Effects of Different Drying Processes on Bioactive Components, Volatile Compounds, and In Vitro Inhibition of Starch Digestion in Mulberry Leaf Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples Using Different Drying Methods
2.3. Determination of TFC and TAC
2.4. Scanning Electron Microscopy
2.5. Color Measurement
2.6. Electronic Nose Analysis
2.7. Determination of Volatile Compounds
2.8. Determination of In Vitro Digestibility
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effects of Extraction Conditions on the Yield of TF and TA from ML
3.2. Determination of Bioactive Compounds
3.3. Morphology Characterization
3.4. Color
3.5. Volatile Compounds
3.5.1. Electronic Nose Analysis
3.5.2. Comparative Analysis of Gas Chromatography-Ion Mobility Spectrometry
3.6. Effect of Different Drying Methods on Inhibition of Starch Digestion of MLE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ML | mulberry leave |
MLE | mulberry leaf extracts |
FD | freeze-drying |
HAD | hot air drying |
SD | spray drying |
TAC | total alkaloids content |
TFC | total flavonoid content |
VOC | volatile compound |
GC-IMS | gas chromatography-ion mobility spectrometry |
SEM | scanning electron microscopy |
References
- Memete, A.R.; Timar, A.V.; Vuscan, A.N.; Miere Groza, F.; Venter, A.C.; Vicas, S.I. Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry. Plants 2022, 11, 152. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhu, Q.; Wang, X.; Wang, H. Mulberry leaf polyphenols alleviated high-fat diet-induced obesity in mice. Front. Nutr. 2022, 9, 979058. [Google Scholar] [CrossRef]
- Chen, S.; Xi, M.; Gao, F.; Li, M.; Dong, T.; Geng, Z.; Liu, C.; Huang, F.; Wang, J.; Li, X.; et al. Evaluation of mulberry leaves’ hypoglycemic properties and hypoglycemic mechanisms. Front. Pharmacol. 2023, 14, 1045309. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, X.; Zhou, D.; Jian, Y.; Jia, J.; Ge, F. Isolation of Chalcomoracin as a Potential α-Glycosidase Inhibitor from Mulberry Leaves and Its Binding Mechanism. Molecules 2022, 27, 5742. [Google Scholar] [CrossRef]
- Han, X.; Song, C.; Feng, X.; Wang, Y.; Meng, T.; Li, S.; Bai, Y.; Du, B.; Sun, Q. Isolation and hypoglycemic effects of water extracts from mulberry leaves in Northeast China. Food Funct. 2020, 11, 3112–3125. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, Y.; Shi, X.; Ye, C.; Wang, J.; Huang, J.; Zhang, B.; Deng, Z. Hepatoprotective effects of different mulberry leaf extracts against acute liver injury in rats by alleviating oxidative stress and inflammatory response. Food Funct. 2022, 13, 8593–8864. [Google Scholar] [CrossRef]
- Wu, W.; Li, H.; Chen, Y.; Luo, Y.; Zeng, J.; Huang, J.; Gao, T. Recent Advances in Drying Processing Technologies for Aquatic Products. Processes 2024, 12, 942. [Google Scholar] [CrossRef]
