Laser-Induced Breakdown Spectroscopy vs. Fluorescence Spectroscopy for Olive Oil Authentication
Abstract
:1. Introduction
2. Materials and Methods
2.1. EVOOs and Non-EVOO Oil Samples
2.2. Experimental Setups
2.3. Machine Learning Algorithms
2.4. Preparation of the Datasets
3. Results
3.1. LIBS and Fluorescence Spectra Analysis
3.2. Discrimination of the Pure EVOOs from Their Mixtures with the Non-EVOO Oils
3.3. Identification of the Type of Non-EVOO Oil Used for EVOOs’Aadulteration
3.4. Classification of the EVOOs and Their Mixtures with No-EVOO Oils Based on the Geographical Origin of the EVOOs
3.4.1. Classification of EVOOs Based on Geographical Origin
3.4.2. Classification of EVOOs’ Mixtures Based on Geographical Origin
3.4.3. Classification of the EVOOs and Their Mixtures with Non-EVOO Oils Based on Geographical Origin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gavahian, M.; Mousavi Khaneghah, A.; Lorenzo, J.M.; Munekata, P.E.S.; Garcia-Mantrana, I.; Collado, M.C.; Meléndez-Martínez, A.J.; Barba, F.J. Health Benefits of Olive Oil and Its Components: Impacts on Gut Microbiota Antioxidant Activities, and Prevention of Noncommunicable Diseases. Trends Food Sci. Technol. 2019, 88, 220–227. [Google Scholar] [CrossRef]
- Yubero-Serrano, E.M.; Lopez-Moreno, J.; Gomez-Delgado, F.; Lopez-Miranda, J. Extra Virgin Olive Oil: More than a Healthy Fat. Eur. J. Clin. Nutr. 2019, 72, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Gantenbein, K.V.; Kanaka-Gantenbein, C. Mediterranean Diet as An Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients 2021, 13, 1951. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A.; Martin-Calvo, N. Mediterranean Diet and Life Expectancy; beyond Olive Oil, Fruits, and Vegetables. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 401–407. [Google Scholar] [CrossRef]
- Nouira, I.; Hammami, R.; Fernandez Arias, A.; Gondran, N.; Frein, Y. Olive Oil Supply Chain Design with Organic and Conventional Market Segments and Consumers’ Preference to Local Products. Int. J. Prod. Econ. 2022, 247, 108456. [Google Scholar] [CrossRef]
- Milanez, K.D.T.M.; Araújo Nóbrega, T.C.; Silva Nascimento, D.; Galvão, R.K.H.; Pontes, M.J.C. Selection of Robust Variables for Transfer of Classification Models Employing the Successive Projections Algorithm. Anal. Chim. Acta 2017, 984, 76–85. [Google Scholar] [CrossRef]
- Vieira, L.S.; Assis, C.; de Queiroz, M.E.L.R.; Neves, A.A.; de Oliveira, A.F. Building Robust Models for Identification of Adulteration in Olive Oil Using FT-NIR, PLS-DA and Variable Selection. Food Chem. 2021, 345, 128866. [Google Scholar] [CrossRef]
- Chavez-Angel, E.; Puertas, B.; Kreuzer, M.; Soliva Fortuny, R.; Ng, R.C.; Castro-Alvarez, A.; Sotomayor Torres, C.M. Spectroscopic and Thermal Characterization of Extra Virgin Olive Oil Adulterated with Edible Oils. Foods 2022, 11, 1304. [Google Scholar] [CrossRef] [PubMed]
- Melendreras, C.; Soldado, A.; Costa-Fernández, J.M.; López, A.; Valledor, M.; Campo, J.C.; Ferrero, F. An Affordable NIR Spectroscopic System for Fraud Detection in Olive Oil. Sensors 2023, 23, 1728. [Google Scholar] [CrossRef]
- Zade, S.V.; Abdollahi, H. The Classification Performance of Multivariate Curve Resolution-Discriminant Analysis: A Comparative Study. Microchem. J. 2023, 191, 108867. [Google Scholar] [CrossRef]
