Microbiota of Cheese Ecosystems: A Perspective on Cheesemaking
Abstract
:1. Microbial Interactions in Ecosystems: A Premise
2. Fermented Food Microbiota
3. Cheese Microbiota
4. The Cheesemaking Process and Associated Microbial Stresses
- (a)
- The arrival of the milk at the dairy.
- (b)
- The processing of the milk in the vat.
- (c)
- Post-renneting operations outside the vat.
- (a)
- The arrival of the milk at the dairy.
- (b)
- The processing of the milk in the vat
- (c)
- Post-renneting operations outside the vat
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LAB | Lactic acid bacteria |
NSLAB | Non-starter lactic acid bacteria |
SLAB | Starter lactic acid bacteria |
NWS | Natural whey starter |
References
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Bleuven, C.; Landry, C.R. Molecular and Cellular Bases of Adaptation to a Changing Environment in Microorganisms. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161458. [Google Scholar] [CrossRef]
- Bell, G. Experimental Macroevolution. Proc. R. Soc. B Biol. Sci. 2016, 283, 20152547. [Google Scholar] [CrossRef] [PubMed]
- Elena, S.F.; Lenski, R.E. Evolution Experiments with Microorganisms: The Dynamics and Genetic Bases of Adaptation. Nat. Rev. Genet. 2003, 4, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Brookfield, J.F.Y. Evolution and Evolvability: Celebrating Darwin 200. Biol. Lett. 2009, 5, 44–46. [Google Scholar] [CrossRef]
- Avery, S.V. Microbial Cell Individuality and the Underlying Sources of Heterogeneity. Nat. Rev. Microbiol. 2006, 4, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C. Letter to Asa Gray. 5 September 1860. The Correspondence of Charles Darwin; Cambridge University Press: Cambridge, UK, 1860; pp. 100–101. [Google Scholar]
- Neviani, E.; Levante, A.; Gatti, M. The Microbial Community of Natural Whey Starter: Why Is It a Driver for the Production of the Most Famous Italian Long-Ripened Cheeses? Fermentation 2024, 10, 186. [Google Scholar] [CrossRef]
- Margulis, L.; Fester, R. Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Konopka, A. What Is Microbial Community Ecology? ISME J. 2009, 3, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.A. Thinking about Bacterial Populations as Multicellular Organisms. Annu. Rev. Microbiol. 1998, 52, 81–104. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.; Higgins, L.M.; Gore, J. Community Structure Follows Simple Assembly Rules in Microbial Microcosms. Nat. Ecol. Evol. 2017, 1, 0109. [Google Scholar] [CrossRef] [PubMed]
- Rocca, J.D.; Simonin, M.; Blaszczak, J.R.; Ernakovich, J.G.; Gibbons, S.M.; Midani, F.S.; Washburne, A.D. The Microbiome Stress Project: Toward a Global Meta-Analysis of Environmental Stressors and Their Effects on Microbial Communities. Front. Microbiol. 2019, 9, 3272. [Google Scholar] [CrossRef] [PubMed]
- Margulis, L.; Sagan, D. Acquiring Genomes: A Theory of the Origins of Species; Basic books: New York, NY, USA, 2003; ISBN 978-0-465-04392-7. [Google Scholar]
- Ryall, B.; Eydallin, G.; Ferenci, T. Culture History and Population Heterogeneity as Determinants of Bacterial Adaptation: The Adaptomics of a Single Environmental Transition. Microbiol. Mol. Biol. Rev. 2012, 76, 597–625. [Google Scholar] [CrossRef] [PubMed]
- Jeanson, S.; Floury, J.; Gagnaire, V.; Lortal, S.; Thierry, A. Bacterial Colonies in Solid Media and Foods: A Review on Their Growth and Interactions with the Micro-Environment. Front. Microbiol. 2015, 6, 1284. [Google Scholar] [CrossRef] [PubMed]
- Skandamis, P.N.; Jeanson, S. Colonial vs. Planktonic Type of Growth: Mathematical Modeling of Microbial Dynamics on Surfaces and in Liquid, Semi-Liquid and Solid Foods. Front. Microbiol. 2015, 6, 1178. [Google Scholar] [CrossRef]