- Xiao, H.; Mujumdar, A.S. Importance of drying in support of human welfare. Dry. Technol. 2020, 38, 1542–1543. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Zhang, H.; Wan, Q.; Wang, Y. Effect of different drying and grinding techniques on the physicochemical properties and biological activities of fungal polysaccharides. Food Med. Homol. 2025, 2, 9420045. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Lu, S.; Tang, W.; Zhou, Y.; Quek, S.Y. Effects of different drying methods on phenolic components and in vitro hypoglycemic activities of pulp extracts from two Chinese bayberry (Myrica rubra Sieb. et Zucc.) cultivars. Food Sci. Hum. Well. 2022, 11, 366–373. [Google Scholar] [CrossRef]
- Thamkaew, G.; Sjöholm, I.; Galindo, F.G. A review of drying methods for improving the quality of dried herbs. Crit. Rev. Food Sci. 2021, 61, 1763–1786. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.B.A.; Habu, S.; de Lima, M.A.; Thomaz-Soccol, V.; Soccol, C.R. Influence of drying methods over in vitro antitumoral effects of exopolysaccharides produced by Agaricus blazei LPB 03 on submerged fermentation. Bioprocess Biosyst. Eng. 2011, 34, 253–261. [Google Scholar] [CrossRef]
- Bai, H.; Jiang, W.; Wang, X.; Hu, N.; Liu, L.; Li, X.; Xie, Y.; Wang, S. Component changes of mulberry leaf tea processed with honey and its application to in vitro and in vivo models of diabetes. Food Addit. Contaminants. Part A Chem. Anal. Control Expo. Risk Assess. 2021, 38, 1840–1852. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, Z.; Chen, Y.; Cao, J.; Tian, W.; Ma, B.; Dong, Y. Active components and biological functions of royal jelly. J. Funct. Foods 2021, 82, 104514. [Google Scholar] [CrossRef]
- Wang, B.; Duan, Y.; Wang, C.; Liu, C.; Wang, J.; Jia, J.; Wu, Q. Combined volatile compounds and non-targeted metabolomics analysis reveals variation in flavour characteristics, metabolic profiles and bioactivity of mulberry leaves after Monascus purpureus fermentation. J. Sci. Food Agric. 2024, 104, 3294–3305. [Google Scholar] [CrossRef]
- Gryn-Rynko, A.; Bazylak, G.; Olszewska-Slonina, D. New potential phytotherapeutics obtained from white mulberry (Morus alba L.) leaves. Biomed. Pharmacother. 2016, 84, 628–636. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, Y.; Ma, Z.; Li, Y.; Guo, J.; Meng, Q.; Bian, H. A novel formula from mulberry leaf ameliorates diabetic nephropathy in rats via inhibiting the TGF- β 1 pathway. Food Funct. 2015, 6, 3307–3315. [Google Scholar] [CrossRef]
- Sheng, Y.; Zheng, S.; Zhang, C.; Zhao, C.; He, X.; Xu, W.; Huang, K. Mulberry leaf tea alleviates diabetic nephropathy by inhibiting PKC signaling and modulating intestinal flora. J. Funct. Foods 2018, 46, 118–127. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Zhang, B.; Wang, J.; Shi, X.; Huang, J.; Yang, J.; Zhang, Y.; Deng, Z. Nutritional and functional components of mulberry leaves from different varieties: Evaluation of their potential as food materials. Int. J. Food Prop. 2018, 21, 1495–1507. [Google Scholar] [CrossRef]
- Kim, M.J.; Choi, S.J.; Shin, S.I.; Sohn, M.R.; Lee, C.J.; Kim, Y.; Cho, W.I.; Moon, T.W. Resistant glutarate starch from adlay: Preparation and properties. Carbohyd. Polym. 2008, 74, 787–796. [Google Scholar] [CrossRef]