- Vergara-Barberán, M.; Lerma-García, M.J.; Herrero-Martínez, J.M.; Simó-Alfonso, E.F. Cultivar Discrimination of Spanish Olives by Using Direct FTIR Data Combined with Linear Discriminant Analysis. Eur. J. Lipid Sci. Technol. 2015, 117, 1473–1479. [Google Scholar] [CrossRef]
- Tena, N.; Aparicio, R.; Baeten, V.; García-González, D.L.; Fernández-Pierna, J.A. Assessment of Vibrational Spectroscopy Performance in Geographical Identification of Virgin Olive Oils: A World Level Study. Eur. J. Lipid Sci. Technol. 2019, 121, 1900035. [Google Scholar] [CrossRef]
- El Orche, A.; Bouatia, M.; Yanisse, S.; Labjar, H.; Mouhsin, M.; Bouha, M.; Oubenali, M.; Mbarki, M. Evaluation of the Capability of Horizontal ATR-FTMIR and UV-Visible Spectroscopy in the Discrimination of Virgin Olive Oils from the Moroccan Region of Beni Mellal-Khenifra. J. Spectrosc. 2020, 2020, 9317350. [Google Scholar] [CrossRef]
- Maléchaux, A.; Le Dréau, Y.; Artaud, J.; Dupuy, N. Control Chart and Data Fusion for Varietal Origin Discrimination: Application to Olive Oil. Talanta 2020, 217, 121115. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yao, L.; Xia, Z.; Gao, Y.; Gong, Z. Geographical Discrimination and Adulteration Analysis for Edible Oils Using Two-Dimensional Correlation Spectroscopy and Convolutional Neural Networks (CNNs). Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2021, 246, 118973. [Google Scholar] [CrossRef]
- Regulation (EU) 2024/1143 of the European Parliament and of the Council of 11 April 2024 on Geographical Indications for Wine, Spirit Drinks and Agricultural Products, as Well as Traditional Specialities Guaranteed and Optional Quality Terms for Agricultural Products, Amending Regulations (EU) No 1308/2013, (EU) 2019/787 and (EU) 2019/1753 and Repealing Regulation (EU) No 1151/2012. 2024. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401143 (accessed on 10 October 2024).
- Eriotou, E.; Karabagias, I.K.; Maina, S.; Koulougliotis, D.; Kopsahelis, N. Geographical Origin Discrimination of “Ntopia” Olive Oil Cultivar from Ionian Islands Using Volatile Compounds Analysis and Computational Statistics. Eur. Food Res. Technol. 2021, 247, 3083–3098. [Google Scholar] [CrossRef]
- Tena, N.; Wang, S.C.; Aparicio-Ruiz, R.; García-González, D.L.; Aparicio, R. In-Depth Assessment of Analytical Methods for Olive Oil Purity, Safety, and Quality Characterization. J. Agric. Food Chem. 2015, 63, 4509–4526. [Google Scholar] [CrossRef]
- Drakopoulou, S.; Orfanakis, E.; Karagiannaki, I.; Gaitis, F.; Skoulika, S.; Papaioannou, A.; Boukouvalas, G.; Petropoulos, G.; Katsoudas, V.; Kontzedaki, R.; et al. Comparative Evaluation of Different Targeted and Untargeted Analytical Approaches to Assess Greek Extra Virgin Olive Oil Quality and Authentication. Molecules 2022, 27, 1350. [Google Scholar] [CrossRef]
- International Olive Council (IOC). T.20/Doc. No. 17/Rev. 1. Determination of Trans Unsaturated Fatty Acids by Capillary Column Gas Chromatography. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2022/10/COI-T20-Doc-17-rev-1-2001-Eng.pdf (accessed on 5 March 2025).
- International Olive Council (IOC). T.20/Doc. No. 25/Rev. 1. Global Method for the Detection of Extraneous Oils in Olive Oils. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2022/10/COI-T20-doc.25-REV-1-2013-Eng.pdf (accessed on 5 March 2025).
