. Foods 2024, 13, 1846. [Google Scholar] [CrossRef]
- Verardi, A.; Sangiorgio, P.; Lopresto, C.G.; Casella, P.; Errico, S. Enhancing Carotenoids’ Efficacy by Using Chitosan-Based Delivery Systems. Nutraceuticals 2023, 3, 451–480. [Google Scholar] [CrossRef]
- Boman, H.G.; Nilsson-Faye, I.; Paul, K.; Rasmuson, T., Jr. Insect immunity I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect. Immun. 1974, 10, 136–145. [Google Scholar] [CrossRef]
- Benhabiles, M.S.; Salah, R.; Lounici, H.; Drouiche, N.; Goosen, M.F.A.; Mameri, N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 2012, 29, 48–56. [Google Scholar] [CrossRef]
- Khattak, S.; Wahid, F.; Liu, L.P.; Jia, S.R.; Chu, L.Q.; Xie, Y.Y.; Li, Z.X.; Zhong, C. Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: Current state and perspectives. Appl. Microbiol. Bbiot. 2019, 103, 1989–2006. [Google Scholar] [CrossRef]
- Razo, A.N.D.; Herrera, R.R.; Lalanne, G.M.; Campos, M.R.S. Insect-derived antimicrobial peptides and their potential use as antibiotic and foodborne preservative. In Improving Health and Nutrition Through Bioactive Compounds; Woodhead Publishing: Sawston, UK, 2025; pp. 253–265. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Leon, M.J.; Montserrat-de la Paz, S. Potential applications of antimicrobial peptides from edible insects in the food supply chain: Uses in agriculture, packaging, and human nutrition. Food Biosci. 2024, 62, 105396. [Google Scholar] [CrossRef]
- Shin, C.S.; Kim, D.Y.; Shin, W.S. Characterization of chitosan extracted from Mealworm Beetle (Tenebrio molitor, Zophobas morio) and Rhinoceros Beetle (Allomyrina dichotoma) and their antibacterial activities. Int. J. Biol. Macromol. 2019, 125, 72–77. [Google Scholar] [CrossRef]
- Saadoun, J.H.; Sogari, G.; Bernini, V.; Camorali, C.; Rossi, F.; Neviani, E.; Lazzi, C. A critical review of intrinsic and extrinsic antimicrobial properties of insects. Trends Food Sci. Technol. 2022, 122, 40–48. [Google Scholar] [CrossRef]
- Zhou, L.; Meng, G.; Zhu, L.; Ma, L.; Chen, K. Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review. Int. J. Mol. Sci. 2024, 25, 3835. [Google Scholar] [CrossRef]
- Sheng, Z.; Guo, A.; Wang, J.; Chen, X. Preparation, physicochemical properties and antimicrobial activity of chitosan from fly pupae. Heliyon 2022, 8, e11168. [Google Scholar] [CrossRef]
- Mohan, K.; Ganesan, A.R.; Ezhilarasi, P.N.; Kondamareddy, K.K.; Rajan, D.K.; Sathishkumar, P.; Rajarajeswaran, J.; Conterno, L. Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr. Polym. 2022, 287, 119349. [Google Scholar] [CrossRef]
- Zarzosa, G.I.G.; Kobayashi, T. Insect Resources for Chitin Biomass. In Building a Low-Carbon Society Through Applied Environmental Materials Science; IGI Global: Hershey, PA, USA, 2025; pp. 241–268. [Google Scholar] [CrossRef]
- Errico, S.; Spagnoletta, A.; Verardi, A.; Moliterni, S.; Dimatteo, S.; Sangiorgio, P. Tenebrio molitor as a source of interesting natural compounds, their recovery processes, biological effects, and safety aspects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 148–197. [Google Scholar] [CrossRef]
- Patyra, E.; Kwiatek, K. Insect meals and insect antimicrobial peptides as an alternative for antibiotics and growth promoters in livestock production. Pathogens 2023, 12, 854. [Google Scholar] [CrossRef]