- Jiao, S.; Zhong, Y.; Deng, Y. Hot air-assisted radio frequency heating effects on wheat and corn seeds: Quality change and fungi inhibition. J. Stored Prod. Res. 2016, 69, 265–271. [Google Scholar] [CrossRef]
- Da, D.; Nian, Y.; Shi, J.; Li, Y.; Zhao, D.; Zhang, G.; Li, C. Characterization of specific volatile components in braised pork with different tastes by SPME-GC/MS and electronic nose. J. Food Process. Pres. 2021, 45, e15492. [Google Scholar] [CrossRef]
- Xu, N.; Lai, Y.; Shao, X.; Zeng, X.; Wang, P.; Han, M.; Xu, X. Different analysis of flavors among soft-boiled chicken: Based on GC-IMS and PLS-DA. Food Biosci. 2023, 56, 103243. [Google Scholar] [CrossRef]
- Ding, Q.; Nie, S.; Hu, J.; Zong, X.; Li, Q.; Xie, M. In vitro and in vivo gastrointestinal digestion and fermentation of the polysaccharide from Ganoderma atrum. Food Hydrocoll. 2017, 63, 646–655. [Google Scholar] [CrossRef]
- Gouot, J.C.; Smith, J.P.; Holzapfel, B.P.; Barril, C. Grape Berry Flavonoid Responses to High Bunch Temperatures Post Véraison: Effect of Intensity and Duration of Exposure. Molecules 2019, 24, 4341. [Google Scholar] [CrossRef]
- Ziani, I.; Bouakline, H.; Yahyaoui, M.I.; Belbachir, Y.; Fauconnier, M.; Asehraou, A.; Tahani, A.; Talhaoui, A.; El Bachiri, A. The effect of ethanol/water concentration on phenolic composition, antioxidant, and antimicrobial activities of Rosmarinus tournefortii de Noé hydrodistillation solid residues. J. Food Meas. Charact. 2023, 17, 1602–1615. [Google Scholar] [CrossRef]
- Karaaslan, M.; Yilmaz, F.M.; Cesur, Ö.; Vardin, H.; Ikinci, A.; Dalgiç, A.C. Drying kinetics and thermal degradation of phenolic compounds and anthocyanins in pomegranate arils dried under vacuum conditions. Int. J. Food Sci. Technol. 2014, 49, 595–605. [Google Scholar] [CrossRef]
- Fan, D.; Liu, Z.; Li, Y.; Chen, Y.; Zhang, X. Effects of different drying methods on the chemical components and activities of Taihang chrysanthemum (Opisthopappus taihangensis). Food Chem. 2025, 466, 142262. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Lan, J.; Liu, B.; Wang, X.; Zhang, S.; Zuo, Y. Effect of Different Drying Techniques on the Bioactive Compounds, Antioxidant Ability, Sensory and Volatile Flavor Compounds of Mulberry. Foods 2024, 13, 2492. [Google Scholar] [CrossRef]
- Teferra, T.F. Possible actions of inulin as prebiotic polysaccharide: A review. Food Front. 2021, 2, 407–416. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, Y.; Huang, J.; Zeng, H.; Zheng, B. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chem. 2016, 197, 714–722. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Oszmiański, J. Effect of Drying Methods with the Application of Vacuum Microwaves on the Bioactive Compounds, Color, and Antioxidant Activity of Strawberry Fruits. J. Agric. Food Chem. 2009, 57, 1337–1343. [Google Scholar] [CrossRef]