- Green, H.S.; Li, X.; De Pra, M.; Lovejoy, K.S.; Steiner, F.; Acworth, I.N.; Wang, S.C. A Rapid Method for the Detection of Extra Virgin Olive Oil Adulteration Using UHPLC-CAD Profiling of Triacylglycerols and PCA. Food Control 2020, 107, 106773. [Google Scholar] [CrossRef]
- Cozzolino, R.; De Giulio, B. Application of ESI and MALDI-TOF MS for Triacylglycerols Analysis in Edible Oils. Eur. J. Lipid Sci. Technol. 2011, 113, 160–167. [Google Scholar] [CrossRef]
- Peršurić, Ž.; Saftić, L.; Mašek, T.; Kraljević Pavelić, S. Comparison of Triacylglycerol Analysis by MALDI-TOF/MS, Fatty Acid Analysis by GC-MS and Non-Selective Analysis by NIRS in Combination with Chemometrics for Determination of Extra Virgin Olive Oil Geographical Origin. A Case Study. LWT 2018, 95, 326–332. [Google Scholar] [CrossRef]
- Blasi, F.; Ianni, F.; Cossignani, L. Phenolic Profiling for Geographical and Varietal Authentication of Extra Virgin Olive Oil. Trends Food Sci. Technol. 2024, 147, 104444. [Google Scholar] [CrossRef]
- Meenu, M.; Cai, Q.; Xu, B. A Critical Review on Analytical Techniques to Detect Adulteration of Extra Virgin Olive Oil. Trends Food Sci. Technol. 2019, 91, 391–408. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef]
- Harmon, R.S.; Senesi, G.S. Laser-Induced Breakdown Spectroscopy—A Geochemical Tool for the 21st Century. Appl. Geochem. 2021, 128, 104929. [Google Scholar] [CrossRef]
- Miziolek, A.W.; Palleschi, V.; Schechter, I. Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications; Cambridge University Press: New York, NY, USA, 2006; pp. 1–40. ISBN 0-511-24529-7. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 1999; ISBN 978-1-4757-3063-0. [Google Scholar]
- Karoui, R.; Blecker, C. Fluorescence Spectroscopy Measurement for Quality Assessment of Food Systems—A Review. Food Bioprocess Technol. 2011, 4, 364–386. [Google Scholar] [CrossRef]
- Hassoun, A.; Sahar, A.; Lakhal, L.; Aït-Kaddour, A. Fluorescence Spectroscopy as a Rapid and Non-Destructive Method for Monitoring Quality and Authenticity of Fish and Meat Products: Impact of Different Preservation Conditions. LWT 2019, 103, 279–292. [Google Scholar] [CrossRef]
- Ruisánchez, I.; Rovira, G.; Callao, M.P. Multivariate Qualitative Methodology for Semi-Quantitative Information. A Case Study: Adulteration of Olive Oil with Sunflower Oil. Anal. Chim. Acta 2022, 1206, 339785. [Google Scholar] [CrossRef]
- Ali, H.; Saleem, M.; Anser, M.R.; Khan, S.; Ullah, R.; Bilal, M. Validation of Fluorescence Spectroscopy to Detect Adulteration of Edible Oil in Extra Virgin Olive Oil (EVOO) by Applying Chemometrics. Appl. Spectrosc. 2018, 72, 1371–1379. [Google Scholar] [CrossRef]
