Effect of Low-Temperature Plasma Sterilization on the Quality of Pre-Prepared Tomato-Stewed Beef Brisket During Storage: Microorganism, Freshness, Protein Oxidation and Flavor Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Packaging and Sterilization
2.3. Sample Collection
2.4. Total Viable Count
2.5. Shear Force, pH Value, and Water Holding Capacity
2.6. Thio Barbituric Acid Reactive Substances and Total Volatile Base Nitrogen
2.7. Sulfhydryl Content and Carbonyl Content
2.8. Volatile Compounds
2.9. E-Nose
2.10. Statistical Analysis
3. Results and Discussion
3.1. Total Viable Count (TVC)
3.2. Physicochemical Characteristics
3.3. Freshness
3.4. Protein Oxidation
3.5. Composition of Volatile Components
3.6. Electronic Nose
3.7. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Convenience Food—Worldwide. Statista Market Forecast. Available online: https://www.statista.com/outlook/cmo/food/convenience-food/worldwide (accessed on 2 February 2025).
- Pérez-Rodríguez, F.; Zamorano, A.R.; Posada-Izquierdo, G.D.; García-Gimeno, R.M. Study of the Effect of Post-Packaging Pasteurization and Argon Modified Atmosphere Packaging on the Sensory Quality and Growth of Endogenous Microflora of a Sliced Cooked Meat Product. Food Sci. Technol. Int. 2014, 20, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Capitain, C.; Weller, P. Non-Targeted Screening Approaches for Profiling of Volatile Organic Compounds Based on Gas Chromatography-Ion Mobility Spectroscopy (GC-IMS) and Machine Learning. Molecules 2021, 26, 5457. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Yan, H.; Manoli, T.; Mo, H.; Li, H.; Zhang, H. Changes in the Volatile Components of Squid (Illex argentinus) for Different Cooking Methods via Headspace—Gas Chromatography–Ion Mobility Spectrometry. Food Sci. Nutr. 2020, 8, 5748–5762. [Google Scholar] [CrossRef]
- Bi, J.; Ping, C.; Chen, Z.; Yang, Z.; Li, B.; Gao, Y.; Zhang, Y.; He, H. Evaluating the Influence of High-Temperature Sterilization and Pasteurization on Volatile Organic Compounds in Tomato Stewed Beef Brisket: An Analysis Using Gas Chromatography-Ion Mobility Spectrometry and Multivariate Statistical Visualization. Int. J. Gastron. Food Sci. 2024, 36, 100939. [Google Scholar] [CrossRef]
- Zhao, C.; Dai, J.; Chen, F.; Zhao, Z.; Zhao, X. The Effect of Different Sterilization Methods on the Shelf Life and Physicochemical Indicators of Fermented Pork Jerky. Front. Nutr. 2023, 10, 1240749. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Wu, W. Exploration of Ultra-High Pressure Sterilization on Cooked Duck Meat. Storage Process 2018, 18, 50–54. [Google Scholar] [CrossRef]
- Sun, M.; Ran, P.; Huang, Y. Effect of Ultra-High-Pressure Sterilization on Flavor and Physicochemical Properties of Low-Salt Sliced Bacon. Sci. Technol. Food Ind. 2024, 45, 101–109. [Google Scholar] [CrossRef]
