Quality Response of Two Mini Chinese Cabbage Cultivars to Different Calcium Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Design
2.3. Determination Method
2.3.1. Incidence and Disease Index of Tip-Burn
2.3.2. Mineral Element
2.3.3. Soluble Sugar, Soluble Protein, Ascorbic Acid, Titratable Acid, Nitrate Content
2.3.4. Amino Acid Components
2.3.5. Phenolic Acids and Flavonoids
2.4. Data Analysis
3. Results
3.1. Effects of Different Calcium Levels on the Incidence and Disease Index of Leaf Tip Burns in Mini Chinese Cabbage
3.2. Ca Content in Different Tissues of Mini Chinese Cabbage in Different Periods
3.2.1. Variance Analysis
3.2.2. Principal Component Analyses (PCA)
3.3. The Effect of Different Calcium Levels on the Element Level of Mini Chinese Cabbage
3.3.1. Variance Analysis
3.3.2. Principal Component Analyses (PCA)
3.4. Effects of Different Calcium Levels on the Quality of Mini Chinese Cabbage
3.4.1. Variance Analysis
3.4.2. Principal Component Analyses (PCA)
3.5. Effects of Different Calcium Levels on Amino Acid Composition of Mini Chinese Cabbage
3.5.1. Variance Analysis
3.5.2. Principal Component Analysis (PCA)
3.6. Effects of Different Calcium Levels on Phenolic Acids and Flavonoids in Pakchoi
3.6.1. Variance Analysis
3.6.2. Principal Component Analyses (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Huang, D.; Gong, X.; Liu, Y.; Zeng, G.; Lai, C.; Bashir, H.; Zhou, L.; Wang, D.; Xu, P.; Cheng, M. Effects of calcium at toxic concentrations of cadmium in plants. Planta 2017, 245, 863–873. [Google Scholar] [CrossRef]
- Kim, M.C.; Chung, W.S.; Yun, D.-J.; Cho, M.J. Calcium and calmodulin-mediated regulation of gene expression in plants. Mol. Plant 2009, 2, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Tian, S.; Di, Q.; Duan, S.; Dai, K. Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress. Photosynthetica 2018, 56, 1204–1211. [Google Scholar] [CrossRef]
- Hu, W.; Liu, J.; Liu, T.; Zhu, C.; Wu, F.; Jiang, C.; Wu, Q.; Chen, L.; Lu, H.; Shen, G. Exogenous calcium regulates the growth and development of Pinus massoniana detecting by physiological, proteomic, and calcium-related genes expression analysis. Plant Physiol. Biochem. 2023, 196, 1122–1136. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Wang, X.; Gao, J.; Zhang, C.; Liu, H.; Liu, P.; Sun, X. Exogenous calcium: Its mechanisms and research advances involved in plant stress tolerance. Front. Plant Sci. 2023, 14, 1143963. [Google Scholar] [CrossRef]
- Sun, X.; Pan, B.; Wang, Y.; Xu, W.; Zhang, S. Exogenous calcium improved resistance to Botryosphaeria dothidea by increasing autophagy activity and salicylic acid level in pear. Mol. Plant-Microbe Interact. 2020, 33, 1150–1160. [Google Scholar] [CrossRef]
- Siddique, S.; Ayub, G.; Nawaz, Z.; Zeb, S.; Khan, F.S.; Ahmad, N.; Khan, A.; Rauf, K. Enhancement of growth and productivity of cucumber (Cucumis sativus) through foliar application of calcium and magnesium. Pure Appl. Biol. 2017, 6, 402. [Google Scholar] [CrossRef]