- Milanez, K.D.T.M.; Nóbrega, T.C.A.; Nascimento, D.S.; Insausti, M.; Band, B.S.F.; Pontes, M.J.C. Multivariate Modeling for Detecting Adulteration of Extra Virgin Olive Oil with Soybean Oil Using Fluorescence and UV–Vis Spectroscopies: A Preliminary Approach. LWT Food Sci. Technol. 2017, 85, 9–15. [Google Scholar] [CrossRef]
- Poulli, K.I.; Mousdis, G.A.; Georgiou, C.A. Synchronous Fluorescence Spectroscopy for Quantitative Determination of Virgin Olive Oil Adulteration with Sunflower Oil. Anal. Bioanal. Chem. 2006, 386, 1571–1575. [Google Scholar] [CrossRef]
- Sikorska, E.; Khmelinskii, I.; Sikorski, M. Analysis of Olive Oils by Fluorescence Spectroscopy: Methods and Applications. In Olive Oil—Constituents, Quality, Health Properties and Bioconversions; Boskou, D., Ed.; InTech: London, UK, 2012; ISBN 978-953-307-921-9. [Google Scholar]
- Cheikhousman, R.; Zude, M.; Bouveresse, D.J.-R.; Léger, C.L.; Rutledge, D.N.; Birlouez-Aragon, I. Fluorescence Spectroscopy for Monitoring Deterioration of Extra Virgin Olive Oil during Heating. Anal. Bioanal. Chem. 2005, 382, 1438–1443. [Google Scholar] [CrossRef] [PubMed]
- Anglos, D. Laser-Induced Breakdown Spectroscopy in Heritage Science. Phys. Sci. Rev. 2019, 4, 20180005. [Google Scholar] [CrossRef]
- Legnaioli, S.; Campanella, B.; Poggialini, F.; Pagnotta, S.; Harith, M.A.; Abdel-Salam, Z.A.; Palleschi, V. Industrial Applications of Laser-Induced Breakdown Spectroscopy: A Review. Anal. Methods 2020, 12, 1014–1029. [Google Scholar] [CrossRef]
- Samokhvalov, A. Analysis of Various Solid Samples by Synchronous Fluorescence Spectroscopy and Related Methods: A Review. Talanta 2020, 216, 120944. [Google Scholar] [CrossRef]
- Gonçalves, D.A.; Senesi, G.S.; Nicolodelli, G. Laser-Induced Breakdown Spectroscopy Applied to Environmental Systems and Their Potential Contaminants. An Overview of Advances Achieved in the Last Few Years. Trends Environ. Anal. Chem. 2021, 30, e00121. [Google Scholar] [CrossRef]
- Zacharioudaki, D.-E.; Fitilis, I.; Kotti, M. Review of Fluorescence Spectroscopy in Environmental Quality Applications. Molecules 2022, 27, 4801. [Google Scholar] [CrossRef]
- Markiewicz-Keszycka, M.; Cama-Moncunill, X.; Casado-Gavalda, M.P.; Dixit, Y.; Cama-Moncunill, R.; Cullen, P.J.; Sullivan, C. Laser-Induced Breakdown Spectroscopy (LIBS) for Food Analysis: A Review. Trends Food Sci. Technol. 2017, 65, 80–93. [Google Scholar] [CrossRef]
- Shaikh, S.; O’Donnell, C. Applications of Fluorescence Spectroscopy in Dairy Processing: A Review. Curr. Opin. Food Sci. 2017, 17, 16–24. [Google Scholar] [CrossRef]
- Eseller, K.E.; Boyaci, I.H.; Sezer, B.; Bilge, G.; Berberoglu, H. Chapter 15—Food Science Application. In Laser-Induced Breakdown Spectroscopy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 347–368. ISBN 978-0-12-818829-3. [Google Scholar]
- Gu, H.; Hu, L.; Dong, Y.; Chen, Q.; Wei, Z.; Lv, R.; Zhou, Q. Evolving Trends in Fluorescence Spectroscopy Techniques for Food Quality and Safety: A Review. J. Food Compos. Anal. 2024, 131, 106212. [Google Scholar] [CrossRef]