- Zhang, J.; Toldra, F.; Kang, D.; Zhou, L.; Wang, J.; Zhang, W.; Hu, Y. Benefits of Ultrasonic Technology Application in Meat Field and Its Influential Mechanism: A Review. Crit. Rev. Food Sci. Nutr. 2024, 1–26. [Google Scholar] [CrossRef]
- Lee, J.; Lee, C.W.; Yong, H.I.; Lee, H.J.; Jo, C.; Jung, S. Use of Atmospheric Pressure Cold Plasma for Meat Industry. Korean J. Food Sci. Anim. Resour. 2017, 37, 477–485. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Kang, T.; Wijayasekara, K.N.; Jo, C. Innovative Application of Cold Plasma Technology in Meat and Its Products. Food Sci. Anim. Resour. 2023, 43, 1087–1110. [Google Scholar] [CrossRef]
- Akhtar, J.; Abrha, M.G.; Teklehaimanot, K.; Gebrekirstos, G. Cold Plasma Technology: Fundamentals and Effect on Quality of Meat and Its Products. Food Agric. Immunol. 2022, 33, 451–478. [Google Scholar] [CrossRef]
- Barjasteh, A.; Kaushik, N.; Choi, E.H.; Kaushik, N.K. Cold Atmospheric Pressure Plasma Solutions for Sustainable Food Packaging. Int. J. Mol. Sci. 2024, 25, 6638. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Yun, H.; Jung, S.; Jung, Y.; Jung, H.; Choe, W.; Jo, C. Effect of Atmospheric Pressure Plasma on Inactivation of Pathogens Inoculated onto Bacon Using Two Different Gas Compositions. Food Microbiol. 2011, 28, 9–13. [Google Scholar] [CrossRef]
- Yuan, H.; Chen, F.; Zhang, J.; Guo, X.; Zhang, J.; Yan, W. Investigating the Synergistic Bactericidal Effects of Cold Plasma and Ultraviolet Radiation on Pseudomonas fragi. Foods 2025, 14, 550. [Google Scholar] [CrossRef]
- Chen, Y.; He, Y.; Jin, T.; Dai, C.; Xu, Q.; Wu, Z. Bactericidal Effect of Low-Temperature Atmospheric Plasma against the Shigella flexneri. Biomed. Eng. Online 2023, 22, 119. [Google Scholar] [CrossRef]
- Li, P.; Zhang, H.; Tian, C.; Zou, H. Experimental Investigation of Bacterial Inactivation of Beef Using Indirect Cold Plasma in Cold Chain and at Room Temperature. Foods 2024, 13, 2846. [Google Scholar] [CrossRef] [PubMed]
- Sriraksha, M.S.; Ayenampudi, S.B.; Noor, M.; Raghavendra, S.N.; Chakka, A.K. Cold Plasma Technology: An Insight on Its Disinfection Efficiency of Various Food Systems. Food Sci. Technol. Int. 2023, 29, 428–441. [Google Scholar] [CrossRef]
- Qian, J.; Ma, L.; Yan, W.; Zhuang, H.; Huang, M.; Zhang, J.; Wang, J. Inactivation Kinetics and Cell Envelope Damages of Foodborne Pathogens Listeria Monocytogenes and Salmonella Enteritidis Treated with Cold Plasma. Food Microbiol. 2022, 101, 103891. [Google Scholar] [CrossRef]
- Luo, J.; Nasiru, M.M.; Yan, W.; Zhuang, H.; Zhou, G.; Zhang, J. Effects of Dielectric Barrier Discharge Cold Plasma Treatment on the Structure and Binding Capacity of Aroma Compounds of Myofibrillar Proteins from Dry-Cured Bacon. LWT-Food Sci. Technol. 2020, 117, 108606. [Google Scholar] [CrossRef]
