Ultra-Long-Chain Sorbitol Esters Tailoring Thermo-Responsive Rheological Properties of Oleogels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Screening Reactions
2.2.1. Hydrolytic and Transesterification Activities of CALB
2.2.2. Plackett-Burman (PB) Experimental Design
2.2.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.3. Evaluation of SB Oil-Structuring Capacity
Preparation of Oleogels
2.4. Characterization of the Oleogels
2.4.1. Rheological Measurements
- Frequency and strain sweeps (isothermal measurements)
- Temperature sweeps (non-isothermal measurements)
2.4.2. Differential Scanning Calorimetry (DSC)
2.4.3. Polarized Light Microscopy (PLM)
2.4.4. Oil Binding Capacity (OBC)
2.4.5. Oxidative Stability (OS)
2.5. Statistical Analysis
3. Results and Discussion
3.1. CALB Hydrolytic and Transesterification Activities
3.2. PB Experimental Design: Selection of Ester Production Conditions
3.3. SB Characterization
3.4. Oleogels Characterization
3.4.1. Rheological Measurements
3.4.2. Thermal Properties (DSC)
3.4.3. Polarized Light Microscopy (PLM)
3.4.4. Oxidative Stability (OS)
3.4.5. Oil Binding Capacity (OBC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davidovich-Pinhas, M. Oleogels. In Polymeric Gels; Woodhead Publishing: Cambridge, UK, 2018; pp. 231–249. [Google Scholar]
- Martins, A.J.; Cerqueira, M.A.; Fasolin, L.H.; Cunha, R.L.; Vicente, A.A. Beeswax organogels: Influence of gelator concentration and oil type in the gelation process. Food Res. Int. 2016, 84, 170–179. [Google Scholar] [CrossRef]
- Maki, K.C.; Dicklin, M.R.; Kirkpatrick, C.F. Saturated fats and cardiovascular health: Current evidence and controversies. J. Clin. Lipidol. 2021, 15, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gao, Z.; Chen, G.; Yao, J.; Zhang, X.; Qiu, X.; Liu, L. A comprehensive review: Impact of oleogel application on food texture and sensory properties. Food Sci. Nutr. 2024, 12, 3849–3862. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Auzanneau, F.-I.; Rogers, M.A. Advances in edible oleogel technologies—A decade in review. Food Res. Int. 2017, 97, 307–317. [Google Scholar] [CrossRef]
- Bayarri, S.; Carbonell, I.; Costell, E. Viscoelasticity and texture of spreadable cheeses with different fat contents at refrigeration and room temperatures. J. Dairy Sci. 2012, 95, 6926–6936. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Abdullah; Tian, W.; Chen, M.; Huang, Y.; Xiao, J. Oral sensation and gastrointestinal digestive profiles of bigels tuned by the mass ratio of konjac glucomannan to gelatin in the binary hydrogel matrix. Carbohydr. Polym. 2023, 312, 120765. [Google Scholar] [CrossRef]
- Ji, L.; Gravelle, A.J. Modulating the behavior of ethyl cellulose-based oleogels: The impact food-grade amphiphilic small molecules on structural, mechanical, and rheological properties. Food Hydrocoll. 2025, 159, 110703. [Google Scholar] [CrossRef]
- Airoldi, R.; da Silva, T.L.T.; Ract, J.N.R.; Foguel, A.; Colleran, H.L.; Ibrahim, S.A.; da Silva, R.C. Potential use of carnauba wax oleogel to replace saturated fat in ice cream. J. Am. Oil Chem. Soc. 2022, 99, 1085–1099. [Google Scholar] [CrossRef]
- Sagiri, S.S.; Samateh, M.; John, G. Investigating the Emulsifying Mechanism of Stereoisomeric Sugar Fatty Acyl Molecular Gelators. Langmuir 2024, 40, 13763–13772. [Google Scholar] [CrossRef]
- Swe, M.T.H.; Asavapichayont, P. Effect of silicone oil on the microstructure, gelation and rheological properties of sorbitan monostearate–sesame oil oleogels. Asian J. Pharm. Sci. 2018, 13, 485–497. [Google Scholar] [CrossRef]