- Sgarbi, E.; Bottari, B.; Gatti, M.; Neviani, E. Investigation of the Ability of Dairy Nonstarter Lactic Acid Bacteria to Grow Using Cell Lysates of Other Lactic Acid Bacteria as the Exclusive Source of Nutrients. Int. J. Dairy Technol. 2014, 67, 342–347. [Google Scholar] [CrossRef]
- Skandamis, P.N.; Nychas, G.-J.E. Quorum Sensing in the Context of Food Microbiology. Appl. Environ. Microbiol. 2012, 78, 5473–5482. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.A. Bacteria as Multicellular Organisms. Sci. Am. 1988, 258, 82–89. [Google Scholar] [CrossRef]
- Smid, E.J.; Lacroix, C. Microbe-Microbe Interactions in Mixed Culture Food Fermentations. Curr. Opin. Biotechnol. 2013, 24, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, B.E.; Dutton, R.J. Fermented Foods as Experimentally Tractable Microbial Ecosystems. Cell 2015, 161, 49–55. [Google Scholar] [CrossRef]
- Parente, E.; Ricciardi, A. A Comprehensive View of Food Microbiota: Introducing FoodMicrobionet V5. Foods 2024, 13, 1689. [Google Scholar] [CrossRef] [PubMed]
- Benlloch, S.; López-López, A.; Casamayor, E.O.; Øvreås, L.; Goddard, V.; Daae, F.L.; Smerdon, G.; Massana, R.; Joint, I.; Thingstad, F.; et al. Prokaryotic Genetic Diversity throughout the Salinity Gradient of a Coastal Solar Saltern. Environ. Microbiol. 2002, 4, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Heuer, H.; Abdo, Z.; Smalla, K. Patchy Distribution of Flexible Genetic Elements in Bacterial Populations Mediates Robustness to Environmental Uncertainty: Population-Level Robustness through Genome Flexibility. FEMS Microbiol. Ecol. 2008, 65, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Dobrindt, U.; Hochhut, B.; Hentschel, U.; Hacker, J. Genomic Islands in Pathogenic and Environmental Microorganisms. Nat. Rev. Microbiol. 2004, 2, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Erkus, O.; De Jager, V.C.L.; Spus, M.; van Alen-Boerrigter, I.J.; Van Rijswijck, I.M.H.; Hazelwood, L.; Janssen, P.W.M.; Van Hijum, S.A.F.T.; Kleerebezem, M.; Smid, E.J. Multifactorial Diversity Sustains Microbial Community Stability. ISME J. 2013, 7, 2126–2136. [Google Scholar] [CrossRef]
- Somerville, V.; Berthoud, H.; Schmidt, R.S.; Bachmann, H.P.; Meng, Y.H.; Fuchsmann, P.; von Ah, U.; Engel, P. Functional Strain Redundancy and Persistent Phage Infection in Swiss Hard Cheese Starter Cultures. ISME J. 2022, 16, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Valera, F.; Martin-Cuadrado, A.-B.; Rodriguez-Brito, B.; Pašić, L.; Thingstad, T.F.; Rohwer, F.; Mira, A. Explaining Microbial Population Genomics through Phage Predation. Nat. Rev. Microbiol. 2009, 7, 828–836. [Google Scholar] [CrossRef] [PubMed]
- White, K.; Yu, J.-H.; Eraclio, G.; Bello, F.D.; Nauta, A.; Mahony, J.; Van Sinderen, D. Bacteriophage-Host Interactions as a Platform to Establish the Role of Phages in Modulating the Microbial Composition of Fermented Foods. Microbiome Res. Rep. 2022, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Meouche, I.E.; Siu, Y.; Dunlop, M.J. Stochastic Expression of a Multiple Antibiotic Resistance Activator Confers Transient Resistance in Single Cells. Sci. Rep. 2016, 6, 19538. [Google Scholar] [CrossRef]
- Viney, M.; Reece, S.E. Adaptive Noise. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131104. [Google Scholar] [CrossRef]
- Giri, S.; Waschina, S.; Kaleta, C.; Kost, C. Defining Division of Labor in Microbial Communities. J. Mol. Biol. 2019, 431, 4712–4731. [Google Scholar] [CrossRef] [PubMed]
