An Assessment of the Freshness of Fruits and Vegetables Through the Utilization of Bioimpedance Spectroscopy (BIS)—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Materials
2.2. Measurement Equipment and Configuration
2.3. Bioimpedance Measurement
2.4. Statistical Analysis
3. Results
3.1. Changes in Phase Angle
3.2. Equivalent Circuit
3.3. Practical Significance of the Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pathmanaban, P.; Gnanavel, B.K.; Anandan, S.S. Recent Application of Imaging Techniques for Fruit Quality Assessment. Trends Food Sci. Technol. 2019, 94, 32–42. [Google Scholar] [CrossRef]
- Chin-Hashim, N.F.; Khaled, A.Y.; Jamaludin, D.; Abd Aziz, S. Electrical Impedance Spectroscopy for Moisture and Oil Content Prediction in Oil Palm (Elaeis Guineensis Jacq.) Fruitlets. Plants 2022, 11, 3373. [Google Scholar] [CrossRef] [PubMed]
- Scagliusi, S.F.; Giménez-Miranda, L.; Pérez-García, P.; Fernández, D.M.; Medrano, F.J.; Huertas, G.; Yúfera, A. Bioimpedance Spectroscopy-Based Edema Supervision Wearable System for Noninvasive Monitoring of Heart Failure. IEEE Trans. Instrum. Meas. 2023, 72, 4006608. [Google Scholar] [CrossRef]
- Forte, A.J.; Huayllani, M.T.; Boczar, D.; Ciudad, P.; Lu, X.; Kassis, S.; Parker, A.S.; Moore, P.A.; McLaughlin, S.A. Bioimpedance Spectroscopy for Assessment of Breast Cancer-Related Lymphedema: A Systematic Review. Plast. Aesthetic Nurs. 2020, 40, 86. [Google Scholar] [CrossRef]
- Lyons-Reid, J.; Ward, L.C.; Tint, M.-T.; Kenealy, T.; Godfrey, K.M.; Chan, S.-Y.; Cutfield, W.S. The Influence of Body Position on Bioelectrical Impedance Spectroscopy Measurements in Young Children. Sci. Rep. 2021, 11, 10346. [Google Scholar] [CrossRef]
- Marini, E.; Campa, F.; Buffa, R.; Stagi, S.; Matias, C.N.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Phase Angle and Bioelectrical Impedance Vector Analysis in the Evaluation of Body Composition in Athletes. Clin. Nutr. 2020, 39, 447–454. [Google Scholar] [CrossRef]
- Caicedo-Eraso, J.C.; Díaz-Arango, F.O.; Osorio-Alturo, A.; Caicedo-Eraso, J.C.; Díaz-Arango, F.O.; Osorio-Alturo, A. Electrical Impedance Spectroscopy Applied to Quality Control in the Food Industry. Cienc. Tecnol. Agropecu. 2020, 21, 100–119. [Google Scholar] [CrossRef]
- Rao, M.A.; Rizvi, S.S.; Datta, A.K.; Ahmed, J. Engineering Properties of Foods; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Soumitra, T. Physical, Optical and Electrical Properties of Food Material; Bilaspur University: Bilaspur, India, 2004; Available online: https://www.bilaspuruniversity.ac.in/PDF/Departments/FoodProcessingNTechnology/Notes%20Engg%20Properties%20of%20Food.pdf (accessed on 4 March 2025).
