Xanthoceras Sorbifolium Bunge Oil: Extraction Methods, Purification of Functional Components, Health Benefits, and Applications in Production and Daily Life
Abstract
:1. Introduction
2. Extraction of XSBO and Purification of Its Functional Components
2.1. Extraction Methods
2.1.1. Pressing
2.1.2. Solvent Extraction (SE)
2.1.3. Aqueous Enzymatic Extraction (AEE)
2.1.4. Ultrasonic-Assisted Extraction (UAE)
2.1.5. Microwave-Assisted Extraction (MAE)
2.1.6. Supercritical Carbon Dioxide Extraction (SFE-CO2)
2.1.7. Other Extraction Methods
2.2. Purification of Functional Components
2.2.1. Purification of NA
2.2.2. Purification of LA
2.2.3. Purification of PS
3. Health Benefits of XSBO
3.1. Neuroprotective Effect
3.2. Antibacterial and Antioxidant Effects
3.3. Antitumor Effect
3.4. Other Functional Activities
4. Applications in Production and Life
4.1. Food Field
4.2. Medical Field
4.3. Industrial Field
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ling, J.W.; Zhang, L.L.; Yang, J.; Gao, Y.L.; Yu, H.J. Medicinal and Edible Value of Xanthoceras Sorbifolium and its Application Prospects. Inn. Mong. For. Investig. Des. 2024, 47, 69–73. [Google Scholar] [CrossRef]
- Lu, X.Y. Studies on the Chemical Constituents of the Kernel of Xanthoceras sorbifolia Bunge. Master’s Thesis, Harbin University of Commerce, Harbin, China, 2020. [Google Scholar] [CrossRef]
- Liang, Z.L.; Lu, J.K.; Zhang, C.L.; Wang, H.W. Research progress in the development and application of Xanthoceras sorbifolia Bung’s food and drug resources. J. Food Saf. Qual. 2024, 15, 157–164. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, H.; Wang, M.; Wang, M. Research Progress in Active Constituents and Pharmacological Effects of Xanthoceras sorbifolium Bunge. Hortic. Seed 2023, 43, 39–41. [Google Scholar] [CrossRef]
- Yang, Y.W.; Cao, G.X.; Zhang, Y.F.; Xing, Y.K.; Wang, Z.B.; Ji, M.; Li, Y.Y.; Bai, G.W.; Su, Q. Study on the Nutritional Components of Xanthoceras sorbifolium Seeds from Different Provenances. J. Inn. Mong. For. Sci. Technol. 2022, 48, 28–32. [Google Scholar]
- Yang, F.; Han, S.S.; Nan, Y.; Cheng, X.J.; Sun, Y.B.; Liu, S.C.; Ma, B.P. Progress in research and development of Xanthoceras sorbifolia. China J. Chin. Matterla Medica 2021, 46, 4334–4343. [Google Scholar] [CrossRef]
- Chen, X.X.; Lei, Z.L.; Cao, F.L. Extraction, purification of saponins components from Xanthoceras sorbifolium Bunge leaves: Potential additives in the food industry. J. Food Meas. Charact. 2022, 17, 916–932. [Google Scholar] [CrossRef]
- Li, X.; Yan, T.J.; Wang, Y.; Li, W. Extraction Process Optimization of Barrigenol-type Triterpenoid XS-8 from Xanthoceras sorbifolia with Anti-Alzheimer’s Disease Effect. Shangdong Chem. Ind. 2022, 51, 45–48+52. [Google Scholar] [CrossRef]
- Wang, W.; Ma, F.; Wang, F.; Yang, Z.; Fan, S.; Dou, G.; Gan, H.; Feng, S.; Meng, Z. Xanthoceras sorbifolium Bunge flower extract inhibits benign prostatic hyperplasia in rats. J. South. Med. Univ. 2022, 42, 1503–1510. [Google Scholar] [CrossRef]
- Li, Z.L.; Li, F.L.; Zheng, Y.T.; Zhou, K.; Zhang, X.J.; Wang, J.Z. Inhibitory activities against HIV-1of coumarins from the seed coats of Xanthoceras sorbifolia Bunge. J. Beijing For. Univ. 2007, 29, 73–83. [Google Scholar] [CrossRef]
- Wu, L.Q.; Zheng, Z.W.; Fu, F.Q.; Den, H.; Cao, L.Q.; Liu, W. Nutrients Analysis and Edible Value of Sobifolia. Acad. Period. Farm Prod. Process. 2010, 11, 93–95. [Google Scholar] [CrossRef]