- Montanari, C.; Serrazanetti, D.I.; Felis, G.; Torriani, S.; Tabanelli, G.; Lanciotti, R.; Gardini, F. New Insights in Thermal Resistance of Staphylococcal Strains Belonging to the Species Staphylococcus epidermidis, Staphylococcus lugdunensis and Staphylococcus aureus. Food Control 2015, 50, 605–612. [Google Scholar] [CrossRef]
- Mellefont, L.A.; McMeekin, T.A.; Ross, T. Effect of Relative Inoculum Concentration on Listeria monocytogenes Growth in Co-Culture. Int. J. Food Microbiol. 2008, 121, 157–168. [Google Scholar] [CrossRef]
- Folli, C.; Levante, A.; Percudani, R.; Amidani, D.; Bottazzi, S.; Ferrari, A.; Rivetti, C.; Neviani, E.; Lazzi, C. Toward the Identification of a Type i Toxin-Antitoxin System in the Plasmid DNA of Dairy Lactobacillus rhamnosus. Sci. Rep. 2017, 7, 12051. [Google Scholar] [CrossRef] [PubMed]
- Jousset, A.; Schmid, B.; Scheu, S.; Eisenhauer, N. Genotypic Richness and Dissimilarity Opposingly Affect Ecosystem Functioning: Genotypic Diversity and Ecosystem Functioning. Ecol. Lett. 2011, 14, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Hendy, J.; Rest, M.; Aldenderfer, M.; Warinner, C. Cultures of Fermentation: Living with Microbes: An Introduction to Supplement 24. Curr. Anthropol. 2021, 62, S197–S206. [Google Scholar] [CrossRef]
- Castellone, V.; Bancalari, E.; Rubert, J.; Gatti, M.; Neviani, E.; Bottari, B. Eating Fermented: Health Benefits of LAB-Fermented Foods. Foods 2021, 10, 2639. [Google Scholar] [CrossRef]
- Aguilera, J.M. The Food Matrix: Implications in Processing, Nutrition and Health. Crit. Rev. Food Sci. Nutr. 2019, 59, 3612–3629. [Google Scholar] [CrossRef] [PubMed]
- Cocolin, L.; Gobbetti, M.; Neviani, E.; Daffonchio, D. Ensuring Safety in Artisanal Food Microbiology. Nat. Microbiol. 2016, 1, 16171. [Google Scholar] [CrossRef] [PubMed]
- Paul Ross, R.; Morgan, S.; Hill, C. Preservation and Fermentation: Past, Present and Future. Int. J. Food Microbiol. 2002, 79, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Campbell-Platt, G. Fermented Foods—A World Perspective. Food Res. Int. 1994, 27, 253–257. [Google Scholar] [CrossRef]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health Benefits of Fermented Foods: Microbiota and Beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health Benefits of Fermented Foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef]
- De Filippis, F.; Parente, E.; Ercolini, D. Recent Past, Present, and Future of the Food Microbiome. Annu. Rev. Food Sci. Technol. 2018, 9, 589–608. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Pot, B.; Tsakalidou, E. How Microbes Adapt to a Diversity of Food Niches. Curr. Opin. Food Sci. 2015, 2, 29–35. [Google Scholar] [CrossRef]
- Hutkins, R.W. Microbiology and Technology of Fermented Foods, 1st ed.; Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-8138-0018-9. [Google Scholar]
- Giraffa, G.; Mucchetti, G.; Neviani, E. Interactions among Thermophilic Lactobacilli during Growth in Cheese Whey. J. Appl. Bacteriol. 1996, 80, 199–202. [Google Scholar] [CrossRef]
- Booth, I.R. Stress and the Single Cell: Intrapopulation Diversity Is a Mechanism to Ensure Survival upon Exposure to Stress. Int. J. Food Microbiol. 2002, 78, 19–30. [Google Scholar] [CrossRef]
- Afshari, R.; Pillidge, C.J.; Dias, D.A.; Osborn, A.M.; Gill, H. Cheesomics: The Future Pathway to Understanding Cheese Flavour and Quality. Crit. Rev. Food Sci. Nutr. 2020, 60, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Kindstedt, P. Cheese and Culture: A History of Cheese and Its Place in Western Civilization, 1st ed.; Chelsea Green Publishing: White River Junction, VT, USA, 2012; ISBN 978-1-60358-506-4. [Google Scholar]
- Gobbetti, M.; Di Cagno, R.; Calasso, M.; Neviani, E.; Fox, P.F.; De Angelis, M. Drivers That Establish and Assembly the Lactic Acid Bacteria Biota in Cheeses. Trends Food Sci. Technol. 2018, 78, 244–254. [Google Scholar] [CrossRef]