- Liu, Q.; Ding, Y.; Shi, Y.; Ma, L.; Wang, Y.; Song, C.; Wilkins, K.A.; Davies, J.M.; Knight, H.; Knight, M.R. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. EMBO J. 2021, 40, e104559. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Gao, X.; Tie, J.; Wu, Y.; Tang, Z.; Hu, L.; Yu, J. Exogenous brassinosteroids alleviate calcium deficiency-induced tip-burn by maintaining cell wall structural stability and higher photosynthesis in mini Chinese Cabbage. Front. Plant Sci. 2022, 13, 999051. [Google Scholar] [CrossRef]
- Bhatla, S.C.; Lal, M.A. Plant Physiology, Development and Metabolism; Springer Nature: Singapore, 2023. [Google Scholar]
- El-Beltagi, H.S.; Ali, M.R.; Ramadan, K.M.; Anwar, R.; Shalaby, T.A.; Rezk, A.A.; El-Ganainy, S.M.; Mahmoud, S.F.; Alkafafy, M.; El-Mogy, M.M. Exogenous postharvest application of calcium chloride and salicylic acid to maintain the quality of broccoli florets. Plants 2022, 11, 1513. [Google Scholar] [CrossRef]
- Maletsika, P.; Liava, V.; Sarrou, E.; Titeli, V.S.; Nasiopoulou, E.; Martens, S.; Karagiannis, E.; Grigoriadou, K.; Molassiotis, A.; Nanos, G.D. Foliar calcium effects on quality and primary and secondary metabolites of white-fleshed ‘Lemonato’peaches. Horticulturae 2023, 9, 299. [Google Scholar] [CrossRef]
- Souza, J.M.A.; Leonel, S.; Leonel, M.; Garcia, E.L.; Ribeiro, L.R.; Ferreira, R.B.; Martins, R.C.; de Souza Silva, M.; Monteiro, L.N.H.; Duarte, A.S.J.H. Calcium nutrition in fig orchards enhance fruit quality at harvest and storage. Horticulturae 2023, 9, 123. [Google Scholar] [CrossRef]
- Santamaria, P.; Elia, A.; Parente, A.; Serio, F. Fertilization strategies for lowering nitrate content in leafy vegetables: Chicory and rocket salad cases. J. Plant Nutr. 1998, 21, 1791–1803. [Google Scholar] [CrossRef]
- Alboresi, A.; Gestin, C.; Leydecker, M.T.; Bedu, M.; Meyer, C.; Truong, H.N. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ. 2005, 28, 500–512. [Google Scholar] [CrossRef]
- Rahayu, Y.S.; Walch-Liu, P.; Neumann, G.; Römheld, V.; von Wirén, N.; Bangerth, F. Root-derived cytokinins as long-distance signals for NO3−-induced stimulation of leaf growth. J. Exp. Bot. 2005, 56, 1143–1152. [Google Scholar] [CrossRef]
- Krouk, G.; Crawford, N.M.; Coruzzi, G.M.; Tsay, Y.-F. Nitrate signaling: Adaptation to fluctuating environments. Curr. Opin. Plant Biol. 2010, 13, 265–272. [Google Scholar] [CrossRef]
- Turhan, A.; Kuscu, H.; Ozmen, N.; Asik, B.B.; Serbeci, M.S.; Seniz, V. Alleviation of deleterious effects of salt stress by applications of supplementary potassium–calcium on spinach. Acta Agric. Scand. Sect. B–Soil Plant Sci. 2013, 63, 184–192. [Google Scholar] [CrossRef]
- Navarro, J.; Botella, M.; Martinez, V. Yield and fruit quality of melon plants grown under saline conditions in relation to phosphate and calcium nutrition. J. Hortic. Sci. Biotechnol. 1999, 74, 573–578. [Google Scholar] [CrossRef]
- Parsa, Z.; Roozbehi, S.; Hosseinifarahi, M.; Radi, M.; Amiri, S. Integration of pomegranate peel extract (PPE) with calcium sulphate (CaSO4): A friendly treatment for extending shelf-life and maintaining postharvest quality of sweet cherry fruit. J. Food Process. Preserv. 2021, 45, e15089. [Google Scholar] [CrossRef]
- Zhai, J.; Gao, Y.; Zhang, X.-W.; Han, L.-J.; Bi, H.-A.; Li, Q.-M.; Ai, X. Effects of silicon and calcium on photosynthesis, yield and quality of cucumber in solar-greenhouse. Acta Hortic. Sin. 2019, 46, 701–713. [Google Scholar]