- Abdel-Naeem, H.H.S.; Ebaid, E.M.S.M.; Khalel, K.H.M.; Imre, K.; Morar, A.; Herman, V.; EL-Nawawi, F.A.M. Decontamination of Chicken Meat Using Dielectric Barrier Discharge Cold Plasma Technology: The Effect on Microbial Quality, Physicochemical Properties, Topographical Structure, and Sensory Attributes. LWT-Food Sci. Technol. 2022, 165, 113739. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; Han, Q. Mechanisms of Bacterial Inhibition and Tolerance around Cold Atmospheric Plasma. Appl. Microbiol. Biotechnol. 2023, 107, 5301–5316. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Y.; Wang, J.; Jiang, W.; Wang, T.; Huang, F.; Han, D.; Zhang, C. Insights into the Flavor Endowment of Aroma-Active Compounds in Cloves (Syzygium aromaticum) to Stewed Beef. Food Chem. 2025, 462, 140704. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, Z.; Qian, J.; Dai, J. Effect of Cold Plasma on Microbial Decontamination and Storage Quality of Fish Fillets. Food Ferment. Ind. 2022, 48, 166–172. [Google Scholar]
- Gharibzahedi, S.M.T.; Mohammadnabi, S. Effect of Novel Bioactive Edible Coatings Based on Jujube Gum and Nettle Oil-Loaded Nanoemulsions on the Shelf-Life of Beluga Sturgeon Fillets. Int. J. Biol. Macromol. 2017, 95, 769–777. [Google Scholar] [CrossRef]
- Xiong, Z.; Sun, D.-W.; Pu, H.; Xie, A.; Han, Z.; Luo, M. Non-destructive prediction of thiobarbituric acid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging. Food Chem. 2015, 179, 175–181. [Google Scholar] [CrossRef]
- Bao, Y.; Ertbjerg, P. Relationship between Oxygen Concentration, Shear Force and Protein Oxidation in Modified Atmosphere Packaged Pork. Meat Sci. 2015, 110, 174–179. [Google Scholar] [CrossRef]
- Shi, Q.; Xiao, Y.; Zhou, Y.; Tang, W. Comparison of Ultra-High-Pressure and Conventional Cold Brew Coffee at Different Roasting Degrees: Physicochemical Characteristics and Volatile and Non-Volatile Components. Foods 2024, 13, 3119. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, R.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, P. Characterization of Ester Odorants of Apple Juice by Gas Chromatography-Olfactometry, Quantitative Measurements, Odour Threshold, Aroma Intensity and Electronic Nose. Food Res. Int. 2019, 120, 92–101. [Google Scholar] [CrossRef]
- GB 4789.2-2022; Determination of the Total Number of Colonies in Food Microbiological Inspection of China Food Safety National Standard. State Administration for Market Regulation, National Health Commission: Beijing, China, 2022.
- 2073/2005-EN; Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Publications Office of the European Union: Brussels, Belgium, 2005.
- Harikrishna, S.; Anil, P.P.; Shams, R.; Dash, K.K. Cold Plasma as an Emerging Nonthermal Technology for Food Processing: A Comprehensive Review. J. Agric. Food Res. 2023, 14, 100747. [Google Scholar] [CrossRef]
- Feizollahi, E.; Misra, N.N.; Roopesh, M.S. Factors Influencing the Antimicrobial Efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in Food Processing Applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 666–689. [Google Scholar] [CrossRef]