- McClure, S.B.; Magill, C.; Podrug, E.; Moore, A.M.T.; Harper, T.K.; Culleton, B.J.; Kennett, D.J.; Freeman, K.H. Fatty Acid Specific δ13C Values Reveal Earliest Mediterranean Cheese Production 7200 Years Ago. PLoS ONE 2018, 13, e0202807. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Fox, P.F.; Cotter, P.D.; Everett, D.W. Cheese: Chemistry, Physics & Microbiology; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-417012-4. [Google Scholar]
- Alais, C. Science du Lait: Principes des Techniques Laitières, 4th ed.; Société d’édition et de Promotion Agro-Alimentaires, Industrielles et Commerciales: Paris, France, 1984; ISBN 2-902899-02-5. [Google Scholar]
- Randazzo, C.L.; Caggia, C.; Neviani, E. Cheese Ripening: Quality, Safety and Health Aspects; Advances in Food Safety and Food Microbiology; Nova Publishers: New York, NY, USA, 2013; ISBN 978-1-62417-032-4. [Google Scholar]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Fundamentals of Cheese Science; Springer: Boston, MA, USA, 2017; ISBN 978-1-4899-7679-6. [Google Scholar]
- Gobbetti, M.; Neviani, E.; Fox, P. The Cheeses of Italy: Science and Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-89853-7. [Google Scholar]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The Complex Microbiota of Raw Milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef]
- Reuben, R.C.; Langer, D.; Eisenhauer, N.; Jurburg, S.D. Universal Drivers of Cheese Microbiomes. iScience 2023, 26, 105744. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, Y.; You, C.; Ren, J.; Chen, W.; Zheng, H.; Liu, Z. Variation in Raw Milk Microbiota Throughout 12 Months and the Impact of Weather Conditions. Sci. Rep. 2018, 8, 2371. [Google Scholar] [CrossRef] [PubMed]
- Bettera, L.; Alessia, L.; Bancalari, E.; Bottari, B.; Gatti, M. Lactic Acid Bacteria in Cow Raw Milk for Cheese Production: Which and How Many? Front. Microbiol. 2023, 13, 1092224. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; In Lee, S.; Rackerby, B.; Frojen, R.; Goddik, L.; Ha, S.D.; Park, S.H. Assessment of Overall Microbial Community Shift during Cheddar Cheese Production from Raw Milk to Aging. Appl. Microbiol. Biotechnol. 2020, 104, 6249–6260. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A.M.; Macori, G.; Kilcawley, K.N.; Cotter, P.D. Meta-Analysis of Cheese Microbiomes Highlights Contributions to Multiple Aspects of Quality. Nat. Food 2020, 1, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Yeluri Jonnala, B.R.; McSweeney, P.L.H.; Sheehan, J.J.; Cotter, P.D. Sequencing of the Cheese Microbiome and Its Relevance to Industry. Front. Microbiol. 2018, 9, 1020. [Google Scholar] [CrossRef]
- Wolfe, B.E.; Button, J.E.; Santarelli, M.; Dutton, R.J. Cheese Rind Communities Provide Tractable Systems for In Situ and In Vitro Studies of Microbial Diversity. Cell 2014, 158, 422–433. [Google Scholar] [CrossRef]
- Levante, A.; Bertani, G.; Bottari, B.; Bernini, V.; Lazzi, C.; Gatti, M.; Neviani, E. How New Molecular Approaches Have Contributed to Shedding Light on Microbial Dynamics in Parmigiano Reggiano Cheese. Curr. Opin. Food Sci. 2021, 38, 131–140. [Google Scholar] [CrossRef]
- Nugroho, A.D.W.; Kleerebezem, M.; Bachmann, H. Growth, Dormancy and Lysis: The Complex Relation of Starter Culture Physiology and Cheese Flavour Formation. Curr. Opin. Food Sci. 2021, 39, 22–30. [Google Scholar] [CrossRef]