- Nieder, R.; Benbi, D.K.; Reichl, F.X.; Nieder, R.; Benbi, D.K.; Reichl, F.X. Macro-and secondary elements and their role in human health. Soil Compon. Hum. Health 2018, 251, 257–315. [Google Scholar]
- Koç, İ.; Cantürk, U.; Çobanoğlu, H. Changes of plant nutrients K and Mg in several plants based on traffic density and organs. Kastamonu Univ. J. Eng. Sci. 2022, 8, 54–59. [Google Scholar] [CrossRef]
- Madani, B.; Mirshekari, A.; Sofo, A.; Tengku Muda Mohamed, M. Preharvest calcium applications improve postharvest quality of papaya fruits (Carica papaya L. cv. Eksotika II). J. Plant Nutr. 2016, 39, 1483–1492. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Tang, Z.; Xiao, X.; Gao, X.; Qiao, Y.; Ma, J.; Hu, L.; Yu, J.J.E.; Safety, E. Exogenous brassinosteroid alleviates calcium deficiency induced tip-burn by regulating calcium transport in Brassica rapa L. ssp. pekinensis. Ecotoxicol. Environ. Saf. 2023, 251, 114534. [Google Scholar] [CrossRef]
- Heaney, R.; Weaver, C.; Hinders, S.; Martin, B.; Packard, P. Absorbability of calcium from brassica vegetables: Broccoli, bok choy, and kale. J. Food Sci. 1993, 58, 1378–1380. [Google Scholar] [CrossRef]
- Welz, B.; Sperling, M. Atomic Absorption Spectrometry; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Li, X.; Li, J.Z. Determination of the content of soluble sugar in sweet corn with optimized anthrone colorimetric method. Storage Process 2013, 13, 24–27. [Google Scholar]
- Jiao, J. Coomassie brilliant blue G-250 staining method for determination of soluble protein content in alfalfa. Agric. Eng. Technol. 2016, 36, 33–34. [Google Scholar]
- Bala, M.; Gupta, S.; Gupta, N. Practicals in Plant Physiology and Biochemistry; Scientific Publishers: Odhpur, India, 2013. [Google Scholar]
- Cannan, R.K. The Acid-Base Titration of Proteins. Chem. Rev. 1942, 30, 395–412. [Google Scholar] [CrossRef]
- Sams, C.E.; Conway, W.S. Preharvest nutritional factors affecting postharvest physiology. In Postharvest Physiology and Pathology of Vegetables; CRC Press: Boca Raton, FL, USA, 2002; pp. 198–214. [Google Scholar]
- Frost, D.J.; Kretchman, D.W. Calcium deficiency reduces cucumber fruit and seed quality. J. Am. Soc. Hortic. Sci. 1989, 114, 552–556. [Google Scholar] [CrossRef]
- De Freitas, S.T.; Amarante, C.; Mitcham, E.J. Calcium deficiency disorders in plants. Postharvest Ripening Physiology of Crops; CRC Press: Boca Raton, FL, USA, 2016; pp. 477–502. [Google Scholar]
- Yuan, J.; Shen, C.; Yuan, R.; Zhang, H.; Xiao, Y.; Wang, X.; Pan, F.; Wu, C.; Li, Q.; Yuan, J. Identification of genes related to tipburn resistance in Chinese cabbage and preliminary exploration of its molecular mechanism. BMC Plant Biol. 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Kuo, C.; Tsay, J.; Tsai, C.; Chen, R. Tipburn of Chinese cabbage in relation to calcium nutrition and distribution. Sci. Hortic. 1981, 14, 131–138. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, V.P.; Chauhan, D.K.; Prasad, S.M.; Dubey, N.K. Role of macronutrients in plant growth and acclimation: Recent advances and future prospective. Improv. Crops Era Clim. Chang. 2014, 2, 197–216. [Google Scholar]