- Ge, C.H.; Li, M.Z.; Zhang, H.W.; Min, Z.; Lei, X.P.; Liu, X.; Li, W.M. Investigation and Correlation Analysis of Primary Nutritional Compon ents in Seed Kernels of Xanthoceras Germplasm. Spec. Wild Econ. Anim. Plant Res. 2023, 45, 30–37. [Google Scholar] [CrossRef]
- Xu, J.M.; Tong, Y.X.; Wang, J.H.; Cao, Y.Q.; Yin, Z.D.; Kong, W.B. Research progress on nutritional ingredients and functional activities of Xanthocera sorbifolia Bunge oil. China Oils 2022, 47, 77–82. [Google Scholar] [CrossRef]
- Lu, C.; Wang, L.; Yu, M. Research Progress on Oil Processing Technology of Xanthoceras sorbifolia Bunge. China Fruit Veg. 2023, 43, 4–10+3. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, Y.X.; Wu, G.T. Research on Exploitation and Application of Xanthoceras sorbifolia Bunge Resources. China Fruit Veg. 2022, 42, 42–47. [Google Scholar] [CrossRef]
- Chen, W.L.; Wu, G.J.; Ma, Y.F.; Yang, H.L. Optimization of the Production Process of Xanthoceras sorbifolium Green Tea. Anhui Agric. Sci 2021, 49, 162–165+191. [Google Scholar]
- Deng, H.; He, L.; Sun, J. Cold Press Extraction of Xanthoceras sorbifolia Oil and its physical and chemical properties. J. Southwest Agric. Univ. 2006, 06, 1027–1031. [Google Scholar]
- Li, X. Study on the Technology and Quality Evaluation of Oil Production by Microwave Pretreatment Press of Xanthoceras sorbifolia. Chinese Academy of Agricultural Sciences Thesis. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2020. [Google Scholar] [CrossRef]
- Chan, Y.H.; Loh, S.K.; Chin, B.L.; Yiin, C.L.; How, B.S.; Cheah, K.W.; Wong, M.K.; Loy, A.C.; Gwee, Y.L.; Lo, S.L.; et al. Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects. Chem. Eng. J. 2020, 397, 125406. [Google Scholar] [CrossRef]
- Lü, S.Y.; Ma, T.J. Process Optimization for the solvent extraction Xanthoceras sorbifolia Bunge oil. J. Beijing Univ. Agric. 2023, 38, 97–101. [Google Scholar] [CrossRef]
- Wang, L.L.; Fu, Y.J.; Zhang, S. The Process of Extraction Oil from Xanthoceras sorbifolia Bunge. Seed. Bull. Bot. Res. 2008, 4, 509–512. [Google Scholar]
- Gao, Y.; Ding, Z.; Liu, Y.; Xu, Y.J. Aqueous enzymatic extraction: A green, environmentally friendly and sustainable oil extraction technology. Trends Food Sci. Technol. 2024, 144, 104315. [Google Scholar] [CrossRef]
- Yusoff, M.M.; Gordon, H.M.; Niranjan, K. Aqueous enzyme assisted oil extraction from oilseeds and emulsion de-emulsifying methods: A review. Trends Food Sci. Technol. 2015, 41, 60–82. [Google Scholar] [CrossRef]
- Wang, R.; Tong, L.; Cao, H. Technology Research of Aqueous Enzymatic Extraction of xanthocerasSorbifolia Oil. J. Weifang Univ. 2016, 16, 11–15. [Google Scholar]
- Kang, Z.; He, B.; Zheng, Y.N.; Li, R.; Hu, X.H. Study on the Process of Extracting Xanthoceras sorbifolium Oil by Enzymatic Method. Cereals Oils Process. 2010, 3, 6–9. [Google Scholar]
- Liu, M.M.; Wang, X.D.; Zhao, B.; Wang, Y.C. Extraction of Xanthoceras sorbifolium Oil with Hydrolysis Enzymes. Chin. J. Process Eng. 2007, 04, 778–781. [Google Scholar]
- Gu, X.M.; Ma, H.; Ma, L.C.; Zhuang, J.Q.; Xue, S.X.; Yang, H.Y. Study on the Simultaneous Extraction Process of Xanthoceras sorbifolia Bunge Oil and Its Protein by Ultrasonic Assisted Enzyme. J. Xinjiang Agric. Univ. 2020, 43, 300–305. [Google Scholar]
- Deng, H.; Qiu, N.X.; Wang, J. Study on the A queous Enzymatic Extraction Condition of Oil from Xanthoceras Sorbiflia bunge Seeds. Acad. Period. Farm Prod. Process. 2008, 07, 53–57. [Google Scholar]