- Franco, A.; Scieuzo, C.; Salvia, R.; Pucciarelli, V.; Borrelli, L.; Addeo, N.F.; Bovera, F.; Laginestra, A.; Schmitt, E.; Falabella, P. Antimicrobial activity of lipids extracted from Hermetia illucens reared on different substrates. Appl. Microbiol. Biotechnol. 2024, 108, 167. [Google Scholar] [CrossRef]
- Muñoz-Seijas, N.; Fernandes, H.; Fernández, B.; Domínguez, J.M.; Salgado, J.M. Eco-friendly technologies for obtaining antioxidant compounds and protein hydrolysates from edible insect Tenebrio molitor beetles. Food Chem. 2025, 464, 141726. [Google Scholar] [CrossRef]
- Elahi, U.; Xu, C.C.; Wang, J.; Lin, J.; Wu, S.G.; Zhang, H.J.; Qi, G.H. Insect meal as a feed ingredient for poultry. Anim. Biosci. 2022, 35, 332. [Google Scholar] [CrossRef]
- Willora, F.P.; Farris, N.W.; Ghebre, E.; Zatti, K.; Bisa, S.; Kiron, V.; Verlhac-Trichet, V.; Danielsen, M.; Dalsgaard, T.K.; Sørensen, M. Full-fat black soldier fly larvae meal and yellow mealworm meal: Impact on feed protein quality, growth and nutrient utilization of Atlantic salmon (Salmo salar) post smolts. Aquaculture 2025, 595, 741648. [Google Scholar] [CrossRef]
- Rovai, D.; Michniuk, E.; Roseman, E.; Amin, S.; Lesniauskas, R.; Wilke, K.; Garza, J.; Lammert, A. Insects as a sustainable food ingredient: Identifying and classifying early adopters of edible insects based on eating behavior, familiarity, and hesitation. J. Sens. Stud. 2021, 36, e12681. [Google Scholar] [CrossRef]
- Hopkins, I.; Farahnaky, A.; Gill, H.; Newman, L.P.; Danaher, J. Australians’ experience, barriers and willingness towards consuming edible insects as an emerging protein source. Appetite 2022, 169, 105832. [Google Scholar] [CrossRef] [PubMed]
- Dagevos, H.; Taufik, D. Eating full circle: Exploring consumers’ sympathy for circularity in entomophagy acceptance. Food Qual. Prefer. 2023, 105, 104760. [Google Scholar] [CrossRef]
- Ranga, L.; Noci, F.; Dermiki, M. Insect-Based Foods: A Preliminary Qualitative Study Exploring Factors Affecting Acceptance and New Product Development Ideas through Focus Groups. Challenges 2024, 15, 40. [Google Scholar] [CrossRef]
- Gędas, A.; Schmidt, H.; Weiss, A. Identification and evaluation of Escherichia coli strain ATCC 8739 as a surrogate for thermal inactivation of enterohemorrhagic Escherichia coli in fruit nectars: Impact of applied techniques on the decimal reduction time. Food Microbiol. 2024, 122, 104544. [Google Scholar] [CrossRef]
- Sorrentino, E.; Tremonte, P.; Succi, M.; Iorizzo, M.; Pannella, G.; Lombardi, S.J.; Sturchio, M.; Coppola, R. Detection of antilisterial activity of 3-phenyllactic acid using Listeria innocua as a model. Front. Microbiol. 2018, 9, 1373. [Google Scholar] [CrossRef]
- Tremonte, P.; Succi, M.; Reale, A.; Di Renzo, T.; Sorrentino, E.; Coppola, R. Interactions between strains of Staphylococcus xylosus and Kocuria varians isolated from fermented meats. J. Appl. Microbiol. 2007, 103, 743–751. [Google Scholar] [CrossRef]
- Tremonte, P.; Pannella, G.; Succi, M.; Tipaldi, L.; Sturchio, M.; Coppola, R.; Sorrentino, E. Antimicrobial activity of Lactobacillus plantarum strains isolated from different environments: A preliminary study. Int. Food Res. J. 2017, 24, 852–859. [Google Scholar]