- Hawkesford, M.J.; Barraclough, P. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Waraich, E.A.; Ahmad, R.; Ashraf, M.Y.; Saifullah; Ahmad, M. Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2011, 61, 291–304. [Google Scholar] [CrossRef]
- Gerendás, J.; Führs, H. The significance of magnesium for crop quality. Plant Soil 2013, 368, 101–128. [Google Scholar] [CrossRef]
- Saltveit, M.E. Fruit ripening and fruit quality. In Tomatoes; Cabi Publishing: Wallingford, UK, 2005; pp. 145–170. [Google Scholar]
- Ranjbar, S.; Ramezanian, A.; Rahemi, M. Nano-calcium and its potential to improve ‘Red Delicious’ apple fruit characteristics. Hortic. Environ. Biotechnol. 2020, 61, 23–30. [Google Scholar] [CrossRef]
- Lee, M.-Y.; Kim, S.-D. Calcium lactate treatment after salting of Chinese cabbage improves firmness and shelf-life of Kimchi. Prev. Nutr. Food Sci. 2003, 8, 270–277. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Riveras, E.; Alvarez, J.M.; Vidal, E.A.; Oses, C.; Vega, A.; Gutiérrez, R.A. The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis. Plant Physiol. 2015, 169, 1397–1404. [Google Scholar] [CrossRef]
- Liu, K.-h.; Niu, Y.; Konishi, M.; Wu, Y.; Du, H.; Sun Chung, H.; Li, L.; Boudsocq, M.; McCormack, M.; Maekawa, S. Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks. Nature 2017, 545, 311–316. [Google Scholar] [CrossRef]
- Jin, N.; Jin, L.; Luo, S.; Tang, Z.; Liu, Z.; Wei, S.; Liu, F.; Zhao, X.; Yu, J.; Zhong, Y. Comprehensive evaluation of amino acids and polyphenols in 69 varieties of green cabbage (Brassica oleracea L. var. capitata L.) based on multivariate statistical analysis. Molecules 2021, 26, 5355. [Google Scholar] [CrossRef]
- Broadley, M.R.; Bowen, H.C.; Cotterill, H.L.; Hammond, J.P.; Meacham, M.C.; Mead, A.; White, P.J. Variation in the shoot calcium content of angiosperms. J. Exp. Bot. 2003, 54, 1431–1446. [Google Scholar] [CrossRef]
- Kulbat, K. The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 2016, 80, 97–108. [Google Scholar]
- Irina, I.; Mohamed, G. Biological activities and effects of food processing on flavonoids as phenolic antioxidants. In Advances in Applied Biotechnology; InTech: London, UK, 2012; pp. 101–124. [Google Scholar]
Calcium Levels (mmol/L) | Ammonium Nitrate (mg/L) | Amount of Calcium Chloride (mg/L) | Calcium Nitrate Tetrahydrate (mg/L) | Potassium Nitrate (mg/L) | Potassium Dihydrogen Phosphate (mg/L) | Magnesium Sulfate Heptahydrate (mg/L) |
---|---|---|---|---|---|---|
0 | 400.217 | 0 | 0 | 505.5 | 136.09 | 492.94 |
2 | 240.1302 | 0 | 472.36 | 505.5 | 136.09 | 492.94 |
4 | 80.0434 | 0 | 944.72 | 505.5 | 136.09 | 492.94 |
6 | 0 | 111 | 1180.9 | 505.5 | 136.09 | 492.94 |
8 | 0 | 333 | 1180.9 | 505.5 | 136.09 | 492.94 |
The Grade Standards of Tip-Burn Symptoms in Heading Chinese Cabbage | |
---|---|
Rating | Description of Symptoms |
0 | Asymptomatic |
0.5 | Only small spots on the edge of true leaves |
1 | The edge of a leaf is chlorosis |
3 | The edges of two leaves are chlorosis and wrinkled |
5 | The edges of more than two leaves are slightly tip-burn, and the tip-burn Area accounts for less than 25% of the leaves. |