- Liu, P.; Kang, S.; Huang, Y.Y.; Song, T.P.; Wu, Z.Y.; Lu, Z.Y.; Deng, R.X. Ultrasonic-assisted extraction, fatty acids identification of the seeds oil and isolation of chemical constituent from oil residue of Belamcanda chinensis. Ultrason. Sonochemistry 2022, 90, 106200. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Z.; Zheng, B.; Martin Lo, Y. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrason. Sonochemistry 2013, 20, 202–208. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Y.L.; Tao, L.; Chen, Y.; Yang, M.D.; Yang, W.X.; Hu, H.S. Optimization of Extraction of Oil from Xanthoceras Sorborifolia Bunge with Response Surface Methodology. Acad. Period. Farm Prod. Process. 2010, 7, 8–12+16. [Google Scholar] [CrossRef]
- Fan, C. Research of Antioxidant Effect Natural Antioxidants in the sorbifolia Oil. Master’s Thesis, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Liang, J.Y.; Yin, Z.X.; Zhao, B.T.; Song, K.; Gao, Q.Y.; Yao, J.; Zhang, J. Extraction of xanthocera seeds oil by the method of ultrasound and aqueous enzymatic and fatty acid evaluation. Sci. Technol. Food Ind. 2013, 34, 254–259. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, Y.; Yang, R.; Liu, X.; Yang, Q.; Qin, X. The application of ultrasound and microwave to increase oil extraction from Moringa oleifera seeds. Ind. Crops Prod. 2018, 120, 1–10. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Zhang, K.; Zhao, R.; Tian, H.; Yang, L.; Zhao, X. Homogenization-circulating ultrasound in combination with aqueous enzymatic pretreatment for microwave-assisted extraction of kernel oil and essential oil from the fruit of Litsea cubeba. Ultrason. Sonochem. 2024, 111, 107093. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yao, X.; Luo, M. Optimization of negative pressure cavitation–microwave assisted extraction of yellow horn seed oil and its application on the biodiesel production. Fuel 2016, 166, 67–72. [Google Scholar] [CrossRef]
- Chen, Z.S. Effect of Microwave Assisted Ethanol and Alkali Catalyst Extraction on Xanthoceras sorbifolia Bunge Oil Properties. Master’s Thesis, North China Electric Power University, Beijing, China, 2013. [Google Scholar]
- Bagheri, H.; Abdul Manap, M.Y.; Solati, Z. Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydro-distillation. Talanta 2014, 121, 220–228. [Google Scholar] [CrossRef]
- Wang, C.; Duan, Z.; Fan, L.; Li, J. Supercritical CO2 Fluid Extraction of Elaeagnus mollis Diels Seed Oil and Its Antioxidant Ability. Molecules 2019, 24, 911. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.S.; Bi, X.M.; Zhang, W.Y.; Kang, J.M.; Hang, Q.; Zhou, Y.X.; Shang, Y.L. Study on Supercritical Extraction of Xanthoceras sorbifolia Oil. Liaoning Chem. Ind. 2023, 52, 173–175+179. [Google Scholar] [CrossRef]
- Ma, Q.; Gu, K.R.; Du, X.L. Extraction of Xanthoceras sorbifolia bunge seed oil by supercritical CO2 extraction. Sci. Technol. Cereals Oils Foods 2013, 21, 36–40. [Google Scholar] [CrossRef]
- Yubo, X.; Fang, W.; Binghan, K. Sequential two-stage extraction of Xanthoceras sorbifolia seed oil using supercritical CO2 and CO2-expanded ethanol. J. Supercrit. Fluids 2023, 200, 105977. [Google Scholar] [CrossRef]
- Guo, X.; Peng, Y.X.; Hu, C.R.; He, D.P.; Liu, L.Y. Effects of different oil producing processes on characteristics and quality of Xanthoceras sorbifolia Bunge. Oil. China Oils Fats 2017, 42, 8–13. [Google Scholar]