- Nam, J.H.; Cho, Y.S.; Rackerby, B.; Goddik, L.; Park, S.H. Shifts of Microbiota during Cheese Production: Impact on Production and Quality. Appl. Microbiol. Biotechnol. 2021, 105, 2307–2318. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Chen, L.; Yang, J.; Zhi, W.; Chen, R.; Lu, T.; Tan, H.; Sheng, Z. Effect of Lactic Acid Bacteria on Bacterial Community Structure and Characteristics of Sugarcane Juice. Foods 2022, 11, 3134. [Google Scholar] [CrossRef]
- Blaya, J.; Barzideh, Z.; LaPointe, G. Symposium Review: Interaction of Starter Cultures and Nonstarter Lactic Acid Bacteria in the Cheese Environment1. J. Dairy Sci. 2018, 101, 3611–3629. [Google Scholar] [CrossRef]
- Gatti, M.; Bottari, B.; Lazzi, C.; Neviani, E.; Mucchetti, G. Invited Review: Microbial Evolution in Raw-Milk, Long-Ripened Cheeses Produced Using Undefined Natural Whey Starters. J. Dairy Sci. 2014, 97, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F.; McSweeney, P.L.H. Methods Used to Study Non-Starter Microorganisms in Cheese: A Review. Int. J. Dairy Technol. 2000, 53, 113–119. [Google Scholar] [CrossRef]
- Fricker, M.; Skånseng, B.; Rudi, K.; Stessl, B.; Ehling-Schulz, M. Shift from Farm to Dairy Tank Milk Microbiota Revealed by a Polyphasic Approach Is Independent from Geographical Origin. Int. J. Food Microbiol. 2011, 145, S24–S30. [Google Scholar] [CrossRef] [PubMed]
- Parente, E.; Cocolin, L.; De Filippis, F.; Zotta, T.; Ferrocino, I.; O’Sullivan, O.; Neviani, E.; De Angelis, M.; Cotter, P.D.; Ercolini, D. FoodMicrobionet: A Database for the Visualisation and Exploration of Food Bacterial Communities Based on Network Analysis. Int. J. Food Microbiol. 2016, 219, 28–37. [Google Scholar] [CrossRef]
- Montel, M.C.; Buchin, S.; Mallet, A.; Delbes-Paus, C.; Vuitton, D.A.; Desmasures, N.; Berthier, F. Traditional Cheeses: Rich and Diverse Microbiota with Associated Benefits. Int. J. Food Microbiol. 2014, 177, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Bonham, K.S.; Wolfe, B.E.; Dutton, R.J. Extensive Horizontal Gene Transfer in Cheese-Associated Bacteria. eLife 2017, 6, e22144. [Google Scholar] [CrossRef]
- Mucchetti, G.; Neviani, E. Tecnologia Casearia Dall’empirismo All’industria; Casa Editrice Ambrosiana CEA: Rozzano, Italy, 2022; ISBN 978-88-08-99976-4. [Google Scholar]
- Mucchetti, G.; Neviani, E. Microbiologia e Tecnologia Lattiero-Casearia: Qualità e Sicurezza; Tecniche Nuove: Milan, Italy, 2006; ISBN 978-88-481-1817-0. [Google Scholar]
- Neviani, E.; Divizia, R.; Abbiati, E.; Gatti, M. Acidification Activity of Thermophilic Lactobacilli Under the Temperature Gradient of Grana Cheese Making. J. Dairy Sci. 1995, 78, 1248–1252. [Google Scholar] [CrossRef]
- Carminati, D.; Brizzi, A.; Giraffa, G.; Neviani, E. Effect of Amino Acids on S. Salivarius subsp. thermophilus Growth in Modified Milk Deprived of Non-Protein Nitrogen Fraction. Milchwissenschaft 1994, 49, 481–540. [Google Scholar]
- Teusink, B.; Molenaar, D. Systems Biology of Lactic Acid Bacteria: For Food and Thought. Curr. Opin. Syst. Biol. 2017, 6, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Wels, M.; Siezen, R.; Van Hijum, S.; Kelly, W.J.; Bachmann, H. Comparative Genome Analysis of Lactococcus lactis Indicates Niche Adaptation and Resolves Genotype/Phenotype Disparity. Front. Microbiol. 2019, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Giraffa, G.; Rossetti, L.; Mucchetti, G. Influence of the Temperature Gradient on the Growth of Thermophilic Lactobacilli Used as Natural Starters in Grana Cheese. J. Dairy Sci. 1998, 81, 31–36. [Google Scholar] [CrossRef]
- Pellegrino, L.; Battelli, G.; Resmini, P.; Ferranti, P.; Barone, F.; Addeo, F. Effects of Heat Load Gradient Occurring in Moulding on Characterization and Ripening of Grana Padano. Le Lait 1997, 77, 217–228. [Google Scholar] [CrossRef]