- Kim, H.-J.; Yong, H.I.; Park, S.; Choe, W.; Jo, C. Effects of Dielectric Barrier Discharge Plasma on Pathogen Inactivation and the Physicochemical and Sensory Characteristics of Pork Loin. Curr. Appl. Phys. 2013, 13, 1420–1425. [Google Scholar] [CrossRef]
- Misra, N.N.; Jo, C. Applications of Cold Plasma Technology for Microbiological Safety in Meat Industry. Trends Food Sci. Technol. 2017, 64, 74–86. [Google Scholar] [CrossRef]
- Wang, C. Effects of Cold Plasma Sterilization on Shelf Life and Flavor Quality of Salted Duck. Sci. Technol. Food Ind. 2021, 42, 70–77. [Google Scholar] [CrossRef]
- Bauer, A.; Ni, Y.; Bauer, S.; Paulsen, P.; Modic, M.; Walsh, J.L.; Smulders, F.J.M. The Effects of Atmospheric Pressure Cold Plasma Treatment on Microbiological, Physical-Chemical and Sensory Characteristics of Vacuum Packaged Beef Loin. Meat Sci. 2017, 128, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y. Overview on Changes and Mechanism of Low-Temperature Plasma Sterilization on Edible Quality of Meat Products. Food Ferment. Ind. 2024, 50, 332–340. [Google Scholar] [CrossRef]
- Jung, E.-Y.; Yun, I.-R.; Go, G.; Kim, G.-D.; Seo, H.-W.; Joo, S.-T.; Yang, H.-S. Effects of Radix puerariae Extracts on Physicochemical and Sensory Quality of Precooked Pork Sausage during Cold Storage. LWT-Food Sci. Technol. 2012, 46, 556–562. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, H.; Xu, X. Storage Characteristics and Shelf Life Prediction of Vacuum-Packed Salted Goose under Different Storage Temperatures. Food Sci. 2012, 33, 280–285. [Google Scholar]
- Sarangapani, C.; Keogh, D.R.; Dunne, J.; Bourke, P.; Cullen, P.J. Characterisation of Cold Plasma Treated Beef and Dairy Lipids Using Spectroscopic and Chromatographic Methods. Food Chem. 2017, 235, 324–333. [Google Scholar] [CrossRef]
- Ding, J.; Hu, X.; Lu, X. Storage Characteristics and Shelf-Life Prediction of Spicy Beef under Different Storage Temperatures. Mod. Food Sci. Technol. 2017, 33, 122–133. [Google Scholar] [CrossRef]
- Nawaz, A.; Irshad, S.; Khan, I.A.; Khalifa, I.; Walayat, N.; Aadil, R.M.; Kumar, M.; Wang, M.; Chen, F.; Cheng, K.-W.; et al. Protein Oxidation in Muscle-Based Products: Effects on Physicochemical Properties, Quality Concerns, and Challenges to Food Industry. Food Res. Int. 2022, 157, 111322. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Chen, Y.-Q.; Sun, D.-W. Effects of Plasma Activated Solution on the Colour and Structure of Metmyoglobin and Oxymyoglobin. Food Chem. 2021, 353, 129433. [Google Scholar] [CrossRef] [PubMed]
- Segat, A.; Misra, N.N.; Cullen, P.J.; Innocente, N. Atmospheric Pressure Cold Plasma (ACP) Treatment of Whey Protein Isolate Model Solution. Innov. Food Sci. Emerg. Technol. 2015, 29, 247–254. [Google Scholar] [CrossRef]