- Daniel, J.; Rajasekharan, R. Organogelation of plant oils and hydrocarbons by long-chain saturated FA, fatty alcohols, wax esters, and dicarboxylic acids. J. Am. Oil Chem. Soc. 2003, 80, 417–421. [Google Scholar] [CrossRef]
- de Oliveira, G.M.; Badan Ribeiro, A.P.; dos Santos, A.O.; Cardoso, L.P.; Kieckbusch, T.G. Hard fats as additives in palm oil and its relationships to crystallization process and polymorphism. LWT—Food Sci. Technol. 2015, 63, 1163–1170. [Google Scholar] [CrossRef]
- Moreira, D.K.T.; Ract, J.N.R.; Ribeiro, A.P.B.; Macedo, G.A. Production and characterization of structured lipids with antiobesity potential and as a source of essential fatty acids. Food Res. Int. 2017, 99, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.K.T.; Santos, P.S.; Gambero, A.; Macedo, G.A. Evaluation of structured lipids with behenic acid in the prevention of obesity. Food Res. Int. 2017, 95, 52–58. [Google Scholar] [CrossRef]
- Callau, M.; Sow-Kébé, K.; Nicolas-Morgantini, L.; Fameau, A.-L. Effect of the ratio between behenyl alcohol and behenic acid on the oleogel properties. J. Colloid Interface Sci. 2020, 560, 874–884. [Google Scholar] [CrossRef]
- Nguyen, P.C.; Nguyen, M.T.T.; Kim, J.-H.; Hong, S.-T.; Kim, H.-L.; Park, J.-T. A novel maltoheptaose-based sugar ester having excellent emulsifying properties and optimization of its lipase-catalyzed synthesis. Food Chem. 2021, 352, 129358. [Google Scholar] [CrossRef]
- Teng, Y.; Xu, Y. A modified para-nitrophenyl palmitate assay for lipase synthetic activity determination in organic solvent. Anal. Biochem. 2007, 363, 297–299. [Google Scholar] [CrossRef]
- Arniza, M.Z.; Hoong, S.S.; Yusop, M.R.; Hayes, D.G.; Yeong, S.K.; NSMariam, N.M. Regioselective Synthesis of Palm-Based Sorbitol Esters as Biobased Surfactant by Lipase from Thermomyces lanuginosus in Nonaqueous Media. J. Surfactants Deterg. 2020, 23, 1067–1077. [Google Scholar] [CrossRef]
- Neta, N.S.; Teixeira, J.A.; Rodrigues, L.R. Sugar Ester Surfactants: Enzymatic Synthesis and Applications in Food Industry. Crit. Rev. Food Sci. Nutr. 2015, 55, 595–610. [Google Scholar] [CrossRef]
- Pyo, S.-H.; Chen, J.; Ye, R.; Hayes, D.G. Sugar Esters. In Biobased Surfactants; Academic Press: San Diego, CA, USA; AOCS Press: Champaign, IL, USA, 2019; pp. 325–363. [Google Scholar]
- Teng, Y.; Stewart, S.G.; Hai, Y.W.; Li, X.; Banwell, M.G.; La, P. Sucrose fatty acid esters: Synthesis, emulsifying capacities, biological activities and structure-property profiles. Crit. Rev. Food Sci. Nutr. 2021, 61, 3297–3317. [Google Scholar] [CrossRef]
- Zago, E.; Joly, N.; Chaveriat, L.; Lequart, V.; Martin, P. Enzymatic synthesis of amphiphilic carbohydrate esters: Influence of physicochemical and biochemical parameters. Biotechnol. Rep. 2021, 30, 631. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, L.L.; da Silva, F.L.H.; de Queiroz, A.L.M.; de Oliveira, Y.S.L.; de Souza Junior, E.F.; Madruga, M.S.; da Conceição, M.M. Structural-chemical characterization and potential of sisal bagasse for the production of polyols of industrial interest. Braz. J. Chem. Eng. 2020, 37, 451–461. [Google Scholar] [CrossRef]
- Czaikoski, A.; da Cunha, R.L.; Menegalli, F.C. Rheological behavior of cellulose nanofibers from cassava peel obtained by combination of chemical and physical processes. Carbohydr. Polym. 2020, 248, 116744. [Google Scholar] [CrossRef] [PubMed]