- Wilkinson, M.G.; LaPointe, G. Invited Review: Starter Lactic Acid Bacteria Survival in Cheese: New Perspectives on Cheese Microbiology. J. Dairy Sci. 2020, 103, 10963–10985. [Google Scholar] [CrossRef]
- Levante, A.; De Filippis, F.; La Storia, A.; Gatti, M.; Neviani, E.; Ercolini, D.; Lazzi, C. Metabolic Gene-Targeted Monitoring of Non-Starter Lactic Acid Bacteria during Cheese Ripening. Int. J. Food Microbiol. 2017, 257, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Bottari, B.; Santarelli, M.; Neviani, E.; Gatti, M. Natural Whey Starter for Parmigiano Reggiano: Culture-Independent Approach. J. Appl. Microbiol. 2010, 108, 1676–1684. [Google Scholar] [CrossRef]
- Lazzi, C.; Povolo, M.; Locci, F.; Bernini, V.; Neviani, E.; Gatti, M. Can the Development and Autolysis of Lactic Acid Bacteria Influence the Cheese Volatile Fraction? The Case of Grana Padano. Int. J. Food Microbiol. 2016, 233, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Santarelli, M.; Bottari, B.; Malacarne, M.; Lazzi, C.; Sforza, S.; Summer, A.; Neviani, E.; Gatti, M. Variability of Lactic Acid Production, Chemical and Microbiological Characteristics in 24-Hour Parmigiano Reggiano Cheese. Dairy Sci. Technol. 2013, 93, 605–621. [Google Scholar] [CrossRef]
- Gatti, M.; De Dea Lindner, J.; Gardini, F.; Mucchetti, G.; Bevacqua, D.; Fornasari, M.E.; Neviani, E. A Model to Assess Lactic Acid Bacteria Aminopeptidase Activities in Parmigiano Reggiano Cheese During Ripening. J. Dairy Sci. 2008, 91, 4129–4137. [Google Scholar] [CrossRef]
- Lortal, S.; Chapot-Chartier, M.P. Role, Mechanisms and Control of Lactic Acid Bacteria Lysis in Cheese. Int. Dairy J. 2005, 15, 857–871. [Google Scholar] [CrossRef]
- Gatti, M.; Fornasari, M.E.; Mucchetti, G.; Addeo, F.; Neviani, E. Presence of Peptidase Activities in Different Varieties of Cheese. Lett. Appl. Microbiol. 1999, 28, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Crow, V.L.; Coolbear, T.; Gopal, P.K.; Martley, F.G.; McKay, L.L.; Riepe, H. The Role of Autolysis of Lactic Acid Bacteria in the Ripening of Cheese. Int. Dairy J. 1995, 5, 855–875. [Google Scholar] [CrossRef]
- El Soda, M.; Farkye, N.; Vuillemard, J.C.; Simard, R.E.; Olson, N.F.; El Kholy, W.; Dako, E.; Medrano, E.; Gaber, M.; Lim, L. Autolysis of Lactic Acid Bacteria: Impact on Flavour Development in Cheese. In Developments in Food Science; Elsevier: Amsterdam, The Netherlands, 1995; Volume 37, pp. 2205–2223. ISBN 978-0-444-82013-6. [Google Scholar]
- Chapot-Chartier, M.-P.; Deniel, C.; Rousseau, M.; Vassal, L.; Gripon, J.-C. Autolysis of Two Strains of Lactococcus lactis during Cheese Ripening. Int. Dairy J. 1994, 4, 251–269. [Google Scholar] [CrossRef]
- Wilkinson, M.G.; Guinee, T.P.; O’Callaghan, D.M.; Fox, P.F. Autolysis and Proteolysis in Different Strains of Starter Bacteria during Cheddar Cheese Ripening. J. Dairy Res. 1994, 61, 249–262. [Google Scholar] [CrossRef]
- Calasso, M.; Mancini, L.; Di Cagno, R.; Cardinali, G.; Gobbetti, M. Microbial Cell-Free Extracts as Sources of Enzyme Activities to Be Used for Enhancement Flavor Development of Ewe Milk Cheese. J. Dairy Sci. 2015, 98, 5874–5889. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.G.; Kilcawley, K.N. Mechanisms of Incorporation and Release of Enzymes into Cheese during Ripening. Int. Dairy J. 2005, 15, 817–830. [Google Scholar] [CrossRef]
- Visser, S. Proteolytic Enzymes and Their Relation to Cheese Ripening and Flavor: An Overview. J. Dairy Sci. 1993, 76, 329–350. [Google Scholar] [CrossRef]
- Lane, C.N.; Fox, P.F.; Walsh, E.M.; Folkertsma, B.; McSweeney, P.L.H. Effect of Compositional and Environmental Factors on the Growth of Indigenous Non-Starter Lactic Acid Bacteria in Cheddar Cheese. Le Lait 1997, 77, 561–573. [Google Scholar] [CrossRef]