- Takai, E.; Kitano, K.; Kuwabara, J.; Shiraki, K. Protein Inactivation by Low-Temperature Atmospheric Pressure Plasma in Aqueous Solution. Plasma Process. Polym. 2012, 9, 77–82. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Zhang, Y.; Jiang, Y.; Sun, D.; Piao, C.; Li, T.; Wang, J.; Li, H.; Mu, B.; et al. Evaluation of the Flavor Profiles of Yanbian-Style Sauced Beef from Differently Treated Raw Beef Samples. Food Chem. X 2024, 22, 101505. [Google Scholar] [CrossRef] [PubMed]
- Perez-Andres, J.M.; de Alba, M.; Harrison, S.M.; Brunton, N.P.; Cullen, P.J.; Tiwari, B.K. Effects of Cold Atmospheric Plasma on Mackerel Lipid and Protein Oxidation during Storage. LWT-Food Sci. Technol. 2020, 118, 108697. [Google Scholar] [CrossRef]
- Nasiru, M.M.; Frimpong, E.B.; Muhammad, U.; Qian, J.; Mustapha, A.T.; Yan, W.; Zhuang, H.; Zhang, J. Dielectric Barrier Discharge Cold Atmospheric Plasma: Influence of Processing Parameters on Microbial Inactivation in Meat and Meat Products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2626–2659. [Google Scholar] [CrossRef]
- Huang, M.; Wang, J.; Zhuang, H.; Yan, W.; Zhao, J.; Zhang, J. Effect of In-Package High Voltage Dielectric Barrier Discharge on Microbiological, Color and Oxidation Properties of Pork in Modified Atmosphere Packaging during Storage. Meat Sci. 2019, 149, 107–113. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Han, Y.; Xu, L.; Jin, J.; Cai, Y.; Wang, H. Analysis of Volatile Compounds between Raw and Cooked Beef by HS-SPME–GC–MS. J. Food Process. Preserv. 2018, 42, e13503. [Google Scholar] [CrossRef]
- Wang, T.; Yang, P.; Huang, F.; Qiang, Y.; Han, D. Interaction Mechanisms for the Muscle Proteins with Terpenoid Compounds during Heat Treatment. Trans. Chin. Soc. Agric. Eng. 2023, 39, 286–294. [Google Scholar] [CrossRef]
- Pan, Q.; Shao, X.; Xiao, Q.; Gu, Q.; Chen, C.; Xu, B.; Li, P. Revealing the Flavor Changes of Spiced Beef under Different Thermal Treatment Temperatures: A Complementary Approach with GC-IMS and GC-O-MS. Food Chem. 2025, 473, 143074. [Google Scholar] [CrossRef]
- Wang, Q.; Du, R.; Wang, Y.; Zhang, S.; Wang, L.; Wang, L. Characterization and Differentiation of Flavor Profile of 12 Air-Dried Yak Meat Products Using GC-IMS and Multivariate Analysis. Foods 2024, 13, 2626. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Yang, X.; Han, S.; Fan, B.; Zhao, Z.; Wu, X.; Qian, J. Nondestructive Prediction of Tilapia Fillet Freshness During Storage at Different Temperatures by Integrating an Electronic Nose and Tongue with Radial Basis Function Neural Networks. Food Bioprocess Technol. 2018, 11, 1840–1852. [Google Scholar] [CrossRef]
- Lee, H.J.; Kwon, J.A.; Kim, M.; Lee, Y.E.; Ryu, M.; Jo, C. Effect of Supercooling on Storage Ability of Different Beef Cuts in Comparison to Traditional Storage Methods. Meat Sci. 2023, 199, 109137. [Google Scholar] [CrossRef] [PubMed]
Number | Sensor Code | Performance |
---|---|---|
R1 | W1C | Sensitive to aromatic compounds |
R2 | W5S | Sensitive to nitrogen oxides |
R3 | W3C | Sensitive to ammonia and aromatic compounds |