- Eucast, D. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis, 22nd ed.; Online; AOAC International: Rockville, MD, USA, 2023. [Google Scholar]
- Mishyna, M.; Chen, J.; Benjamin, O. Sensory attributes of edible insects and insect-based foods–Future outlooks for enhancing consumer appeal. Trends Food Sci. Technol. 2020, 95, 141–148. [Google Scholar] [CrossRef]
- Carpentieri, S.; Orkusz, A.; Ferrari, G.; Harasym, J. Effect of replacing durum wheat semolina with Tenebrio molitor larvae powder on the techno-functional properties of the binary blends. Curr. Res. Food Sci. 2024, 8, 100672. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Wu, Y.S.; Vijeepallam, K.; Batumalaie, K.; Hatta, M.M.; Lutuf, H.; Castro-Munoz, R.; Ibrahim, S.A. Alphitobius diaperinus larvae (lesser mealworm) as human food–An approval of the European Commission–A critical review. J. Insects Food Feed. 2024, 1, 1–40. [Google Scholar] [CrossRef]
- De la Luz Sánchez-Estrada, M.; Aguirre-Becerra, H.; Feregrino-Pérez, A.A. Bioactive compounds and biological activity in edible insects: A review. Heliyon 2024, 10, e24045. [Google Scholar] [CrossRef]
- De Sousa Araujo, A.C.; Pereira, A.C.; Gomes, R.M.M.; Ramirez, J.R.B.; da Silva Noda, K.; Santos, L.G.; Latorres, J.M.; Ramos, D.F.; Monserrat, J.M.; Martins, V.G. Protein hydrolysates derived from superworm (Zophobas morio): Composition, bioactivity, and techno-functional properties. Int. J. Biol. Macromol. 2025, 295, 139668. [Google Scholar] [CrossRef]
- Tafi, E. Chitosan and Chitin Sources and Their Isolation. In Chitin and Chitosan; Jenny Stanford Publishing: Singapore, 2025; pp. 33–62. [Google Scholar]
- Yang, S.; Li, X.; Li, Q. Deep Eutectic Solvent extraction and biological activity of polysaccharides from Tenebrio molitor. Heliyon 2025, 11, e41790. [Google Scholar] [CrossRef]
- Song, Y.S.; Kim, M.W.; Moon, C.; Seo, D.J.; Han, Y.S.; Jo, Y.H.; Noh, M.Y.; Park, Y.K.; Kim, S.A.; Kim, Y.W.; et al. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor. Entomol. Res. 2018, 48, 227–233. [Google Scholar] [CrossRef]
- Navarro, P.; Ribeiro, J.C.; Luís, A.; Domingues, F.; Anjos, O.; Cunha, L.M. Insect-based chitin and chitosan from whole body sources and rearing by-products: Extraction, physicochemical, structural and bioactivity characterisation. J. Insects Food Feed. 2025, 1, 1–19. [Google Scholar] [CrossRef]
- Taylor, M.H.; Zhu, M.J. Control of Listeria monocytogenes in low-moisture foods. Trends Food Sci. Technol. 2021, 116, 802–814. [Google Scholar] [CrossRef]
- Bento de Carvalho, T.; Silva, B.N.; Tomé, E.; Teixeira, P. Preventing fungal spoilage from raw materials to final product: Innovative preservation techniques for fruit fillings. Foods 2024, 13, 2669. [Google Scholar] [CrossRef]
- Shin, E.J.; Lee, S.J.; Jeong, H.J.; Lee, J.H. Development of a novel serogrouping method for the rapid detection of 21 Escherichia coli O-serotypes using multiplex real-time PCR. Food Contr. 2024, 157, 110171. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C. Consumer acceptance of novel food technologies. Nat. Food 2020, 1, 343–350. [Google Scholar] [CrossRef]
- Galanakis, C.M. The future of food. Foods 2024, 13, 506. [Google Scholar] [CrossRef]