- van Mastrigt, O.; Gallegos Tejeda, D.; Kristensen, M.N.; Abee, T.; Smid, E.J. Aroma Formation during Cheese Ripening Is Best Resembled by Lactococcus lactis Retentostat Cultures. Microb. Cell Factories 2018, 17, 104. [Google Scholar] [CrossRef] [PubMed]
- Cocolin, L.; Gobbetti, M.; Neviani, E. Microbiologia Alimentare Applicata; Casa Editrice Ambrosiana CEA: Rozzano, Italy, 2022. [Google Scholar]
- Bettera, L.; Levante, A.; Bancalari, E.; Bottari, B.; Cirlini, M.; Neviani, E.; Gatti, M. Lacticaseibacillus Strains Isolated from Raw Milk: Screening Strategy for Their Qualification as Adjunct Culture in Cheesemaking. Foods 2023, 12, 3949. [Google Scholar] [CrossRef] [PubMed]
- Falardeau, J.; Keeney, K.; Trmčić, A.; Kitts, D.; Wang, S. Farm-to-Fork Profiling of Bacterial Communities Associated with an Artisan Cheese Production Facility. Food Microbiol. 2019, 83, 48–58. [Google Scholar] [CrossRef]
- Von Neubeck, M.; Baur, C.; Krewinkel, M.; Stoeckel, M.; Kranz, B.; Stressler, T.; Fischer, L.; Hinrichs, J.; Scherer, S.; Wenning, M. Biodiversity of Refrigerated Raw Milk Microbiota and Their Enzymatic Spoilage Potential. Int. J. Food Microbiol. 2015, 211, 57–65. [Google Scholar] [CrossRef]
- D’Incecco, P.; Bettera, L.; Bancalari, E.; Rosi, V.; Sindaco, M.; Gobbi, S.; Candotti, P.; Nazzicari, N.; Limbo, S.; Gatti, M.; et al. High-Speed Cold Centrifugation of Milk Modifies the Microbiota, the Ripening Process and the Sensory Characteristics of Raw-Milk Hard Cheeses. Food Res. Int. 2023, 172, 113102. [Google Scholar] [CrossRef]
- Bertani, G.; Levante, A.; Lazzi, C.; Bottari, B.; Gatti, M.; Neviani, E. Dynamics of a Natural Bacterial Community under Technological and Environmental Pressures: The Case of Natural Whey Starter for Parmigiano Reggiano Cheese. Food Res. Int. 2019, 129, 108860. [Google Scholar] [CrossRef] [PubMed]
- Levante, A.; Lazzi, C.; Vatsellas, G.; Chatzopoulos, D.; Dionellis, V.S. Genome Sequencing of Five Lacticaseibacillus Strains and Analysis of Type I and II Toxin-Antitoxin System Distribution. Microorganisms 2021, 9, 648. [Google Scholar] [CrossRef] [PubMed]
- Smid, E.J.; Erkus, O.; Spus, M.; Wolkers-Rooijackers, J.C.M.; Alexeeva, S.; Kleerebezem, M. Functional Implications of the Microbial Community Structure of Undefined Mesophilic Starter Cultures. Microb. Cell Factories 2014, 13 (Suppl. S1), S2. [Google Scholar] [CrossRef]
- Parente, E. Diversity and Dynamics of Microbial Communities in Natural and Mixed Starter Cultures. Aust. J. Dairy Technol. 2006, 61, 108–115. [Google Scholar]
- De Vos, W.M. Systems Solutions by Lactic Acid Bacteria: From Paradigms to Practice. Microb. Cell Factories 2011, 10, S2. [Google Scholar] [CrossRef] [PubMed]
- Carini, S.; Mucchetti, G.; Neviani, E. Lysozyme: Activity against Clostridia and Use in Cheese Production—A Review. Microbiol. Aliments Nutr. 1985, 4, 299–320. [Google Scholar]
- Bottari, B.; Levante, A.; Bancalari, E.; Sforza, S.; Bottesini, C.; Prandi, B.; De Filippis, F.; Ercolini, D.; Nocetti, M.; Gatti, M. The Interrelationship Between Microbiota and Peptides During Ripening as a Driver for Parmigiano Reggiano Cheese Quality. Front. Microbiol. 2020, 11, 581658. [Google Scholar] [CrossRef]
- Nicosia, F.D.; Pino, A.; Maciel, G.L.R.; Sanfilippo, R.R.; Caggia, C.; De Carvalho, A.F.; Randazzo, C.L. Technological Characterization of Lactic Acid Bacteria Strains for Potential Use in Cheese Manufacture. Foods 2023, 12, 1154. [Google Scholar] [CrossRef] [PubMed]
- Psomas, E.; Sakaridis, I.; Boukouvala, E.; Karatzia, M.-A.; Ekateriniadou, L.V.; Samouris, G. Indigenous Lactic Acid Bacteria Isolated from Raw Graviera Cheese and Evaluation of Their Most Important Technological Properties. Foods 2023, 12, 370. [Google Scholar] [CrossRef]