R4 | W6S | Sensitive to hydrogen compounds |
R5 | W5C | Sensitive to alkanes and aromatic compounds |
R6 | W1S | Sensitive to short-chain alkanes |
R7 | W1W | Sensitive to alcohols, aldehydes, ethers, and ketones |
R8 | W2S | Sensitive to inorganic sulfur and terpene compounds |
R9 | W2W | Sensitive to organic sulfur and terpene compounds |
R10 | W3S | Sensitive to long chain alkanes |
Different Sterilization Treatments (Carrier Gas, Voltage, and Sterilization Time) | Total Viable Count | ||
---|---|---|---|
24 h (lg(CFU/g)) | 48 h (lg(CFU/g)) | 72 h (lg(CFU/g)) | |
US | 0.95 ± 0.05 a | 2.51 ± 0.4 a | 4.47 ± 0.08 a |
HSS | 0.53 ± 0.21 c | 1.15 ± 0.06 fg | 1.17 ± 0.08 f |
Air 120 KV 150 S | 0.9 ± 0.05 a | 1.9 ± 0.28 b | 2.88 ± 0.18 b |
Air 120 KV 300 S | 0.88 ± 0.09 a | 1.81 ± 0.25 b | 2.51 ± 0.02 c |
Air 120 KV 450 S | 0.92 ± 0.06 a | 1.69 ± 0.22 bcd | 2.37 ± 0.11 c |
Air 140 KV 150 S | 0.8 ± 0.08 abc | 1.74 ± 0.24 bc | 2.82 ± 0.06 b |
Air 140 KV 300 S | 0.84 ± 0.06 ab | 1.57 ± 0.19 cde | 2.37 ± 0.03 c |
Air 140 KV 450 S | 0.84 ± 0.06 ab | 1.37 ± 0.13 ef | 2.26 ± 0.04 c |
Air 160 KV 150 S | 0.67 ± 0.06 abc | 1.5 ± 0.17 de | 1.94 ± 0.08 d |
Air 160 KV 300 S | 0.68 ± 0.14 abc | 1.35 ± 0.13 ef | 1.95 ± 0.12 d |
Air 160 KV 450 S | 0.55 ± 0.13 bc | 1.1 ± 0.04 g | 1.66 ± 0.07 e |
Storage Time(d) | Shear Force/gf | pH | WHC/% | |||
---|---|---|---|---|---|---|
LTPS | HSS | LTPS | HSS | LTPS | HSS | |
US | 2401.59 ± 187.70 ab | 2422.08 ± 176.38 ab | 7.2 ± 0.41 a | 7.51 ± 0.32 a | 28.76 ± 0.14 a | 29.04 ± 0.12 a |
0 | 2414.33 ± 143.46 ab | 2491.64 ± 253.11 ab | 6.79 ± 0.32 a | 6.51 ± 0.60 a | 29.45 ± 0.31 a | 28.33 ± 0.16 a |
5 | 2362.79 ± 264.70 abc | 2046.94 ± 208.12 b | 6.51 ± 0.34 ab | 6.22 ± 0.74 a | 28.79 ± 0.32 b | 27.82 ± 0.13 b |
10 | 2268.63 ± 252.11 bcd | 1993.09 ± 232.24 ab | 6.09 ± 0.75 bc | 5.54 ± 0.46 ab | 28.42 ± 0.17 bc | 26.85 ± 0.06 c |
Days | Sulfhydryl Content/nmol/mg | Carbonyl Content/nmol/mg | ||
---|---|---|---|---|
HSS | LTPS | HSS | LTPS | |
US | 383.63 ± 9.48 a | 384.84 ± 5.04 a | 175.18 ± 10.32 d | 174.87 ± 8.32 cd |
0 | 335.75 ± 6.05 a | 354.37 ± 9.90 b | 198.11 ± 14.63 bc | 185.61 ± 7.60 bc |
5 | 312.87 ± 5.27 bc | 320.05 ± 7.68 b | 207.43 ± 23.95 b | 198.66 ± 14.44 bc |
10 | 272.61 ± 5.08 d | 302.00 ± 4.93 bc | 254.73 ± 6.66 a | 222.94 ± 6.56 b |
CAS | Compound | Odor Description | m/z | OAVs | ||||||
---|---|---|---|---|---|---|---|---|---|---|
US | LTPS-0d | LTPS-5d | LTPS-10d | HSS-0d | HSS-5d | HSS-10d | ||||
123-11-5 | Benzaldehyde | sweet, powdery, mimosa, floral, beef | 135, 136, 77 | 1606.81 | 2457.74 | 3604.89 | 5260.61 | 246.13 | 360.67 | 527.96 |
110-38-3 | Decanoic acid, ethyl ester | sweet, waxy, fruity, apple, grape | 97, 102 | 925.57 | 1051.68 | 1207.77 | 1423.40 | 5.05 | 3.04 | 1.85 |
79-77-6 | trans-β-Ionone | dry, powdery, floral, woody, orris | 177, 43, 91 | 249.55 | 409.87 | 503.69 | 802.03 | 3.06 | 3.71 | 6.20 |