- Barroso, N.G.; Okuro, P.K.; Ribeiro, A.P.B.; Cunha, R.L. Tailoring Properties of Mixed-Component Oleogels: Wax and Monoglyceride Interactions Towards Flaxseed Oil Structuring. Gels 2020, 6, 5. [Google Scholar] [CrossRef]
- Picone, C.S.F.; Cunha, R.L. Influence of pH on formation and properties of gellan gels. Carbohydr. Polym. 2011, 84, 662–668. [Google Scholar] [CrossRef]
- Okuro, P.K.; Malfatti-Gasperini, A.A.; Vicente, A.A.; Cunha, R.L. Lecithin and phytosterols-based mixtures as hybrid structuring agents in different organic phases. Food Res. Int. 2018, 111, 168–177. [Google Scholar] [CrossRef]
- Okuro, P.K.; Tavernier, I.; Bin Sintang, M.D.; Skirtach, A.G.; Vicente, A.A.; Dewettinck, K.; Cunha, R.L. Synergistic interactions between lecithin and fruit wax in oleogel formation. Food Funct. 2018, 9, 1755–1767. [Google Scholar] [CrossRef]
- Blake, A.I.; Marangoni, A.G. The Use of Cooling Rate to Engineer the Microstructure and Oil Binding Capacity of Wax Crystal Networks. Food Biophys. 2015, 10, 456–465. [Google Scholar] [CrossRef]
- Martins, A.J.; Cerqueira, M.A.; Cunha, R.L.; Vicente, A.A. Fortified beeswax oleogels: Effect of β-carotene on the gel structure and oxidative stability. Food Funct. 2017, 8, 4241–4250. [Google Scholar] [CrossRef]
- AOCS. Official Method Cd 8-53; American Oil Chemists Society: Champaign, IL, USA, 2003. [Google Scholar]
- Lee, K.P.; Kim, H.K. Antibacterial Effect of Fructose Laurate Synthesized by Candida antarctica B Lipase-Mediated Transesterification. J. Microbiol. Biotechnol. 2016, 26, 1579–1585. [Google Scholar] [CrossRef]
- Abdulmalek, E.; Hamidon, N.F.; Abdul Rahman, M.B. Optimization and characterization of lipase catalysed synthesis of xylose caproate ester in organic solvents. J. Mol. Catal. B Enzym. 2016, 132, 1–4. [Google Scholar] [CrossRef]
- Arcens, D.; Grau, E.; Grelier, S.; Cramail, H.; Peruch, F. Impact of Fatty Acid Structure on CALB-Catalyzed Esterification of Glucose. Eur. J. Lipid Sci. Technol. 2020, 122, 1900294. [Google Scholar] [CrossRef]
- Di, X.; Zhang, Y.; Fu, J.; Yu, Q.; Wang, Z.; Yuan, Z. Biocatalytic upgrading of levulinic acid to methyl levulinate in green solvents. Process Biochem. 2019, 81, 33–38. [Google Scholar] [CrossRef]
- Zhang, Y.; Di, X.; Wang, W.; Song, M.; Yu, Q.; Wang, Z.; Yuan, Z.; Chen, X.; Xu, H.; Guo, Y. Kinetic study of lipase-catalyzed esterification of furoic acid to methyl-2-furoate. Biochem. Eng. J. 2020, 161, 107587. [Google Scholar] [CrossRef]
- Mulalee, S.; Srisuwan, P.; Phisalaphong, M. Influences of operating conditions on biocatalytic activity and reusability of Novozym 435 for esterification of free fatty acids with short-chain alcohols: A case study of palm fatty acid distillate. Chin. J. Chem. Eng. 2015, 23, 1851–1856. [Google Scholar] [CrossRef]
- Haafiz, M.K.M.; Hassan, A.; Zakaria, Z.; Inuwa, I.M. Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr. Polym. 2014, 103, 119–125. [Google Scholar] [CrossRef]
- Ji, S.; Jia, C.; Cao, D.; Li, S.; Zhang, X. Direct and selective enzymatic synthesis of trehalose unsaturated fatty acid diesters and evaluation of foaming and emulsifying properties. Enzyme Microb. Technol. 2020, 136, 109516. [Google Scholar] [CrossRef]
- Tsupko, P. Sugar-Derived Oleogels in Cosmetics and Food Applications: A Case Study of Trehalose and Mannitol-Based Gelators. City University of New York (CUNY). 2020. Available online: https://academicworks.cuny.edu/cc_etds_theses/823 (accessed on 17 March 2025).