- Molina-Castillo, S.; Espinoza-Ortega, A.; Sánchez-Vega, L. Perception of non-conventional food consumption: The case of insects. Br. Food J. 2025, 127, 1013–1028. [Google Scholar] [CrossRef]
- Castro-Alija, M.J.; Zolfaghari, G.; Fernandez, C.G.; Álvarez, C.; Ramón-Carreira, L.C.; Jiménez, J.M.; Albertos, I. Elderly Resistance vs. Youthful Acceptance: A Study on Insect Consumption across Age Groups. Foods 2024, 13, 2641. [Google Scholar] [CrossRef]
- Santonocito, D.; Granata, G.; Geraci, C.; Panico, A.; Siciliano, E.A.; Raciti, G.; Puglia, C. Carob seeds: Food waste or source of bioactive compounds? Pharmaceutics 2020, 12, 1090. [Google Scholar] [CrossRef]
- Poništ, J.; Dubšíková, V.; Schwarz, M.; Samešová, D. Methods of processing whey waste from dairies. A review. Environ. Prot. Eng. 2021, 47, 67–84. [Google Scholar] [CrossRef]
- Di Giorgio, L.; Marcantonio, M.A.; Salgado, P.R.; Mauri, A.N. Isolation, characterization, and industrial processing of soybean proteins. In Handbook of Natural Polymers; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 557–575. [Google Scholar] [CrossRef]
- Ospina-Maldonado, S.; Martin-Gómez, H.; Cardoso-Ugarte, G.A. From waste to wellness: A review on the harness of food industry by-products for sustainable functional food production. Int. J. Food Sci. Technol. 2024, 59, 8680–8692. [Google Scholar] [CrossRef]
- Iosca, G.; Turetta, M.; De Vero, L.; Bang-Berthelsen, C.H.; Gullo, M.; Pulvirenti, A. Valorization of wheat bread waste and cheese whey through cultivation of lactic acid bacteria for bio-preservation of bakery products. Lwt 2023, 176, 114524. [Google Scholar] [CrossRef]
- Laureati, M.; De Boni, A.; Saba, A.; Lamy, E.; Minervini, F.; Delgado, A.M.; Sinesio, F. Determinants of Consumers’ Acceptance and Adoption of Novel Food in View of More Resilient and Sustainable Food Systems in the EU: A Systematic Literature Review. Foods 2024, 13, 1534. [Google Scholar] [CrossRef] [PubMed]
- Regulation, E.C. No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2007, 12, 3–18. [Google Scholar]
- Qiu, L.; Zhang, M.; Tang, J.; Adhikari, B.; Cao, P. Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Res. Int. 2019, 116, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.J.; Quinn, A.R.; Kataoka, A. Listeria monocytogenes in low-moisture foods and ingredients. Food Control 2019, 103, 153–160. [Google Scholar] [CrossRef]
- Coppola, F.; Picariello, L.; Forino, M.; Moio, L.; Gambuti, A. Comparison of three accelerated oxidation tests applied to red wines with different chemical composition. Molecules 2021, 26, 815. [Google Scholar] [CrossRef]
- Aydın, A.; Yüceer, M.; Ulugergerli, E.U.; Caner, C. Improving food security as disaster relief using intermediate moisture foods and active packaging technologies. Appl. Food Res. 2024, 4, 100378. [Google Scholar] [CrossRef]
- Karuppuchamy, V.; Heldman, D.R.; Snyder, A.B. A review of food safety in low-moisture foods with current and potential dry-cleaning methods. J. Food Sci. 2024, 89, 793–810. [Google Scholar] [CrossRef]
- Huey, S.L.; Bhargava, A.; Friesen, V.M.; Konieczynski, E.M.; Krisher, J.T.; Mbuya, M.N.; Mehta, N.H.; Monterrosa, E.; Nyangaresi, A.M.; Mehta, S. Sensory acceptability of biofortified foods and food products: A systematic review. Nutr. Rev. 2024, 82, 892–912. [Google Scholar] [CrossRef]