- Kandansamy, K.; Somasundaram, P.D. Microencapsulation of Colors by Spray Drying—A Review. Int. J. Food Eng. 2012, 8, 1–15. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.; Tian, Y.; Kong, Y.; Liu, Y.; Luo, P.; Zhang, Z. Influence of different drying methods on the browning, phytochemical components and antioxidant capacity of Choerospondias axillaris fruits. LWT 2024, 205, 116511. [Google Scholar] [CrossRef]
- Jing, N.; Wang, M.; Gao, M.; Zhong, Z.; Ma, Y.; Wei, A. Color sensory characteristics, nutritional components and antioxidant capacity of Zanthoxylum bungeanum Maxim. as affected by different drying methods. Ind. Crop. Prod. 2021, 160, 113167. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Li, L.; Wang, S.; Liu, Y.; Gao, M. Effect of enzymatic hydrolysis on volatile flavor compounds of Monascus-fermented tartary buckwheat based on headspace gas chromatography-ion mobility spectrometry. Food Res. Int. 2023, 163, 112180. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.A.; Rodríguez, O.; Mata, V.G.; Rodrigues, A.E. The diffusion of perfume mixtures and the odor performance. Chem. Eng. Sci. 2009, 64, 2570–2589. [Google Scholar] [CrossRef]
- Bu, Y.; Zhao, Y.; Zhou, Y.; Zhu, W.; Li, J.; Li, X. Quality and flavor characteristics evaluation of red sea bream surimi powder by different drying techniques. Food Chem. 2023, 428, 136714. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Fu, Y.; Shi, Y.; Chen, F.; Guan, H.; Liu, L.; Zhang, C.; Zhu, P.; Liu, Y.; et al. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu. Food Chem. 2021, 346, 128880. [Google Scholar] [CrossRef]
- He, J.; Wu, X.; Yu, Z. Microwave pretreatment of camellia (Camellia oleifera Abel.) seeds: Effect on oil flavor. Food Chem. 2021, 364, 130388. [Google Scholar] [CrossRef]
- Merlo, T.C.; Lorenzo, J.M.; Saldaña, E.; Patinho, I.; Oliveira, A.C.; Menegali, B.S.; Selani, M.M.; Domínguez, R.; Contreras-Castillo, C.J. Relationship between volatile organic compounds, free amino acids, and sensory profile of smoked bacon. Meat Sci. 2021, 181, 108596. [Google Scholar] [CrossRef] [PubMed]
- Molina, A.M.; Swiegers, J.H.; Varela, C.; Pretorius, I.S.; Agosin, E. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Appl. Microbiol. Biot. 2007, 77, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, X.; Wang, Y.; Pan, D.; Sun, Y.; Cao, J. Study on the volatile compounds generated from lipid oxidation of Chinese bacon (unsmoked) during processing. Eur. J. Lipid Sci. Technol. 2017, 119, 1600512. [Google Scholar] [CrossRef]
- Bi, Y.; Ni, J.; Xue, X.; Zhou, Z.; Tian, W.; Orsat, V.; Yan, S.; Peng, W.; Fang, X. Effect of different drying methods on the amino acids, α-dicarbonyls and volatile compounds of rape bee pollen. Food Sci. Hum. Well. 2024, 13, 517–527. [Google Scholar] [CrossRef]
- Verzera, A.; Dima, G.; Tripodi, G.; Ziino, M.; Lanza, C.M.; Mazzaglia, A. Fast Quantitative Determination of Aroma Volatile Constituents in Melon Fruits by Headspace–Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry. Food Anal. Methods 2011, 4, 141–149. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, F.; Chen, X.; Wu, W.; Wang, L.; Shi, J.; Huang, Y.; Shen, Y.; Wu, G.; Guo, J. Characterization of key aroma compounds and regulation mechanism of aroma formation in local Binzi (Malus pumila × Malus asiatica) fruit. BMC Plant Biol. 2022, 22, 532. [Google Scholar] [CrossRef]