- Wei, W.; Feng, F.; Perez, B.; Dong, M.; Guo, Z. Biocatalytic synthesis of ultra-long-chain fatty acid sugar alcohol monoesters. Green Chem. 2015, 17, 3475–3489. [Google Scholar] [CrossRef]
- Kim, G.Y.; Marangoni, A.G. Crystallization Behavior of High Behenic Acid Stabilizers in Liquid Oil. J. Am. Oil Chem. Soc. 2017, 94, 1165–1173. [Google Scholar] [CrossRef]
- Rosen-Kligvasser, J.; Davidovich-Pinhas, M. The role of hydrogen bonds in TAG derivative-based oleogel structure and properties. Food Chem. 2021, 334, 127585. [Google Scholar] [CrossRef]
- Thakur, D.; Singh, A.; Prabhakar, P.K.; Meghwal, M.; Upadhyay, A. Optimization and characterization of soybean oil-carnauba wax oleogel. LWT—Food Sci. Technol. 2022, 157, 113108. [Google Scholar] [CrossRef]
- Godoi, K.R.R.D.; Basso, R.C.; Ming, C.C.; da Silva, A.Á.; Cardoso, L.P.; Ribeiro, A.P.B. Crystallization, microstructure and polymorphic properties of soybean oil organogels in a hybrid structuring system. Food Res. Int. 2020, 137, 109460. [Google Scholar] [CrossRef]
- Acevedo, N.C.; Marangoni, A.G. Characterization of the Nanoscale in Triacylglycerol Crystal Networks. Cryst. Growth Des. 2010, 10, 3327–3333. [Google Scholar] [CrossRef]
- Mohanan, A.; Nickerson, M.T.; Ghosh, S. Oxidative stability of flaxseed oil: Effect of hydrophilic, hydrophobic and intermediate polarity antioxidants. Food Chem. 2018, 266, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Lin, X.; Li, P.; Liu, F.-Q.; Guo, H.; Li, W.-H. Recent advances of organogels: From fabrications and functions to applications. Prog. Org. Coat. 2021, 159, 106417. [Google Scholar] [CrossRef]
- Keskin Uslu, E.; Yılmaz, E. Preparation and characterization of glycerol monostearate and polyglycerol stearate oleogels with selected amphiphiles. Food Struct. 2021, 28, 100192. [Google Scholar] [CrossRef]
- Ahmadi, P.; Tabibiazar, M.; Roufegarinejad, L.; Babazadeh, A. Development of behenic acid-ethyl cellulose oleogel stabilized Pickering emulsions as low calorie fat replacer. Int. J. Biol. Macromol. 2020, 150, 974–981. [Google Scholar] [CrossRef]
Essay | Temperature (°C) | Rotational Velocity (rpm) | FHCO:Sorbitol Molar Ratio | Ethanol Content (%) | Sorbitol Consumption (%) |
---|---|---|---|---|---|
1 | 60 | 200 | 1:1 | 100 | 95.8 |
2 | 60 | 500 | 1:1 | 50 | 30.8 |
3 | 60 | 500 | 1:5 | 50 | 24.9 |
4 | 40 | 500 | 1:5 | 100 | 85.3 |
5 | 60 | 200 | 1:5 | 100 | 33.8 |
6 | 40 | 500 | 1:1 | 100 | 56.5 |
7 | 40 | 200 | 1:5 | 50 | 3.9 |
8 | 40 | 200 | 1:1 | 50 | 4.3 |
9 | 50 | 350 | 1:3 | 75 | 9.9 |
10 | 50 | 350 | 1:3 | 75 | 9.3 |
11 | 50 | 350 | 1:3 | 75 | 8.4 |
Sample | OBC (%) | |
---|---|---|
5 °C | 25 °C | |
SB | 88.4 ± 3.1 Aa | 68.6 ± 1.8 Bb |
SM | 62.4 ± 4.4 Ac | 40.1 ± 2.0 Bc |
FHCO | 76.6 ± 1.4 Ab | 77.5 ± 0.8 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, M.G.; Okuro, P.K.; da Silva, M.F.; Goldbeck, R.; Cunha, R.L. Ultra-Long-Chain Sorbitol Esters Tailoring Thermo-Responsive Rheological Properties of Oleogels. Foods 2025, 14, 1030. https://doi.org/10.3390/foods14061030
Soares MG, Okuro PK, da Silva MF, Goldbeck R, Cunha RL. Ultra-Long-Chain Sorbitol Esters Tailoring Thermo-Responsive Rheological Properties of Oleogels. Foods. 2025; 14(6):1030. https://doi.org/10.3390/foods14061030
Chicago/Turabian StyleSoares, Marcelo Gomes, Paula Kiyomi Okuro, Marcos Fellipe da Silva, Rosana Goldbeck, and Rosiane Lopes Cunha. 2025. "Ultra-Long-Chain Sorbitol Esters Tailoring Thermo-Responsive Rheological Properties of Oleogels" Foods 14, no. 6: 1030. https://doi.org/10.3390/foods14061030
APA StyleSoares, M. G., Okuro, P. K., da Silva, M. F., Goldbeck, R., & Cunha, R. L. (2025). Ultra-Long-Chain Sorbitol Esters Tailoring Thermo-Responsive Rheological Properties of Oleogels. Foods, 14(6), 1030. https://doi.org/10.3390/foods14061030