- Caceres, J.O.; Moncayo, S.; Rosales, J.D.; de Villena, F.J.M.; Alvira, F.C.; Bilmes, G.M. Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to Olive Oils Analysis. Appl. Spectrosc. 2013, 67, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Nanou, E.; Pliatsika, N.; Couris, S. Rapid Authentication and Detection of Olive Oil Adulteration Using Laser-Induced Breakdown Spectroscopy. Molecules 2023, 28, 7960. [Google Scholar] [CrossRef]
- Nanou, E.; Bekogianni, M.; Stamatoukos, T.; Couris, S. Detection of Adulteration of Extra Virgin Olive Oil via Laser-Induced Breakdown Spectroscopy and Ultraviolet-Visible-Near-Infrared Absorption Spectroscopy: A Comparative Study. Foods 2025, 14, 321. [Google Scholar] [CrossRef]
- Gyftokostas, N.; Stefas, D.; Kokkinos, V.; Bouras, C.; Couris, S. Laser-Induced Breakdown Spectroscopy Coupled with Machine Learning as a Tool for Olive Oil Authenticity and Geographic Discrimination. Sci. Rep. 2021, 11, 5360. [Google Scholar] [CrossRef] [PubMed]
- Gyftokostas, N.; Nanou, E.; Stefas, D.; Kokkinos, V.; Bouras, C.; Couris, S. Classification of Greek Olive Oils from Different Regions by Machine Learning-Aided Laser-Induced Breakdown Spectroscopy and Absorption Spectroscopy. Molecules 2021, 26, 1241. [Google Scholar] [CrossRef]
- Mu, T.; Chen, S.; Zhang, Y.; Chen, H.; Guo, P.; Meng, F. Portable Detection and Quantification of Olive Oil Adulteration by 473-Nm Laser-Induced Fluorescence. Food Anal. Methods 2016, 9, 275–279. [Google Scholar] [CrossRef]
- Jiménez-Carvelo, A.M.; Lozano, V.A.; Olivieri, A.C. Comparative Chemometric Analysis of Fluorescence and near Infrared Spectroscopies for Authenticity Confirmation and Geographical Origin of Argentinean Extra Virgin Olive Oils. Food Control 2019, 96, 22–28. [Google Scholar] [CrossRef]
- Al Riza, D.F.; Kondo, N.; Rotich, V.K.; Perone, C.; Giametta, F. Cultivar and Geographical Origin Authentication of Italian Extra Virgin Olive Oil Using Front-Face Fluorescence Spectroscopy and Chemometrics. Food Control 2021, 121, 107604. [Google Scholar] [CrossRef]
- Kontzedaki, R.; Orfanakis, E.; Sofra-Karanti, G.; Stamataki, K.; Philippidis, A.; Zoumi, A.; Velegrakis, M. Verifying the Geographical Origin and Authenticity of Greek Olive Oils by Means of Optical Spectroscopy and Multivariate Analysis. Molecules 2020, 25, 4180. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31073-2. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830. [Google Scholar]
- Kramida, A.; Ralchenko, Y. NIST Atomic Spectra Database. In NIST Standard Reference Database 78 [Data Set]; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022. [Google Scholar] [CrossRef]