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Contreras-Ramos, S.M.; Orozco-Avila, I.; Jaramillo-Flores, E.; Lugo-Cervantes, E. Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chem. 2012, 132, 277–288. [Google Scholar] [CrossRef]
- Jia, X.; Liu, Y.; Han, Y. A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate. Sci. Rep. 2017, 7, 4333. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, S.; Zhu, Y.; Shi, W.; Zhang, Y.; Liu, Y. Effect of different drying methods on the taste and volatile compounds, sensory characteristics of Takifugu obscurus. Food Sci. Hum. Well. 2023, 12, 223–232. [Google Scholar] [CrossRef]
- Cano-García, L.; Rivera-Jiménez, S.; Belloch, C.; Flores, M. Generation of aroma compounds in a fermented sausage meat model system by Debaryomyces hansenii strains. Food Chem. 2014, 151, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yu, J.; Pei, F.; Mariga, A.M.; Ma, N.; Fang, Y.; Hu, Q. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME–GC–MS and electronic nose. Food Chem. 2016, 196, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesan, G.; Muniyandi, K.; Manoharan, A.L.; Nataraj, G.; Thangaraj, P. Understanding the bioaccessibility, α-amylase and α-glucosidase enzyme inhibition kinetics of Allmania nodiflora (L.) R.Br. ex Wight polyphenols during in vitro simulated digestion. Food Chem. 2022, 372, 131294. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, C.; Duan, Y.; Liu, C.; Zhang, X.; Jia, J.; Wu, Q. The effects of Monascus purpureus fermentation on metabolic profile, α-glucosidase inhibitory action, and in vitro digestion of mulberry leaves flavonoids. LWT 2023, 188, 115449. [Google Scholar] [CrossRef]
- González-Montoya, M.; Hernández-Ledesma, B.; Mora-Escobedo, R.; Martínez-Villaluenga, C. Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. Int. J. Mol. Sci. 2018, 19, 2883. [Google Scholar] [CrossRef]
FDMLE | HADMLE | SDMLE | |
---|---|---|---|
WC (%) | 17.35 ± 0.12 a | 13.22 ± 0.07 b | 12.09 ± 0.53 b |
TAC (mg DNJ/g DW) | 0.14 ± 0.02 a | 0.13 ± 0.01 a | 0.13 ± 0.02 a |
TFC (mg RE/g DW) | 19.32 ± 0.58 a | 4.89 ± 0.30 c | 13.70 ± 0.18 b |
Sample | L* | a* | b* | ΔE |
---|---|---|---|---|
FDMLE | 4.67 ± 0.01 b | −2.69 ± 0.01 b | 1.66 ± 0.00 b | 1.76 ± 0.00 b |
HADMLE | 5.61 ± 0.29 a | −2.65 ± 0.03 b | 2.94 ± 0.01 a | 3.28 ± 0.01 a |
SDMLE | 4.16 ± 0.03 c | −2.72 ± 0.06 b | 1.55 ± 0.09 b | 1.55 ± 0.04 c |
ML | 4.16 ± 0.03 c | −2.41 ± 0.03 a | 1.63 ± 0.05 b |
Count | Compound | CAS# | Formula | mw | RI | Rt (s) | Dt [a.u.] |
---|---|---|---|---|---|---|---|
Aldehydes | |||||||
1 | butanal | C123728 | C4H8O | 72.1 | 860.1 | 275.73 | 1.11252 |
2 | 3-Methyl-2-butenal (D) | C107868 | C5H8O | 84.1 | 1214.2 | 671.019 | 1.09273 |
3 | 3-Methyl-2-butenal (M) | C107868 | C5H8O | 84.1 | 1214.2 | 671.019 | 1.36005 |
4 | (E)-2-hexenal (D) | C6728263 | C6H10O | 98.1 | 1234.3 | 698.712 | 1.51411 |