- Awaeloh, N.; Limsuwan, S.; Na-Phatthalung, P.; Kaewmanee, T.; Chusri, S. Novel Development and Sensory Evaluation of Extruded Snacks from Unripe Banana (Musa ABB cv. Kluai ‘Namwa’) and Rice Flour Enriched with Antioxidant-Rich Curcuma longa Microcapsules. Foods 2025, 14, 205. [Google Scholar] [CrossRef]
- Wilkinson, K.; Muhlhausler, B.; Motley, C.; Crump, A.; Bray, H.; Ankeny, R. Australian consumers’ awareness and acceptance of insects as food. Insects 2018, 9, 44. [Google Scholar] [CrossRef]
- Niaba, K.P.V.; Gildas, G.K.; Avit, B.; Thierry, A.; Anglade, M.K.; Dago, G. Nutritional and sensory qualities of wheat biscuits fortified with deffatted Macrotermes subhyalinus. Int. J. Chem. Sci. Technol. 2013, 3, 25–32. [Google Scholar]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foglini, R.; Raffaelli, N.; et al. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Speranza, B.; Sinigaglia, M.; Corbo, M.R. A focus on the death kinetics in predictive microbiology: Benefits and limits of the most important models and some tools dealing with their application in foods. Foods 2015, 4, 565–580. [Google Scholar] [CrossRef] [PubMed]
- Bigi, F.; Maurizzi, E.; Quartieri, A.; De Leo, R.; Gullo, M.; Pulvirenti, A. Non-thermal techniques and the “hurdle” approach: How is food technology evolving? Trends Food Sci. Technol. 2023, 132, 11–39. [Google Scholar] [CrossRef]
- Yue, S.R.; Verhoeckx, K.C.; Houben, G.F.; Bøgh, K.L. Analysis of trends and allergenicity risk assessments in novel food approvals within the European Union between 2018 and 2023. Food Chem. Toxicol. 2025, 197, 115249. [Google Scholar] [CrossRef]
Parameters | Alphitobius diaperinus Meal | Tenebrio molitor Meal |
---|---|---|
E. coli ATCC 8739 | 12.50 | 12.50 |
L. innocua ATCC 33090 | 3.12 | 3.12 |
P. expansum ATCC 36200 | 6.25 | 6.25 |
Parameters | Insect-Based Bar | Control Bar |
---|---|---|
Moisture (%) | 30.57 (±0.31) a | 30.51 (±0.28) a |
Protein (%/d.m.) | 23.85 (±0.42) a | 10.86 (±0.23) b |
Lipid (%/d.m.) | 11.3 (±0.29) a | 8.31 (±0.33) b |
Ash (%/d.m.) | 2.12 (±0.11) a | 2.01 (±0.16) a |
Carbohydrates (%/d.m.) | 48.21 (±0.51) a | 63.84 (±0.37) b |
Dietary fiber (%/d.m.) | 14.52 (±0.38) a | 14.98 (±0.28) a |
Kcal from protein (%) | 23.53 (±1.01) a | 10.91 (±0.96) 1 |
Kcal | 302.65 (±2.98) a | 298.65 (±3.01) a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppola, F.; Lombardi, S.J.; Tremonte, P. Edible Insect Meals as Bioactive Ingredients in Sustainable Snack Bars. Foods 2025, 14, 702. https://doi.org/10.3390/foods14040702
Coppola F, Lombardi SJ, Tremonte P. Edible Insect Meals as Bioactive Ingredients in Sustainable Snack Bars. Foods. 2025; 14(4):702. https://doi.org/10.3390/foods14040702
Chicago/Turabian StyleCoppola, Francesca, Silvia Jane Lombardi, and Patrizio Tremonte. 2025. "Edible Insect Meals as Bioactive Ingredients in Sustainable Snack Bars" Foods 14, no. 4: 702. https://doi.org/10.3390/foods14040702
APA StyleCoppola, F., Lombardi, S. J., & Tremonte, P. (2025). Edible Insect Meals as Bioactive Ingredients in Sustainable Snack Bars. Foods, 14(4), 702. https://doi.org/10.3390/foods14040702