- Banti, M. Review on Electrical Conductivity in Food, the Case in Fruits and Vegetables. World J. Food Sci. Technol. 2020, 4, 80–89. [Google Scholar] [CrossRef]
- Yongnian, Z.; Yinhe, C.; Yihua, B.; Xiaochan, W.; Jieyu, X. Tomato Maturity Detection Based on Bioelectrical Impedance Spectroscopy. Comput. Electron. Agric. 2024, 227, 109553. [Google Scholar] [CrossRef]
- Riaz, S.; Ibba, P.; Nadja, S.; Rasheed, A.; Lugli, P.; Zanella, A.; Petti, L. Exploring the Potential of Electrical Impedance Spectroscopy for Predicting Internal Browning in Apples. In Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Pisa, Italy, 6–8 November 2023; pp. 414–418. [Google Scholar]
- Ibba, P.; Falco, A.; Abera, B.D.; Cantarella, G.; Petti, L.; Lugli, P. Bio-Impedance and Circuit Parameters: An Analysis for Tracking Fruit Ripening. Postharvest Biol. Technol. 2020, 159, 110978. [Google Scholar] [CrossRef]
- Afonso, J.; Guedes, C.; Santos, V.; Morais, R.; Silva, J.; Teixeira, A.; Silva, S. Utilization of Bioelectrical Impedance to Predict Intramuscular Fat and Physicochemical Traits of the Beef Longissimus Thoracis et Lumborum Muscle. Foods 2020, 9, 836. [Google Scholar] [CrossRef] [PubMed]
- Marchello, M.J.; Slanger, W.D.; Carlson, J.K. Bioelectrical Impedance: Fat Content of Beef and Pork from Different Size Grinds. J. Anim. Sci. 1999, 77, 2464–2468. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Zhang, C.; Gao, Y.; Wang, X. Bio-Impedance Measurements for Meat Quality Determination of Pork Loins under Repeated Freeze-Thaw Treatments. J. Food Compos. Anal. 2024, 125, 105779. [Google Scholar] [CrossRef]
- Ward, L.; Hopkins, D.; Dunshea, F.; Ponnampalam, E. Evaluating Meat Quality with Bioelectrical Impedance Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1. [Google Scholar]
- Guermazi, M.; Kanoun, O.; Derbel, N. Investigation of Long Time Beef and Veal Meat Behavior by Bioimpedance Spectroscopy for Meat Monitoring. IEEE Sens. J. 2014, 14, 3624–3630. [Google Scholar] [CrossRef]
- Veiga, E.; Bertemes Filho, P. Bioelectrical Impedance Analysis of Bovine Milk Fat. J. Phys. Conf. Ser. 2012, 407, 012009. [Google Scholar] [CrossRef]
- de Oliveira Meira, A.C.F.; de Morais, L.C.; de Oliveira Paula, M.M.; Pinto, S.M.; de Resende, J.V. Application of Electrical Impedance Spectroscopy for the Characterisation of Yoghurts. Int. Dairy J. 2023, 141, 105625. [Google Scholar] [CrossRef]
- Schumacher, L.L.; Viégas, J.; Naetzold, S.; Tonin, T.J.; Rocha, L.; Cauduro, L.; Moro, A.B.; Robalo, S.S. Use of Electrical Bioimpedance Analysis to Evaluate the Quality of Bovine Raw Milk. S. Afr. J. Anim. Sci. 2019, 49, 725–734. [Google Scholar] [CrossRef]
- Bertemes Filho, P.; Negri, L.; Paterno, A. Detection of Bovine Milk Adulterants Using Bioimpedance Measurements and Artificial Neural Network; Springer: Berlin/Heidelberg, Germany, 2011; Volume 37, ISBN 978-3-642-23507-8. [Google Scholar]
- Veiga, E.; Martins, C.; Santos, M. Evaluation of Electrical Bioimpedance Spectroscopy for Detection of Milk Adulteration—Preliminary Results. In Proceedings of the American Dairy Science Association—ADSA 2017 Annual Meeting, Pittsburgh, PA, USA, 25–28 June 2017. [Google Scholar]
- Lamlih, A.; Freitas, P.; Belhaj, M.-M.; Salles, J.; Kerzerho, V.; Soulier, F.; Bernard, S.; Rouyer, T.; Bonhommeau, S. A Hybrid Bioimpedance Spectroscopy Architecture for a Wide Frequency Exploration of Tissue Electrical Properties. In Proceedings of the 2018 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Verona, Italy, 8–10 October 2018; IEEE: New York, NY, USA, 2018; pp. 168–171. [Google Scholar]
- Ain, K.; Wibowo, R.; Soelistiono, S.; Muniroh, L.; Ariwanto, B. Design and Development of a Low-Cost Arduino-Based Electrical Bioimpedance Spectrometer. J. Med. Signals Sens. 2020, 10, 125. [Google Scholar] [CrossRef]