- Prosser, J.I.; Bohannan, B.J.M.; Curtis, T.P.; Ellis, R.J.; Firestone, M.K.; Freckleton, R.P.; Green, J.L.; Green, L.E.; Killham, K.; Lennon, J.J.; et al. The Role of Ecological Theory in Microbial Ecology. Nat. Rev. Microbiol. 2007, 5, 384–392. [Google Scholar] [CrossRef]
- Mossel, D.A.A.; Struijk, C.B. The Contribution of Microbial Ecology to Management and Monitoring of the Safety, Quality and Acceptability (SQA) of Foods. J. Appl. Bacteriol. 1992, 73, 1s–22s. [Google Scholar] [CrossRef] [PubMed]
- Boddy, L.; Wimpenny, J.W.T. Ecological Concepts in Food Microbiology. J. Appl. Bacteriol. 1992, 73, 23s–38s. [Google Scholar] [CrossRef] [PubMed]
- Juillard, V.; Spinnler, H.E.; Desmazeaud, M.J.; Boquien, C.Y. Phénomènes de Coopération et d’inhibition Entre les Bactéries Lactiques Utilisées En Industrie Laitière. Le Lait 1987, 67, 149–172. [Google Scholar] [CrossRef]
- Calabrese, F.M.; Ameur, H.; Nikoloudaki, O.; Celano, G.; Vacca, M.; Junior, W.J.; Manzari, C.; Vertè, F.; Di Cagno, R.; Pesole, G.; et al. Metabolic Framework of Spontaneous and Synthetic Sourdough Metacommunities to Reveal Microbial Players Responsible for Resilience and Performance. Microbiome 2022, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Neviani, E. From the Single Bacterial Cell to the Microbial Community: A Round Trip to Better Understand the Secrets of Complex Microbiological Ecosystems. Int. J. Clin. Microbiol. Biochem. Technol. 2024, 7, 006–008. [Google Scholar] [CrossRef]
- Neviani, E. The Natural Whey Starter Used in the Production of Grana Padano and Parmigiano Reggiano PDO Cheeses: A Complex Microbial Community. Microorganisms 2024, 12, 2443. [Google Scholar] [CrossRef]
Cheesemaking Phase | Technological Steps and Effect on Raw Milk Microbiota | Microbial Growth and Biochemical Events |
---|---|---|
a. Arrival of the milk at the dairy | ||
Raw milk collection |
Various contaminating microbial populations (notably, mesophilic microorganisms capable of using lactose to grow and trivial contaminants) |
|
Any heat or non-heat treatments of raw milk before vat operations |
|
|
|
| |
|
| |
|
| |
|
| |
Separation of the cream, which can be added again at a known quantity to the milk after heat treatment Different temperatures could be used |
| |
Vat milk operations |
Selected starter |
|
|
| |
b. Processing the milk in the vat | ||
Vat milk coagulation |
Possible use of different amounts of rennet Possible use of rennet preparations with different enzymatic compositions (chymosin/pepsin ratio) Use of different time/temperature ratio for renneting |
|
|
| |
Curd breaking |
|
|
Resting the curd under whey and curd cooking under stirring |
|
|
Curd extraction, separation from whey, and placing into a mold |
|
|
c. Post-renneting operations outside the vat | ||
Salting |
|
|
Ripening |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neviani, E.; Gatti, M.; Gardini, F.; Levante, A. Microbiota of Cheese Ecosystems: A Perspective on Cheesemaking. Foods 2025, 14, 830. https://doi.org/10.3390/foods14050830
Neviani E, Gatti M, Gardini F, Levante A. Microbiota of Cheese Ecosystems: A Perspective on Cheesemaking. Foods. 2025; 14(5):830. https://doi.org/10.3390/foods14050830
Chicago/Turabian StyleNeviani, Erasmo, Monica Gatti, Fausto Gardini, and Alessia Levante. 2025. "Microbiota of Cheese Ecosystems: A Perspective on Cheesemaking" Foods 14, no. 5: 830. https://doi.org/10.3390/foods14050830
APA StyleNeviani, E., Gatti, M., Gardini, F., & Levante, A. (2025). Microbiota of Cheese Ecosystems: A Perspective on Cheesemaking. Foods, 14(5), 830. https://doi.org/10.3390/foods14050830