- Wang, L.L.; Yu, J.H.; Wang, L.H. Differences among Different Extraction Methods of Xanthoceras sorbifolium Oil. J. Zhejiang Agric. Sci. 2017, 58, 577–579+592. [Google Scholar] [CrossRef]
- Chen, X.Q.; Chu, X.Y.; Li, X.; Cao, F.L.; Guo, Q.R.; Wang, J.H. Construction of [C4MIM]BF4 based in situ alkaline aqueous biphasic systems by NaOH for efficient extraction saponins from Xanthoceras sorbifolium Bunge leaves. Sustain. Chem. Pharm. 2023, 31, 100911. [Google Scholar] [CrossRef]
- Feng, Z.O.; Yang, D.; Guo, J.J.; Bo, Y.K.; Zhao, L.S.; An, M. Optimization of natural deep eutectic solvents extraction of flavonoids from Xanthoceras sorbifolia Bunge by response surface methodology. Sustain. Chem. Pharm. 2023, 31, 100904. [Google Scholar] [CrossRef]
- Shen, C.; Wang, X.; Zhu, Y.; Jiao, J.; Bao, S.; Kou, P.; Pan, H.; Li, Y.; Fu, Y. A green one-pot method for simultaneous extraction and transesterification of seed oil catalyzed by a ptoluenesulfonic acid based deep eutectic solvent. Ind. Crops Prod. 2020, 152, 112517. [Google Scholar] [CrossRef]
- Jiang, Y.F. Study on the Separation and Purification Process of Nervonic Acid from Xanthoceras sorbifolia Bunge Seed Kernels Oil. Master’s Thesis, Sichuan Agricultural University, Sichuan, China, 2021. [Google Scholar] [CrossRef]
- Song, X.J.; Huang, Z.Y.; Xu, B. Study on the Extraction of Moringa oleifera Seed Oil and the Purification Process of Nervonic Acid in It. China Oils Fats 2023, 48, 26–30+44. [Google Scholar] [CrossRef]
- Zan, M.Y. Research on the Separation Process of Nervonic Acid from Acer truncatum Seed Oil. Master’s Thesis, Tianjin University, Tianjin, China, 2022. [Google Scholar] [CrossRef]
- Liu, S.S. Extraction and Purification of Nervonic Acid and Its Effect on Myelin Sheath Injury Repair in Mice with Encephalomyelitis. Master’s Thesis, Tianjin University of Science & Technology, Tianjin, China, 2020. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, J.; Wang, X.D. Study on purification of nervonic acid from acer truncatum by high-speed counter-current chromatography. Food Sci. Technol. 2016, 41, 251–254. [Google Scholar] [CrossRef]
- Fan, S.D. Research on Chemical Molecular Distillation Equipment and Its Application Technology. Clean. World 2020, 35, 83–84. [Google Scholar]
- Chen, L.; Li, S.H.; Zhang, D.C.; Zhang, H.; Cheng, N.Y.; Zhao, Y.B.; Gao, Y.F. Purification of Xanthoceras sorbifolium Bunge Oil by Molecular Distillation. Agric. Eng. 2024, 14, 108–112. [Google Scholar] [CrossRef]
- Gao, Y.X. Study on the Extraction Technolougy of Nervonic acid Methyl ester from Xanthoceras sorbifolia Bunge Seed Oil. Master’s Thesis, Beijing University of Chemical Technology, Beijing, China, 2024. [Google Scholar] [CrossRef]
- Zu, Y.; Zhang, S.; Fu, Y. Rapid microwave-assisted transesterification for the preparation of fatty acid methyl esters from the oil of yellow horn (Xanthoceras sorbifolia Bunge.). Eur. Food Res. Technol. 2009, 229, 43–49. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, B.H. Preparation Method of Fatty Acid Ethyl Ester from Xanthoceras sorbifolium Oil. For. Sci. Technol. Commun. 2022, 10, 54–56. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Liu, Y.L.; Liang, S.Q.; Li, G.Y.; Sheng, Y.M. Enrichment of nervonic acid from Xanthoceras sorbifolia Bunge.oil by urea inclusion fractionation. China Oils Fats 2018, 43, 119–123. [Google Scholar]