- Cole, K.S. Permeability and Impermeability of Cell Membranes for Ions. Cold Spring Harb. Symp. Quant. Biol. 1940, 8, 110–122. [Google Scholar] [CrossRef]
- Hayden, R.I.; Moyse, C.A.; Calder, F.W.; Crawford, D.P.; Fensom, D.S. Electrical Impedance Studies on Potato and Alfalfa Tissue. J. Exp. Bot. 1969, 20, 177–200. [Google Scholar] [CrossRef]
- Cai, H.; Wu, J.; Chen, J.; Xu, G. Bio-Electrical Properties of Apples in Function of Sample Volume and Temperature and Probe Configuration. Rev. Bras. Eng. Agríc. Ambient. 2024, 29, e281846. [Google Scholar] [CrossRef]
- Fang, Q.; Liu, X.; Cosic, I. Bioimpedance Study on Four Apple Varieties. In Proceedings of the 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, Graz, Austria, 29 August–2 September 2007; Scharfetter, H., Merwa, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 114–117. [Google Scholar]
- Deshpande, S.; Datar, R.; Kulkarni, S.; Bacher, G. Freshness Analysis of Orange Using Bio-Impedance Measurement and Machine Learning Algorithms. In Proceedings of the 2023 16th International Conference on Sensing Technology (ICST), Hyderabad, India, 17–20 December 2023; pp. 1–6. [Google Scholar]
- Bauchot, A.; Harker, F.; Arnold, W.M. The Use of Electrical Impedance Spectroscopy to Assess the Physiological Condition of Kiwifruit. Postharvest Biol. Technol. 2000, 18, 9–18. [Google Scholar] [CrossRef]
- Harker, F.R.; Dunlop, J. Electrical Impedance Studies of Nectarines during Coolstorage and Fruit Ripening. Postharvest Biol. Technol. 1994, 4, 125–134. [Google Scholar] [CrossRef]
- Ibba, P.; Tronstad, C.; Moscetti, R.; Mimmo, T.; Cantarella, G.; Petti, L.; Martinsen, Ø.G.; Cesco, S.; Lugli, P. Supervised Binary Classification Methods for Strawberry Ripeness Discrimination from Bioimpedance Data. Sci. Rep. 2021, 11, 11202. [Google Scholar] [CrossRef]
- González-Araiza, J.; Ortiz, C.; Vargas, M.; Cabrera-Sixto, J. Application of Electrical Bio-Impedance for the Evaluation of Strawberry Ripeness. Int. J. Food Prop. 2016, 20, 1044–1050. [Google Scholar] [CrossRef]
- Chowdhury, A.; Kanti Bera, T.; Ghoshal, D.; Chakraborty, B. Electrical Impedance Variations in Banana Ripening: An Analytical Study with Electrical Impedance Spectroscopy. J. Food Process Eng. 2017, 40, e12387. [Google Scholar] [CrossRef]
- Rehman, M.; Zneid, B.; Abdullah, M.; Arshad, M.R. Assessment of Quality of Fruits Using Impedance Spectroscopy. Int. J. Food Sci. Technol. 2011, 46, 1303–1309. [Google Scholar] [CrossRef]
- Islam, M.; Wahid, K.; Dinh, A. Assessment of Ripening Degree of Avocado by Electrical Impedance Spectroscopy and Support Vector Machine. J. Food Qual. 2018, 2018, 4706147. [Google Scholar] [CrossRef]
- Krapac, M.; Gunjača, J.; Sladonja, B.; Benčić, Đ.; Brkić Bubola, K. Electrical Impedance Spectroscopy: A Tool for Determining the Harvesting Time of Olive Fruit. Horticulturae 2024, 10, 1131. [Google Scholar] [CrossRef]
- Meding, J.; Tuvshinbayar, K.; Döpke, C.; Tamoue, F. Textile Electrodes for Bioimpedance Measuring. Commun. Dev. Assem. Text. Prod. 2021, 2, 49–60. [Google Scholar] [CrossRef]
- Krishnan, G.H.; Santhosh, S.; Mohandass, G.; Sudhakar, T. Non-Invasive Bio-Impedance Diagnostics: Delving into Signal Frequency and Electrode Placement Effects. Biomed. Pharmacol. J. 2024, 17, 769–778. [Google Scholar] [CrossRef]
- Kubendran, R.; Lee, S.; Mitra, S.; Yazicioglu, R. Error Correction Algorithm for High Accuracy Bio-Impedance Measurement in Wearable Healthcare Applications. Biomed. Circuits Syst. IEEE Trans. 2014, 8, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Monge Brenes, A.L.; Brown, W.; Steinmaus, S.; Brecht, J.K.; Xie, Y.; Bornhorst, E.R.; Luo, Y.; Zhou, B.; Shaw, A.; Vorst, K. Temperature Profiling of Open- and Closed-Doored Produce Cases in Retail Grocery Stores. Food Control 2020, 113, 107158. [Google Scholar] [CrossRef]