5 | pentanal | C110623 | C5H10O | 86.1 | 967.8 | 342.119 | 1.185 |
6 | nonanal | C124196 | C9H18O | 142.2 | 1403.3 | 983.026 | 1.4784 |
7 | (E)-2-hexenal (M) | C6728263 | C6H10O | 98.1 | 1234.9 | 699.635 | 1.18354 |
8 | methacrolein | C78853 | C4H6O | 70.1 | 901.8 | 299.743 | 1.22033 |
9 | Heptal dehyde (M) | C111717 | C7H14O | 114.2 | 1196.1 | 647.138 | 1.3358 |
10 | Heptaldehyde (D) | C111717 | C7H14O | 114.2 | 1195.8 | 646.728 | 1.6909 |
11 | Hexanal | C66251 | C6H12O | 100.2 | 1104.5 | 486.272 | 1.26628 |
12 | (Z)-4-heptenal | C6728310 | C7H12O | 112.2 | 1256.1 | 730.033 | 1.14792 |
13 | 2-Methylbutanal | C96173 | C5H10O | 86.1 | 931.5 | 318.106 | 1.40064 |
14 | Furfural (D) | C98011 | C5H4O2 | 96.1 | 1490.9 | 1173.81 | 1.33121 |
15 | Furfural (M) | C98011 | C5H4O2 | 96.1 | 1493 | 1179.022 | 1.08437 |
Alcohols | |||||||
16 | (Z)-3-hexenol (D) | C928961 | C6H12O | 100.2 | 1400 | 976.564 | 1.51207 |
17 | (Z)-3-hexenol (M) | C928961 | C6H12O | 100.2 | 1401.4 | 979.334 | 1.22843 |
18 | 2-hexanol (D) | C626937 | C6H14O | 102.2 | 1218.5 | 676.877 | 1.27363 |
19 | 2-hexanol (M) | C626937 | C6H14O | 102.2 | 1433.5 | 1045.142 | 1.19265 |
20 | 3-Methyl-3-buten-1-ol | C763326 | C5H10O | 86.1 | 1230.8 | 693.845 | 1.43605 |
21 | ethanol | C64175 | C2H6O | 46.1 | 948.4 | 329.053 | 1.12792 |
22 | 2-Methyl-1-propanol (D) | C78831 | C4H10O | 74.1 | 1105.3 | 487.503 | 1.36492 |
23 | 2-Methyl-1-propanol (M) | C78831 | C4H10O | 74.1 | 1106.9 | 488.674 | 1.41296 |
24 | butan-1-ol (D) | C71363 | C4H10O | 74.1 | 1156.9 | 574.092 | 1.38183 |
25 | butan-1-ol (M) | C71363 | C4H10O | 74.1 | 1157.1 | 574.502 | 1.18173 |
26 | 3-Methyl-1-butanol | C123513 | C5H12O | 88.1 | 1218.9 | 677.506 | 1.48235 |
27 | 2-Methyl-1-butanol | C137326 | C5H12O | 88.1 | 1219.2 | 677.916 | 1.2334 |
28 | Propan-1-ol (D) | C71238 | C3H8O | 60.1 | 1051 | 419.456 | 1.25839 |
29 | Propan-1-ol(M) | C71238 | C3H8O | 60.1 | 1053.8 | 422.634 | 1.1098 |
30 | Butan-2-ol | C78922 | C4H10O | 74.1 | 1035.1 | 401.799 | 1.14876 |
31 | 1-Hexanol | C111273 | C6H14O | 102.17 | 1433.5 | 1045.142 | 1.19265 |
32 | 3-methylthiopropanol | C505102 | C4H10OS | 106.2 | 1701.7 | 1798.795 | 1.08406 |
Ketones | |||||||
33 | 6-methylhept-5-en-2-one | C110930 | C8H14O | 126.2 | 1347.9 | 878.716 | 1.17639 |
34 | 1-penten-3-one | C1629589 | C5H8O | 84.1 | 1040.9 | 408.155 | 1.31094 |
35 | 2-pentanone (D) | C107879 | C5H10O | 86.1 | 976.5 | 348.123 | 1.39429 |
36 | 2-pentanone (M) | C107879 | C5H10O | 86.1 | 978.1 | 349.182 | 1.12611 |
37 | Butan-2-one | C78933 | C4H8O | 72.1 | 919.7 | 310.69 | 1.24208 |
38 | 1-Hydroxy-2-propanone | C116096 | C3H6O2 | 74.1 | 1317.9 | 827.023 | 1.24373 |
39 | 4-Methyl-2-pentanone | C108101 | C6H12O | 100.2 | 994.5 | 360.835 | 1.47946 |
40 | 3-Hydroxy-2-butanone | C513860 | C4H8O2 | 88.1 | 1301.1 | 799.33 | 1.06416 |
Esters | |||||||
41 | ethyl acetate (D) | C141786 | C4H8O2 | 88.1 | 903.5 | 300.803 | 1.3345 |
42 | ethyl acetate (M) | C141786 | C4H8O2 | 88.1 | 904.1 | 311.604 | 1.1578 |
43 | Ethyl formate | C109944 | C3H6O2 | 74.1 | 836 | 262.752 | 1.06638 |