- Gao, H.; Sun, J.; Guo, X. Study on the Extraction of Nervonic Acid from the Oil of Xanthoceras sorbifolium Bunge Seeds. Foods 2024, 13, 2757. [Google Scholar] [CrossRef]
- Luo, F.F. Study on the Extraction and Purification of Nervonic Acid in Xanthoceras sorbifolium Bunge Oil and the Preparation Process of Biodiesel. Master’s Thesis, Lanzhou University of Technology, LanZhou, China, 2021. [Google Scholar] [CrossRef]
- Zhao, F.; Li, G.H.; Liu, Z.T.; Jin, X.P. Study on Physicochemical Properties and Composition of Xanthoceras sorbifolia Bunge Oil. J. Henan Univ. Technol. 2011, 32, 45–49. [Google Scholar] [CrossRef]
- Liu, J.F.; Zhang, Q.R.; Yin, R.; Han, Y.L.; Gao, Z.D.; Ying, L.L.; Sun, H.Y.; Wang, X.P. Research in the Competent and Process Technology of Xanthoceras sorbifolia Bunge Seed Oil. Farm Prod. Process. 2018, 16, 69–71. [Google Scholar] [CrossRef]
- Xia, Q.M.; Deng, H.; Yan, B.; Wang, X.Y.; Tiian, Z.Q. Separation Technology of Linoleic Acid from Xanthoceras sorbifolia Bunge Oil with Urea Adduction Fractionation. Acad. Period. Farm Prod. Process. 2011, 9, 21–25. [Google Scholar] [CrossRef]
- Zhao, X.H. Extraction and Component Analysis of Xanthoceras sorbifolia Oil. Master’s Thesis, Changchun University of Technology, Changchun, China, 2013. [Google Scholar]
- Yang, K.; Tang, Y.; Xue, H.; Ji, X.; Cao, F.; Li, S.; Xu, L. Enrichment of linoleic acid from yellow horn seed oil through low temperature crystallization followed by urea complexation method and hypoglycemic activities. Food Sci. Biotechnol. 2024, 33, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Xiong, S.P.; Gao, Y. Determination of Total Sterols and Fatty Acids in Xanthoceras sorbifolium Oil Extracted by Supercritical Fluid Extraction by GC-MS Method. North. Pharm. 2014, 11, 16–17. [Google Scholar]
- Zhao, X.X. Study on the Extraction, Purification, Composition Analysis and Antibacterial Activity of Phytosterol form Kernel Oil of Shiny-Leaved Yellowhorn. Master’s Thesis, Shaanxi Normal University, Shanxi, China, 2016. [Google Scholar]
- Yan, J.Y.; Zheng, J.M.; Sun, B.Y.; Wang, J.H. Study on green extraction technology of Xanthoceras sorbifolia oil. Coal Chem. Ind. 2024, 47, 140–145+150. [Google Scholar] [CrossRef]
- Fan, X.C. Studies on the Toxicological Evaluation and In Vtiro and Vivo Antioxidation Function of Xanthoceras sorbifolia Bunge kernel Cold Pressing Oil. Master’s Thesis, Shaanxi Normal University, Shanxi, China, 2009. [Google Scholar]
- Yin, Z.X. The Process Extraction Oil from Xanthoceras sorbifolia Bunge. Seed Kernels and its Quality Evaluation. Master’s Thesis, Shaanxi Normal University, Shanxi, China, 2014. [Google Scholar]
- Yang, X.Q.; Xie, X.F.; Meng, X.Y.; Ding, S.; Sheng, S.; Yang, N.; Chang, B.; Zhao, Z.F.; Zhang, Y.Y. Analysis and Comparison of Nutritional Composition and Fatty Acid Compositions between Xanthoceras sorbifolia Oil and Common Edible Oil. Shandong For. Sci. Technol. 2022, 52, 42–46. [Google Scholar]
- Chen, F.H.; Du, J.M.; Zhang, F.R.; He, W.S.; Li, Q.Q.; Li, C.J.; Hu, M.B. Effect of ethyl nervonic acid from Xanthoceras sorbifolia Bunge oil on fatty acids, blood lipid of demyelinating mice. J. Food Saf. Qual. 2024, 15, 235–242. [Google Scholar] [CrossRef]
- Dandong, H.; Yujuan, C.; Ji, Z. Analysis of the Improvement Effect of Nervonic Acid Extracted from Xanthoceras Sorbifolium Bunge Oil on Antioxidant Response and Inflammatory Response in Parkinson’s Disease. J. Integr. Neurosci. 2023, 22, 161. [Google Scholar] [CrossRef]