693-54-9 | 2-Decanone | orange, floral, fatty, peach | 58, 43, 71 | 951.02 | 535.74 | 100.07 | 208.57 | 190.84 | 167.30 | 111.82 |
105-87-3 | Geranyl acetate | floral, rose, lavender, green, waxy | 69, 41, 43 | 68.03 | 91.00 | 122.54 | 176.94 | 13.93 | 19.26 | 27.23 |
91-57-6 | Naphthalene, 2-methyl- | sweet, floral, woody | 142, 141, 115 | 115.37 | 141.34 | 161.74 | 177.03 | 0.48 | 1.01 | 2.28 |
80-56-8 | α-Pinene | fresh, camphor, sweet, pine, earthy | 93, 91, 39 | 23.23 | 27.84 | 98.58 | 132.67 | 59.74 | 209.35 | 281.63 |
3387-41-5 | sabinene | woody, terpene, citrus, pine, spice | 93, 91, 77 | 31.98 | 48.88 | 76.19 | 90.87 | 6.25 | 6.72 | 7.20 |
142-62-1 | Hexanoic acid | sour, fatty, sweat, cheese | 60, 73, 41 | 37.77 | 48.27 | 51.76 | 81.10 | 35.00 | 40.27 | 80.99 |
123-35-3 | β-Myrcene | peppery, terpene, spicy, balsam, plastic | 41, 69, 93 | 20.55 | 27.43 | 35.77 | 47.11 | 31.10 | 44.51 | 62.22 |
616-25-1 | 1-Penten-3-ol | ethereal, horseradish, green, radish | 57, 29, 27 | 14.23 | 16.49 | 33.99 | 40.91 | 6.77 | 14.49 | 16.66 |
108-88-3 | Toluene | sweet | 91, 92, 65 | 116.14 | 87.78 | 43.10 | 26.92 | 48.19 | 75.47 | 91.04 |
109-52-4 | Pentanoic acid | sickening, putrid, acidic, sweaty, rancid | 60, 73, 41 | 3.46 | 6.67 | 14.59 | 22.56 | 169.94 | 221.67 | 273.68 |
96-48-0 | Butyrolactone | creamy, oily, fatty, caramel | 42, 28, 41 | 17.64 | 19.90 | 21.79 | 22.47 | 20.32 | 22.69 | 24.17 |
3391-86-4 | 1-Octen-3-ol | mushroom, earthy, green, oily, fungal | 57, 43, 72 | 6.71 | 8.06 | 16.67 | 21.47 | 99.03 | 137.06 | 179.11 |
821-55-6 | 2-Nonanone | fresh, sweet, green, weedy | 43, 58, 41 | 135.43 | 87.16 | 58.81 | 20.19 | 8.74 | 6.34 | 2.46 |
628-99-9 | 2-Nonanol | waxy, creamy, citrus, orange, cheese | 45, 69, 55 | 47.13 | 43.83 | 34.68 | 19.87 | 2.62 | 2.47 | 1.71 |
99-85-4 | γ-Terpinene | oily, woody, terpene, lemon/lime | 93, 91, 136 | 4.58 | 6.21 | 10.26 | 18.93 | 6.71 | 10.66 | 19.40 |
138-86-3 | Limonene | citrus, herbal, terpene, camphor | 68, 93, 67 | 10.66 | 11.54 | 15.07 | 18.50 | 8.15 | 17.40 | 23.33 |
98-55-5 | α-Terpineol | pine, terpene, lilac, citrus, woody, floral | 59, 93, 121 | 34.63 | 39.65 | 21.97 | 15.02 | 119.67 | 66.15 | 47.03 |
505-10-2 | 3-Methyl thiopropaol | sulfurous, onion, sweet, soup, vegetable | 106, 61, 58 | 23.77 | 32.35 | 9.70 | 13.90 | 4.32 | 1.46 | 2.48 |
123-51-3 | 1-Butanol, 3-methyl- | fusel, oil, alcoholic, whiskey, fruity | 55, 42, 43 | 7.63 | 7.92 | 9.82 | 13.34 | 7.15 | 12.35 | 20.05 |
71-41-0 | 1-Pentanol | fusel, oil, sweet, balsam | 42, 55, 41 | 17.67 | 16.26 | 14.08 | 12.24 | 47.06 | 39.11 | 31.28 |
103-45-7 | Acetic acid, 2-phenylethyl ester | floral, rose, sweet, honey, fruity | 104, 43, 91 | 4.02 | 5.27 | 9.91 | 10.11 | 1.63 | 2.54 | 3.55 |
80-26-2 | α-Terpinyl acetate | herbal, bergamot, lavender, lime, citrus | 43, 121, 93 | 25.46 | 35.87 | 17.59 | 9.42 | 89.87 | 44.05 | 24.86 |