- Uncu, O.; Ozen, B. A Comparative Study of Mid-Infrared, UV–Visible and Fluorescence Spectroscopy in Combination with Chemometrics for the Detection of Adulteration of Fresh Olive Oils with Old Olive Oils. Food Control 2019, 105, 209–218. [Google Scholar] [CrossRef]
- Kyriakidis, N.B.; Skarkalis, P. Fluorescence Spectra Measurement of Olive Oil and Other Vegetable Oils. J. AOAC Int. 2000, 83, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- Torreblanca-Zanca, A.; Aroca-Santos, R.; Lastra-Mejías, M.; Izquierdo, M.; Cancilla, J.C.; Torrecilla, J.S. Laser Diode Induced Excitation of PDO Extra Virgin Olive Oils for Cognitive Authentication and Fraud Detection. Sens. Actuators B Chem. 2019, 280, 1–9. [Google Scholar] [CrossRef]
- Men, X.; Yin, C.; Yuan, L.; Zhang, Y.; Ju, Y.; Xin, K.; Chen, W.; Lv, K.; Hu, L. Rapid Detection of Adulteration of Olive Oil with Soybean Oil Combined with Chemometrics by Fourier Transform Infrared, Visible-near-Infrared and Excitation-Emission Matrix Fluorescence Spectroscopy: A Comparative Study. Food Chem. 2023, 405, 134828. [Google Scholar] [CrossRef]
- Wang, H.; Wan, X. Effect of Chlorophyll Fluorescence Quenching on Quantitative Analysis of Adulteration in Extra Virgin Olive Oil. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 248, 119183. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Dai, Z.; Cui, L.; Lin, H.; Li, Z.; Wu, K.; Liu, G. Quantitative Detection of Extra Virgin Olive Oil Adulteration, as Opposed to Peanut and Soybean Oil, Employing LED-Induced Fluorescence Spectroscopy. Sensors 2022, 22, 1227. [Google Scholar] [CrossRef]
- Gazeli, O.; Bellou, E.; Stefas, D.; Couris, S. Laser-Based Classification of Olive Oils Assisted by Machine Learning. Food Chem. 2020, 302, 125329. [Google Scholar] [CrossRef]
Algorithm | LIBS | Fluorescence Spectroscopy | ||||
---|---|---|---|---|---|---|
Classification (%) | No. of PCs | Prediction (%) | Classification (%) | No. of PCs | Prediction (%) | |
LDA | 99.9 ± 0.2 | 60 | 100 | 93.2 ± 2.5 | 30 | 98.8 |
SVMs | 100.0 ± 0.0 | 40 | 100 | 97.2 ± 1.6 | 10 | 97.5 |
LR | 99.9 ± 0.2 | 30 | 100.0 | 99.0 ± 0.6 | 60 | 98.0 |
GB | 99.5 ± 0.6 | 50 | 99.8 | 99.5 ± 0.6 | 20 | 95 |
Algorithm | LIBS | Fluorescence Spectroscopy | ||||
---|---|---|---|---|---|---|
Classification (%) | No. of PCs | Prediction (%) | Classification (%) | No. of PCs | Prediction (%) | |
LDA | 85.2 ± 2.3 | 140 | 88.7 | 92.2 ± 1.2 | 30 | 98.1 |
SVMs | 84.6 ± 3.0 | 80 | 90.0 | 95.5 ± 1.2 | 30 | 98.1 |
LR | 83.1 ± 3.1 | 120 | 89.4 | 96.5 ± 2.2 | 50 | 99.4 |
GB | 85.6 ± 3.1 | 90 | 87.2 | 99.6 ± 0.3 | 20 | 90.9 |
Algorithm | LIBS | Fluorescence Spectroscopy | ||||
---|---|---|---|---|---|---|
Classification (%) | No. of PCs | Prediction (%) | Classification (%) | No. of PCs | Prediction (%) | |
Achaia | ||||||
LDA | 98.9 ± 2.3 | 30 | 97.5 | 90.0 ± 6.7 | 10 | 98.7 |