44 | ethyl-2-methyl butanoate | C7452791 | C7H14O2 | 130.2 | 1035.6 | 402.305 | 1.22615 |
45 | butyl butanoate | C109217 | C8H16O2 | 144.2 | 1232.9 | 696.767 | 1.33524 |
46 | 2-methylpropyl acetate | C110190 | C6H12O2 | 116.2 | 1018.2 | 383.795 | 1.23448 |
47 | methyl butanoate | C623427 | C5H10O2 | 102.1 | 975.5 | 347.416 | 1.4405 |
48 | methyl 2-methylbutanoate | C868575 | C6H12O2 | 116.2 | 1009.2 | 374.608 | 1.19044 |
Others | |||||||
49 | 2(3H)-Furanone, 5-methyl(D) | C591128 | C5H6O2 | 98.1 | 1442 | 1063.336 | 1.12436 |
50 | 2(3H)-Furanone, 5-methyl(M) | C591128 | C5H6O2 | 98.1 | 1442.5 | 1064.259 | 1.38352 |
51 | 2-acetylfuran (D) | C1192627 | C6H6O2 | 110.1 | 1536.9 | 1288.487 | 1.1239 |
52 | 2-acetylfuran (M) | C1192627 | C6H6O2 | 110.1 | 1538.9 | 1293.7 | 1.44102 |
53 | 2-acetylthiazole (D) | C24295032 | C5H5NOS | 127.2 | 1644.4 | 1601.842 | 1.12752 |
54 | 2-acetylthiazole (M) | C24295032 | C5H5NOS | 127.2 | 1645.5 | 1605.278 | 1.47801 |
55 | rose oxide | C16409431 | C10H18O | 154.2 | 1107.6 | 491.196 | 1.17422 |
56 | 1,4-dioxane | C123911 | C4H8O2 | 88.1 | 1084.8 | 459.598 | 1.12819 |
57 | 2,6-Dimethylpyrazine | C108509 | C6H8N2 | 108.1 | 1359.2 | 899.088 | 1.1393 |
58 | 2,5-dimethyl thiophene | C638028 | C6H8S | 112.2 | 1192.9 | 642.895 | 1.08013 |
59 | Acetic acid (D) | C64197 | C2H4O2 | 60.1 | 1495.9 | 1185.973 | 1.16167 |
60 | Acetic acid (M) | C64197 | C2H4O2 | 60.1 | 1504.6 | 1206.823 | 1.05187 |
61 | Ethylbenzene | C100414 | C8H10 | 106.2 | 1142.1 | 547.828 | 1.07746 |
62 | N, N-dimethylacetamide | C127195 | C4H9NO | 87.1 | 1410.2 | 996.872 | 1.06824 |
63 | 3-carene | C13466789 | C10H16 | 136.2 | 1131 | 528.951 | 1.21367 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, G.; Liu, Y.; Yuan, P.; Liu, S.; Yan, M.; Zou, Y.; Wang, H.; Zhang, T.; Duan, S.; et al. Effects of Different Drying Processes on Bioactive Components, Volatile Compounds, and In Vitro Inhibition of Starch Digestion in Mulberry Leaf Extracts. Foods 2025, 14, 998. https://doi.org/10.3390/foods14060998
Li H, Liu G, Liu Y, Yuan P, Liu S, Yan M, Zou Y, Wang H, Zhang T, Duan S, et al. Effects of Different Drying Processes on Bioactive Components, Volatile Compounds, and In Vitro Inhibition of Starch Digestion in Mulberry Leaf Extracts. Foods. 2025; 14(6):998. https://doi.org/10.3390/foods14060998
Chicago/Turabian StyleLi, Haizhi, Guoyu Liu, Yifeng Liu, Peng Yuan, Shiwei Liu, Mengqing Yan, Yan Zou, Haotian Wang, Tianyu Zhang, Shenglin Duan, and et al. 2025. "Effects of Different Drying Processes on Bioactive Components, Volatile Compounds, and In Vitro Inhibition of Starch Digestion in Mulberry Leaf Extracts" Foods 14, no. 6: 998. https://doi.org/10.3390/foods14060998
APA StyleLi, H., Liu, G., Liu, Y., Yuan, P., Liu, S., Yan, M., Zou, Y., Wang, H., Zhang, T., Duan, S., & Ma, C. (2025). Effects of Different Drying Processes on Bioactive Components, Volatile Compounds, and In Vitro Inhibition of Starch Digestion in Mulberry Leaf Extracts. Foods, 14(6), 998. https://doi.org/10.3390/foods14060998