- Chen, Z.Y. Reveal the Mechanism of Xanthoceras sorbifolium Oil in the Improvement of Alzheimer’s Disease Based on Multi-omics Techniqque. Master’s Thesis, Jilin University, Jiling, China, 2024. [Google Scholar] [CrossRef]
- Sun, L.; Hu, W.Z.; Liu, C.H.; Bai, X.; Cheng, Y.Z. Research advance of main efficacy components of Xanthoceras sorbifolia Bunge. Sci. Technol. Food Ind. 2016, 37, 396–399. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhao, X.X.; Zhang, Z.Y.; Deng, H.; Qi, N.; Li, H. Antibacterial activity and its mechanism of sterol from kernel oil of Xanthoceras sorbifolia Bunge. China Oils Fats 2016, 41, 29–33. [Google Scholar]
- Zhang, S.; Zu, Y.; Fu, Y. Supercritical carbon dioxide extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.) and its anti-oxidant activity. Bioresour. Technol. 2009, 101, 2537–2544. [Google Scholar] [CrossRef]
- Zhang, R.R. Value exploration and performance evaluation of the medicinal resource Xanthoceras sorbifolia bunge oil based on computer technology. Master’s Thesis, Wuhan Polytechnic University, Wuhan, China, 2024. [Google Scholar] [CrossRef]
- Liu, Y.L.; Guo, Y.Y. Study on comprehensive quality of Xanthoceras sorbifolia Bunge oil from different producing areas and different processes. Cereals Oils 2020, 33, 1–6. [Google Scholar]
- Yu, L.; Wang, X.; Wei, X. Triterpenoid saponins from Xanthoceras sorbifolia Bunge and their inhibitory activity on human cancer cell lines. Bioorganic Med. Chem. Lett. 2012, 22, 5232–5238. [Google Scholar] [CrossRef]
- Bai, X.; Hu, W.Z.; Jiang, A.L.; Qian, H.M.; Sun, L. Research advance on the development and application of Xanthoceras sorbifolia bunge seed oil. Sci. Technol. Food Ind. 2016, 37, 393–396+400. [Google Scholar] [CrossRef]
- Fan, X.C.; Deng, H.; Zhang, L.Y. Toxicological assemsment of the edible safety of cold-pressed Xanthoceras sorbifolia Bunge seed Oil. China Oils Fats 2009, 34, 32–37. [Google Scholar]
- Lu, X.; Wu, Z.Y.; Pan, X.H.; Sun, Y.J.; Li, Z.; Duan, L.; Zhang, L.; Yang, X.L.; Han, L.H.; Li, X.Y. Toxicity on SD pregnant rats and teratogenicity in fetal rats fed by Xanthoceras sorbifolium Bunge. seed oil. China Oils Fats 2021, 46, 71–75. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Yang, S.S.; Guan, W.K.; Zhao, Z.; Run, C.J. Effects of Different Heating Conditions on the Contents of Fatty Acids and Tocopherols in Xanthoceras sorbifolia Bunge. Oil. China Oils Fats 2022, 47, 39–43. [Google Scholar] [CrossRef]
- Chang, Z.J.; Li, H.; Bu, L.F. Quality comparison of cold pressed and hot pressed Xanthoceras sorbifolia Bunge. seed oils. China Oils Fats 2019, 44, 121–123. [Google Scholar]
- Dong, Z.W.; Zhang, N.; Ruan, Y.L.; Su, J.; He, D.P.; Hu, C.R. Properties and nutritional substances changes of Xanthoceras sorbifolia Bunge oil at cooking temperature. China Oils Fats 2018, 43, 33–36. [Google Scholar]
- Wang, Y.M.; Lu, C.; Liu, W.R.; Wang, Z.L.; Zhao, Y.J.; Li, S.K.; Yu, M.; Wang, L. Development of Xanthoceras sorbifolia Bunge Biscuit and Analysis of Flavor Substances. Food Res. Dev. 2022, 43, 69–77. [Google Scholar]
- Zhang, D.; Xue, Y.L.; Duan, Z.Q.; Li, X.J.; Zhu, L.; He, S.Q. Compositions of fatty acid and triglyceride of Xanthoceras sorbifolia Bunge.oil and its correlation analysis. China Oils Fats 2017, 42, 26–29. [Google Scholar]