SVMs | 95.7 ± 3.5 | 60 | 96.2 | 98.9 ± 1.6 | 10 | 95.0 |
LR | 95.4 ± 3.6 | 110 | 96.3 | 97.9 ± 2.4 | 10 | 92.5 |
GB | 85.7 ± 5.5 | 20 | 88.7 | 99.1 ± 0.6 | 10 | 90.0 |
Crete | ||||||
LDA | 100.0 ± 0.0 | 40 | 100.0 | 98.9 ± 1.6 | 10 | 100.0 |
SVMs | 99.3 ± 1.4 | 90 | 100.0 | 100.0 ± 0.0 | 10 | 100.0 |
LR | 98.6 ± 1.7 | 50 | 100.0 | 100.0 ± 0.0 | 10 | 100.0 |
GB | 89.6 ± 5.9 | 30 | 90.0 | 100.0 ± 0.0 | 10 | 85.0 |
Lesvos | ||||||
LDA | 96.1 ± 4.6 | 30 | 95.0 | 100.0 ± 0.0 | 10 | 98.7 |
SVMs | 95.0 ± 3.6 | 30 | 93.7 | 99.6 ± 1.1 | 10 | 100.0 |
LR | 94.3 ± 3.6 | 20 | 97.5 | 100.0 ± 0.0 | 10 | 100.0 |
GB | 94.6 ± 4.0 | 30 | 87.5 | 99.3 ± 1.5 | 10 | 87.5 |
Messenia | ||||||
LDA | 98.8 ± 3.1 | 40 | 96.2 | 99.6 ± 1.1 | 10 | 100.0 |
SVMs | 95.4 ± 3.2 | 40 | 96.2 | 100.0 ± 0.0 | 10 | 100.0 |
LR | 94.3 ± 2.9 | 80 | 97.5 | 100.0 ± 0.0 | 10 | 100.0 |
GB | 85.4 ± 6.1 | 30 | 92.5 | 98.6 ± 0.6 | 10 | 87.3 |
Approach | Algorithm | LIBS | Fluorescence Spectroscopy | ||||
---|---|---|---|---|---|---|---|
Classification (%) | No. of PCs | Prediction (%) | Classification (%) | No. of PCs | Prediction (%) | ||
Only pure EVOOs | LDA | 98.8 ± 2.9 | 20 | 100.0 | 97.5 ± 1.9 | 30 | 80.0 |
SVMs | 100.0 ± 0.0 | 30 | 98.8 | 99.4 ± 1.2 | 40 | 80.0 | |
LR | 100.0 ± 0.0 | 40 | 98.7 | 98.4 ± 2.1 | 60 | 87.5 | |
GB | 98.1 ± 3.2 | 30 | 90.0 | 98.1 ± 2.5 | 30 | 61.3 | |
Only mixtures | LDA | 97.8 ± 1.8 | 170 | 99.4 | 97.5 ± 1.6 | 80 | 99.7 |
SVMs | 98.1 ± 0.9 | 190 | 99.4 | 99.0 ± 0.8 | 20 | 99.7 | |
LR | 97.7 ± 1.0 | 170 | 99.1 | 98.9 ± 1.0 | 30 | 100.0 | |
GB | 94.9 ± 2.2 | 190 | 94.4 | 99.7 ± 0.4 | 50 | 99.4 | |
EVOOs and mixtures | LDA | 98.8 ± 0.9 | 110 | 99.0 | 93.5 ± 2.2 | 70 | 95.0 |
SVMs | 98.4 ± 1.3 | 110 | 100.0 | 97.8 ± 0.8 | 30 | 98.5 | |
LR | 97.3 ± 1.3 | 110 | 98.2 | 95.9 ± 1.5 | 70 | 97.2 | |
GB | 96.6 ± 1.9 | 60 | 95.3 | 99.6 ± 0.6 | 50 | 86.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekogianni, M.; Stamatoukos, T.; Nanou, E.; Couris, S. Laser-Induced Breakdown Spectroscopy vs. Fluorescence Spectroscopy for Olive Oil Authentication. Foods 2025, 14, 1045. https://doi.org/10.3390/foods14061045
Bekogianni M, Stamatoukos T, Nanou E, Couris S. Laser-Induced Breakdown Spectroscopy vs. Fluorescence Spectroscopy for Olive Oil Authentication. Foods. 2025; 14(6):1045. https://doi.org/10.3390/foods14061045
Chicago/Turabian StyleBekogianni, Marios, Theodoros Stamatoukos, Eleni Nanou, and Stelios Couris. 2025. "Laser-Induced Breakdown Spectroscopy vs. Fluorescence Spectroscopy for Olive Oil Authentication" Foods 14, no. 6: 1045. https://doi.org/10.3390/foods14061045
APA StyleBekogianni, M., Stamatoukos, T., Nanou, E., & Couris, S. (2025). Laser-Induced Breakdown Spectroscopy vs. Fluorescence Spectroscopy for Olive Oil Authentication. Foods, 14(6), 1045. https://doi.org/10.3390/foods14061045