7 | The edges of more than two leaves are moderately tip-burn, and the tip Burn area accounts for 25–50% of the leaf area. |
9 | The edges of more than two leaves are severely tip-burn or the whole Plant dies, and the tip-burn area accounts for more than 50% of the leaf area |
11 | The edges of more than two true leaves are severely burned, and the burned area accounts for more than 50% of the leaf area. The plant is weak and short. |
13 | Death of whole plant caused by severe dry burning |
Calcium Levels (mmol/L) | Arg | His | Cys | Tyr | ||
---|---|---|---|---|---|---|
Cultivar | ‘QYH’ | 0 | 9224 ± 123 eB | 21,953 ± 1773 cB | 5.10 ± 0.69 cB | 459 ± 2.33 dB |
2 | 14,718 ± 238 cB | 35,895 ± 3071 cB | 6.41 ± 0.12 bB | 616 ± 9.03 cB | ||
4 | 13,099 ± 439 dB | 34,102 ± 2562 cB | 4.27 ± 0.25 cA | 494 ± 7.28 dB | ||
6 | 24,337 ± 607 aA | 119,790 ± 436 aA | 8.98 ± 0.37 aB | 1092 ± 12.87 aA | ||
8 | 21,514 ± 413 bB | 83,377 ± 9332 bB | 7.17 ± 0.39 bB | 932 ± 18.01 bA | ||
‘HN’ | 0 | 15,989 ± 327 dA | 47,137 ± 974 cdA | 5.38 ± 0.73 cA | 587 ± 21.89 eA | |
2 | 14,920 ± 206 dA | 37,750 ± 3935 dA | 9.78 ± 1.13 abA | 635 ± 2.21 dA | ||
4 | 27,091 ± 646 aA | 123,370 ± 1528 aA | 3.97 ± 0.80 cB | 1057 ± 11.41 aA | ||
6 | 17,658 ± 291 cB | 57,468 ± 5729 cB | 12.87 ± 1.46 aA | 819 ± 13.62 cB | ||
8 | 23,494 ± 150 bA | 95,678 ± 8182 bA | 8.75 ± 0.64 bA | 887 ± 10.70 bB | ||
Statistical analysis | PCultivar | *** | *** | ** | *** | |
PCalcium Level | *** | *** | ** | *** | ||
PCultivar × Calcium Level | *** | *** | * | *** |
Calcium Levels (mmol/L) | Val | Thr | Phe | Met | Leu | Lys | Ile | Trp | ||
---|---|---|---|---|---|---|---|---|---|---|
Cultivar | ‘QYH’ | 0 | 1003 ± 6.66 eB | 119 ± 2.63 dB | 119 ± 1.08 dB | 56.66 ± 0.62 eB | 475 ± 4.22 eB | 4703 ± 160 dB | 905 ± 11.60 dB | 140 ± 2.85 eB |
2 | 1270 ± 4.55 dB | 181 ± 1.62 cA | 185 ± 1.31 cA | 83.71 ± 2.72 cB | 743 ± 1.23 cB | 7209 ± 263 cA | 1294 ± 10.24 cB | 168 ± 0.98 dA | ||
4 | 1525 ± 15.90 cB | 250 ± 3.42 bB | 255 ± 2.59 bB | 70.62 ± 2.77 dB | 593 ± 5.14 dB | 5053 ± 42.94 dB | 1274 ± 11.64 cB | 199 ± 1.24 cB | ||
6 | 3195 ± 13.72 aA | 511 ± 3.45 aA | 525 ± 5.03 aB | 149 ± 2.85 aA | 1447 ± 43.76 aA | 14,530 ± 426 aA | 3056 ± 8.20 aA | 427 ± 2.21 aA | ||
8 | 2688 ± 41.09 bA | 528 ± 13.14 aA | 537 ± 14.63 aA | 105 ± 2.07 bA | 1165 ± 41.13 bA | 10,352 ± 389 bA | 2472 ± 42.03 bB | 390 ± 11.30 bA | ||
‘HN’ | 0 | 1535 ± 9.37 dA | 182 ± 4.94 dA | 191 ± 4.99 dA | 79.03 ± 0.57 dA | 703 ± 22.81 eA | 6830 ± 250 cA | 1626 ± 12.44 dA | 189 ± 5.25 dA | |
2 | 1348 ± 4.19 eA | 165 ± 2.10 dB | 170 ± 0.16 eB | 94.83 ± 2.19 cA | 793 ± 5.72 dA | 7227 ± 317 cA | 1479 ± 14.49 eA | 174 ± 1.81 dA | ||
4 | 2997 ± 18.66 aA | 584 ± 0.87 aA | 595 ± 2.70 aA | 125 ± 2.64 aA | 1233 ± 2.31 aA | 13,093 ± 607 aA | 2881 ± 7.41 aA | 440 ± 2.34 aA | ||
6 | 2107 ± 18.78 cB | 349 ± 7.29 cB | 355 ± 7.99 cB | 105 ± 3.20 bB | 1016 ± 21.50 cB | 8011 ± 362 cB | 2236 ± 32.80 cB | 321 ± 5.62 cB | ||
8 | 2733 ± 22.18 bA | 440 ± 7.29 bB | 449 ± 10.20 bB | 92.68 ± 1.47 cB | 1073 ± 12.86 bA | 10,092 ± 395 bA | 2687 ± 22.21 bA | 368 ± 7.55 bB | ||
Statistical analysis | PCultivar | *** | *** | *** | *** | *** | ** | *** | *** | |