- Dipa, S.A.; Pramanik, M.M.; Rabbani, M.; Kadir, M.A. Effects of Temperature on Electrical Impedance of Biological Tissues: Ex-Vivo Measurements. J. Electr. Bioimpedance 2024, 15, 116–124. [Google Scholar] [CrossRef] [PubMed]
Date of Measure-ments | 20 November 2023 | 21 November 2023 | 22 November 2023 | 23 November 2023 | 24 November 2023 | 27 November 2023 | 28 November 2023 | 29 November 2023 | 30 November 2023 | Frequency | |
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | |||||||||||
Banana | 16,130 | 14,677 | 8785 | 7910 | 7408 | 6868 | 6490 | 5949 | 5357 | 100 Hz | |
12,979 | 11,392 | 6708 | 6023 | 5635 | 5227 | 4925 | 4578 | 4228 | 1 kHz | ||
4569 | 4144 | 2967 | 2801 | 2671 | 2542 | 2414 | 2284 | 2177 | 10 kHz | ||
968 | 955 | 728 | 701 | 679 | 656 | 636 | 607 | 588 | 100 kHz | ||
260 | 265 | 233 | 218 | 201 | 194 | 196 | 193 | 190 | 1 MHz | ||
Pumpkin | 55,955 | 36,353 | 25,619 | 20,886 | 15,699 | 12,700 | 9988 | 9526 | 8910 | 100 Hz | |
27,568 | 19,452 | 14,396 | 12,537 | 10,607 | 8993 | 8032 | 7794 | 7371 | 1 kHz | ||
6810 | 6494 | 5280 | 5002 | 4701 | 4305 | 4251 | 4141 | 3990 | 10 kHz | ||
1727 | 1704 | 1390 | 1304 | 1231 | 1145 | 1134 | 1109 | 1077 | 100 kHz | ||
568 | 469 | 462 | 412 | 367 | 323 | 309 | 298 | 294 | 1 MHz | ||
Apple | 1,951,974 | 1,833,875 | 1,467,801 | 1,444,473 | 1,434,312 | 1,437,876 | 1,453,127 | 1,483,855 | 1,456,841 | 100 Hz | |
307,508 | 288,505 | 231,104 | 231,055 | 228,579 | 230,109 | 233,504 | 237,209 | 239,628 | 1 kHz | ||
43,109 | 42,797 | 34710 | 34,998 | 34,363 | 34,505 | 34,730 | 35,040 | 35,698 | 10 kHz | ||
5778 | 6044 | 5133 | 5113 | 4978 | 4969 | 4994 | 5009 | 5097 | 100 kHz | ||
2000 | 2247 | 2825 | 2511 | 2306 | 2190 | 2229 | 2091 | 2085 | 1 MHz | ||
Potato | 257,728 | 186,485 | 142,303 | 126,359 | 116,337 | 98,624 | 100,205 | 99,473 | 98,201 | 100 Hz | |
42,915 | 34,604 | 27,372 | 25518 | 24,346 | 22,565 | 22,767 | 22,380 | 22,047 | 1 kHz | ||
8145 | 7377 | 5802 | 5390 | 5115 | 4708 | 4717 | 4606 | 4515 | 10 kHz | ||
1689 | 1637 | 1280 | 1138 | 1069 | 911 | 909 | 890 | 871 | 100 kHz | ||
783 | 683 | 704 | 651 | 596 | 461 | 462 | 439 | 412 | 1 MHz | ||
Red Pepper | 376,420 | 342,961 | 137,915 | 309,635 | 414,642 | 242,863 | 220,482 | 208,048 | 247,291 | 100 Hz | |
84,965 | 75,313 | 34,125 | 64,219 | 83,917 | 57,117 | 54,747 | 52,892 | 57,955 | 1 kHz | ||
15,814 | 14,329 | 10,560 | 10,903 | 14,629 | 11,199 | 10,904 | 10,545 | 11,061 | 10 kHz | ||
3065 | 3126 | 2563 | 2518 | 3123 | 2407 | 2366 | 2265 | 2336 | 100 kHz | ||
2417 | 2550 | 2977 | 2762 | 2338 | 2534 | 2570 | 2455 | 2343 | 1 MHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluza, M.; Karpiel, I.; Duch, K.; Komorowski, D.; Sieciński, S. An Assessment of the Freshness of Fruits and Vegetables Through the Utilization of Bioimpedance Spectroscopy (BIS)—A Preliminary Study. Foods 2025, 14, 947. https://doi.org/10.3390/foods14060947
Kluza M, Karpiel I, Duch K, Komorowski D, Sieciński S. An Assessment of the Freshness of Fruits and Vegetables Through the Utilization of Bioimpedance Spectroscopy (BIS)—A Preliminary Study. Foods. 2025; 14(6):947. https://doi.org/10.3390/foods14060947
Chicago/Turabian StyleKluza, Mirella, Ilona Karpiel, Klaudia Duch, Dariusz Komorowski, and Szymon Sieciński. 2025. "An Assessment of the Freshness of Fruits and Vegetables Through the Utilization of Bioimpedance Spectroscopy (BIS)—A Preliminary Study" Foods 14, no. 6: 947. https://doi.org/10.3390/foods14060947
APA StyleKluza, M., Karpiel, I., Duch, K., Komorowski, D., & Sieciński, S. (2025). An Assessment of the Freshness of Fruits and Vegetables Through the Utilization of Bioimpedance Spectroscopy (BIS)—A Preliminary Study. Foods, 14(6), 947. https://doi.org/10.3390/foods14060947