18829-56-6 | 2-Nonenal, (E)- | fatty, green, cucumber, aldehydic, citrus | 43, 55, 70 | 36.98 | 25.82 | 11.87 | 7.20 | 2.65 | 1.63 | 2.26 |
624-92-0 | Disulfide, dimethyl | sulfurous, vegetable, cabbage, onion | 93, 79, 45 | 1.58 | 1.39 | 2.79 | 6.09 | 1.86 | 3.38 | 7.06 |
79-92-5 | Camphene | woody, herbal, fir, needle, camphor | 93, 121, 79 | 3.24 | 3.29 | 4.56 | 5.91 | 4.52 | 0.96 | 2.48 |
66-25-1 | Hexanal | fresh, green, fatty, aldehydic, grass, leafy, fruity, sweaty | 44, 56, 41 | 7.16 | 5.99 | 4.93 | 3.45 | 354.28 | 390.18 | 450.87 |
122-78-1 | Hyacinthin | green, sweet, floral, hyacinth, clover, honey, cocoa | 91, 92, 120 | 1.66 | 2.35 | 2.40 | 3.41 | 15.57 | 15.52 | 22.70 |
107-18-6 | 2-Propen-1-ol | pungent, mustard | 57, 31, 39 | 2.46 | 2.46 | 2.98 | 3.17 | 4.16 | 9.04 | 13.64 |
3268-49-3 | Methional | musty, potato, earthy, vegetable | 48, 104, 47 | 10.06 | 10.57 | 1.63 | 2.14 | 53.38 | 8.60 | 12.17 |
124-13-0 | Octanal | aldehydic, waxy, citrus, orange, peel, green, herbal, fresh, fatty | 44, 45, 41 | 11.68 | 8.12 | 3.75 | 1.80 | 21.45 | 9.04 | 2.15 |
110-93-0 | 2-methyl-hept-2-ene-6-one | citrus, green, musty, lemongrass, apple | 43, 41, 69 | 3.29 | 2.81 | 2.45 | 1.64 | 29.86 | 14.62 | 9.50 |
99-83-2 | α-Phellandrene | citrus, herbal, terpene, green | 93, 91, 77 | 0.36 | 0.49 | 0.76 | 1.21 | 20.56 | 30.85 | 49.95 |
111-90-0 | 2(2-Ethoxyethoxy)ethanol | slightly, ethereal | 45, 59, 31 | 1.56 | 1.38 | 0.78 | 0.54 | 12.39 | 15.27 | 17.57 |
141-32-2 | 2-Propenoic acid, butyl ester | - | 55, 56, 73 | 1.49 | 0.72 | 0.42 | 0.06 | 1.41 | 1.29 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Q.; Xiao, Y.; Zhou, Y.; Wu, J.; Zhou, X.; Chen, Y.; Liu, X. Effect of Low-Temperature Plasma Sterilization on the Quality of Pre-Prepared Tomato-Stewed Beef Brisket During Storage: Microorganism, Freshness, Protein Oxidation and Flavor Characteristics. Foods 2025, 14, 1106. https://doi.org/10.3390/foods14071106
Shi Q, Xiao Y, Zhou Y, Wu J, Zhou X, Chen Y, Liu X. Effect of Low-Temperature Plasma Sterilization on the Quality of Pre-Prepared Tomato-Stewed Beef Brisket During Storage: Microorganism, Freshness, Protein Oxidation and Flavor Characteristics. Foods. 2025; 14(7):1106. https://doi.org/10.3390/foods14071106
Chicago/Turabian StyleShi, Qihan, Ying Xiao, Yiming Zhou, Jinhong Wu, Xiaoli Zhou, Yanping Chen, and Xiaodan Liu. 2025. "Effect of Low-Temperature Plasma Sterilization on the Quality of Pre-Prepared Tomato-Stewed Beef Brisket During Storage: Microorganism, Freshness, Protein Oxidation and Flavor Characteristics" Foods 14, no. 7: 1106. https://doi.org/10.3390/foods14071106
APA StyleShi, Q., Xiao, Y., Zhou, Y., Wu, J., Zhou, X., Chen, Y., & Liu, X. (2025). Effect of Low-Temperature Plasma Sterilization on the Quality of Pre-Prepared Tomato-Stewed Beef Brisket During Storage: Microorganism, Freshness, Protein Oxidation and Flavor Characteristics. Foods, 14(7), 1106. https://doi.org/10.3390/foods14071106