PCalcium Level | *** | *** | *** | *** | *** | *** | *** | *** | ||
PCultivar × Calcium Level | *** | *** | *** | *** | *** | *** | *** | *** |
Calcium Levels (mmol/L) | Asn | Pro | Ala | Gly | Ser | Glu | Asp | Cyst | Gln | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Cultivar | ‘QYH | 0 | 785 ± 13.20 dB | 734 ± 2.75 eA | 5341 ± 8.03 eB | 284 ± 11.87 eB | 879 ± 29.65 dB | 1481 ± 22.00 eB | 11,205 ± 171 eB | 23.97 ± 1.36 eB | 622.05 ± 23.28 dB |
2 | 1052 ± 8.79 cB | 837 ± 4.69 cA | 7788 ± 43.96 dA | 431 ± 17.36 dA | 1403 ± 1.33 cA | 2399 ± 9.81 dB | 15,681 ± 251 dB | 44.13 ± 2.33 dA | 1074.99 ± 21.47 cA | ||
4 | 1109 ± 22.40 cB | 780 ± 1.74 dB | 9743 ± 58.65 cB | 526 ± 14.56 cB | 1453 ± 6.86 cB | 3174 ± 58.19 c | 21,538 ± 144 cB | 61.45 ± 2.06 cB | 745.35 ± 19.95 dB | ||
6 | 2722 ± 13.18 aA | 1454 ± 7.46 aA | 22,500 ± 89.47 aA | 1105 ± 21.07 aA | 2786 ± 6.53 aA | 7286 ± 54.47 aA | 43,249 ± 33.97 aA | 76.51 ± 3.65 bA | 1959.34 ± 70.13 aA | ||
8 | 2127 ± 86.79 bB | 1254 ± 16.36 bA | 18,138 ± 259 bB | 912 ± 43.59 bB | 2381 ± 49.45 bB | 5653 ± 160 bB | 35,704 ± 951 bB | 103 ± 2.83 aA | 1503.13 ± 49.37 bA | ||
‘HN’ | 0 | 1488 ± 72.49 cA | 730 ± 9.45 dA | 10,319 ± 200 cA | 487 ± 24.72 cA | 1542 ± 27.8 7cA | 3107 ± 116 dA | 18,639 ± 622 cA | 56.39 ± 2.91 bA | 867.93 ± 8.21 dA | |
2 | 1277 ± 8.89 dA | 802 ± 4.34 cB | 7764 ± 62.57 dA | 391 ± 16.27 dB | 1274 ± 12.15 dB | 2741 ± 30.16 eA | 16,554 ± 212 dB | 42.72 ± 2.65 cB | 960.27 ± 39.12 dB | ||
4 | 2427 ± 34.88 aA | 1073 ± 9.50 aA | 17,677 ± 50.41 bA | 1038 ± 18.21 aA | 2676 ± 5.86 aA | 5867 ± 13.93 cB | 43,203 ± 365 aA | 87.45 ± 3.73 aA | 1832.22 ± 4.63 aA | ||
6 | 1967 ± 54.69 bB | 913 ± 8.32 bB | 17,358 ± 102 bB | 879 ± 17.90 bB | 2264 ± 57.91 bB | 5416 ± 170b | 33,325 ± 1048 bB | 50.11 ± 1.54 bcB | 1124.67 ± 47.38 cB | ||
8 | 2398 ± 31.59 aA | 1044 ± 12.59 aB | 18,918 ± 149 aA | 1065 ± 37.10 aA | 2609 ± 17.82 aA | 6413 ± 75.64 aA | 43,493 ± 626 aA | 41.71 ± 3.11 cB | 1354.37 ± 35.28 bB | ||
Statistical analysis | PCultivar | *** | *** | *** | *** | ** | *** | *** | ** | ns | |
PCalcium Level | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||
PCultivar×Calcium Level | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Ma, J.; Zhang, W.; Gao, X.; Wang, X.; Chen, W.; Dawuda, M.M.; Li, W.; Hu, L. Quality Response of Two Mini Chinese Cabbage Cultivars to Different Calcium Levels. Foods 2025, 14, 872. https://doi.org/10.3390/foods14050872
Yang J, Ma J, Zhang W, Gao X, Wang X, Chen W, Dawuda MM, Li W, Hu L. Quality Response of Two Mini Chinese Cabbage Cultivars to Different Calcium Levels. Foods. 2025; 14(5):872. https://doi.org/10.3390/foods14050872
Chicago/Turabian StyleYang, Jiaojiao, Jizhong Ma, Wenbin Zhang, Xueqin Gao, Xuehua Wang, Wenxu Chen, Mohammed Mujitaba Dawuda, Wenlin Li, and Linli Hu. 2025. "Quality Response of Two Mini Chinese Cabbage Cultivars to Different Calcium Levels" Foods 14, no. 5: 872. https://doi.org/10.3390/foods14050872
APA StyleYang, J., Ma, J., Zhang, W., Gao, X., Wang, X., Chen, W., Dawuda, M. M., Li, W., & Hu, L. (2025). Quality Response of Two Mini Chinese Cabbage Cultivars to Different Calcium Levels. Foods, 14(5), 872. https://doi.org/10.3390/foods14050872