- Shang, H.Q. Research Progress on the Comprehensive Utilization of Xanthoceras sorbifolium. Biol. Teach. 2010, 35, 16–17. [Google Scholar]
- Lu, X.; Li, X.Y.; Tao, C.; Hu, Q.; Yang, S.Z.; Wu, Z.Y.; Xu, J.; Qi, C.Y.; Zhang, J.S. Effects of Xanthoceras sorbifolium Bunge Oil on the Memory Ability of Male Mice. China Oils Fats 2024, 49, 28–31+39. [Google Scholar] [CrossRef]
- Lai, L.L.; Chen, D.; Guo, X.L.; Chen, X.H.; Xie, F.F.; Lin, B.S.; He, Y.Q. Study of Comparison of Antioxidant Properties between- sitosterol and Vc and the Antibacterial Activity of- sitosterol. Spec. Wild Econ. Anim. Plant Res. 2023, 45, 56–59+63. [Google Scholar] [CrossRef]
- Cao, L.Q.; Li, D.D.; Deng, H.; Han, R.; Tian, Z.Q. Study on Extraction and Antibacterial Properties of Phytosterol from the shiny leaf Yellow horn Seed Oil. Nat. Prod. Res. Dev. 2010, 22, 334–338. [Google Scholar] [CrossRef]
- Qiao, H.; Gao, H.; Cui, Y.F.; Zhang, Z.Y.; Zhang, M.H.; Zhang, Z.R.; Sun, J. Preparation and Characterization of the Nanoemulsion Xanthoceras sorbifolia Bunge Oil. J. Food Saf. Qual. 2024, 15, 180–189. [Google Scholar] [CrossRef]
- Fu, Y.J.; Zhang, N.J.; Wang, L.L.; Zhang, J.; Zhu, Y.G. Ultrasonic extraction of kernel oil from Xanthoceras sorbifolium and GC-MS component analysis. Bull. Bot. Res. 2007, 27, 622–625. [Google Scholar]
- Peng, C. Research on Physicochemical Characteristics and Vehicle Emission Characteristics of Xanthoceras sorbifolia Biodiesel. Master’s Thesis, Jilin University, Jiling, China, 2019. [Google Scholar] [CrossRef]
- Li, K.Q.; Shan, L.K.; Ding, L.J. Process optimization of Xanthoceras sorbifolia Bunge Oil-based Biodiesel Production by Response Surface Methodology. Shandong Ind. Technol. 2024, 2, 3–11. [Google Scholar] [CrossRef]
- Hao, Y.N.; Fu, Y.J.; Zhang, Y.Q.; Wang, X.M.; Jie, P.F.; Xue, Z.H. Extraction of Xanthoceras sorbifolia Bunge Oil and Preparation of Lubricating Oil. J. Chin. Cereals Oils Assoc. 2023, 38, 84–90. [Google Scholar] [CrossRef]
- Huang, M.M.; Li, G.H. Reserarch Advances in Chemical Constituents and Pharmacological of Xanthoceras Sorbifolium in china. Shangdong Chem. Ind. 2022, 51, 86–88+91. [Google Scholar] [CrossRef]
Extraction Methods | Optimal Conditions | Extraction Yield and Main Compounds | References |
---|---|---|---|
Pressing | Pressure: 55 MPa ± 2 Kernel-to-shell ratio: 9:1 (g/g) Pressing time: 8 h | Oil yield: 40.44% | [17] |
Temperature: 20 °C Pressure: 55 MPa Pressing time: 6 h | Oil yield: 69.4% Linoleic acid: 42.93% Oleic acid: 29.06% Nervonic acid: 2.76% | [68] | |
Pressure: 55 MPa-60 MPa Ratio of kernel to shell: 9:1 Pressing time: 8 h | Oil yield: 40.44% | [69] | |
Solvent extraction | Extracting agent: cyclohexane Liquid-to-solid ratio: 4:1 Extraction time: 3.0 h Extraction temperature: 70 °C | Oil yield: 30.02% | [20] |
Extracting agent: petroleum ether extraction temperature: 90 °C Liquid-to-solid ratio: 5:1 Extraction time: 10 h | Oil yield: 62.49% | [21] | |
Aqueous enzyme | Material-to-liquid ratio: 1:5 Enzymatic hydrolysis time: 5 h Enzymatic hydrolysis temperature: 50 °C Cellulase dosage: 1.5%. | Oil yield: 65.10% | [25] |
Temperature: 50 °C Neutral protease dosage: 3% Moisture content of the material: 12% | Oil yield: 74.82% | [26] | |
Alcalase 2.4 L protease dosage: 0.02 mL/g Temperature: 55 °C Solid-to-liquid ratio: 1:6 Hydrolysis time: 4 h | Oil yield: 78.67% | [27] | |
Ultrasound temperature: 50 °C Ultrasound time: 20 min Ultrasound power: 150 W Pectinase: cellulase ratio of 2:1 Enzyme addition amount: 1000 U/g | Oil yield: 71.5% | [28] | |
Material-to-liquid ratio: 1:6 Temperature: 45 °C Alkaline protease (pH 7.0) dosage: 3.0% Cellulase (pH 4.5) dosage: 1.0% Reaction time: 8 h | Oil yield: 81.2% | [29] | |
Ultrasound-assisted extraction | Extraction solvent: petroleum ether Extraction temperature: 70 °C Extraction time: 34 min Liquid-to-material ratio: 7:1 (mL) Ultrasound power: 150 W | Single-pass oil yield: 58.92% | [32] |
Extraction solvent: petroleum ether Extraction temperature: 65 °C Extraction time: 30 min Liquid-to-material ratio: 9:1 | Oil yield: 68.5% | [33] | |
Ultrasound power: 150 W Extraction time: 120 min Cellulase addition: 0.05% NaCl addition: 0.10% Liquid-to-material ratio: 1:3.5 Enzymatic hydrolysis temperature: 30 °C | Oil yield: 89.85% | [34] | |
Microwave-assisted extraction | Extraction temperature: 75 °C Extraction time: 17 min Liquid-to-solid ratio: 20:1 Microwave power: 400 W | Oil yield: 58.85% | [38] |
Moisture content of raw material: 8.3% Kernel-to-shell ratio: 9:1 Microwave time: 5.4 min Microwave power: 960 W | Oil yield: 56.79% | [18] | |
Microwave power: 300 W Liquid-to-material ratio: 4:1 NaCl concentration: 24 g/L Extraction time: 80 min | Oil yield: 56.79% Linoleic acid: 47.35% Oleic acid: 27.25% | [70] | |
Supercritical carbon dioxide extraction | Extraction temperature: 42 °C Pressure: 28 MPa Extraction time: 192 min | Oil yield: 81.22% Linoleic acid content: 42.30% Oleic acid content: 33.76% | [42] |
Two-stage process: combination of supercritical carbon dioxide (SC-CO2) and carbon dioxide-expanded ethanol (CXE) | Oil yield: 92.53% Nervonic acid content: 4.12% | [43] | |
Extraction temperature: 45 °C Pressure: 30 MPaExtraction time: 150 min | Oil yield: 47.94% Linoleic acid content: 48.14% Oleic acid content: 28.76% | [44] | |
CO2 cooling: −5 °C Supercritical CO2 flow rate: 18 L/h Extraction pressure: 28 MPa Extraction temperature: 40 °C Extraction time: 180 min | Oil yield: 78.6% Linoleic acid: 45.14% Oleic acid: 29.51% Nervonic acid: 2.75% | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, C.; Fang, Y.; Mu, Y.; Yang, L.; Zeng, L.; Li, H.; Wang, H.; Zhou, L.; Li, C.; Xie, Y. Xanthoceras Sorbifolium Bunge Oil: Extraction Methods, Purification of Functional Components, Health Benefits, and Applications in Production and Daily Life. Foods 2025, 14, 1004. https://doi.org/10.3390/foods14061004
Cui C, Fang Y, Mu Y, Yang L, Zeng L, Li H, Wang H, Zhou L, Li C, Xie Y. Xanthoceras Sorbifolium Bunge Oil: Extraction Methods, Purification of Functional Components, Health Benefits, and Applications in Production and Daily Life. Foods. 2025; 14(6):1004. https://doi.org/10.3390/foods14061004
Chicago/Turabian StyleCui, Can, Yongrou Fang, Yujie Mu, Lian Yang, Longhao Zeng, Huihui Li, Huanjiang Wang, Lingyun Zhou, Chunyan Li, and Yadian Xie. 2025. "Xanthoceras Sorbifolium Bunge Oil: Extraction Methods, Purification of Functional Components, Health Benefits, and Applications in Production and Daily Life" Foods 14, no. 6: 1004. https://doi.org/10.3390/foods14061004
APA StyleCui, C., Fang, Y., Mu, Y., Yang, L., Zeng, L., Li, H., Wang, H., Zhou, L., Li, C., & Xie, Y. (2025). Xanthoceras Sorbifolium Bunge Oil: Extraction Methods, Purification of Functional Components, Health Benefits, and Applications in Production and Daily Life. Foods, 14(6), 1004. https://doi.org/10.3390/foods14061004