The Estimation of Phenolic Compounds, Sugars, and Acids of the Cultivar and Clones of Red-Fleshed Apples Based on Image Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Red-Fleshed Apple Samples
2.2. Image Parameters
2.3. Chemical Properties
2.3.1. Sugar Content
2.3.2. Analysis of Acids
2.3.3. Phenolic Compounds Analysis
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA. 2024. Available online: https://www.fas.usda.gov/sites/default/files/2024-12/fruit.pdf (accessed on 28 January 2025).
- Eberhardt, M.V.; Lee, C.Y.; Liu, R.H. Antioxidant activity of fresh apples. Nature 2000, 405, 903–904. [Google Scholar] [CrossRef] [PubMed]
- Hyson, A.D. A Comprehensive Review of Apples and Apple Components and Their Relationship to Human Health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Oyenihi, A.B.; Belay, Z.A.; Mditshwa, A.; Caleb, O.J. “An apple a day keeps the doctor away”: The potentials of apple bioactive constituents for chronic disease prevention. J. Food Sci. 2022, 87, 2291–2309. [Google Scholar] [CrossRef] [PubMed]
- Sadilova, E.; Stintzing, F.C.; Carle, R. Chemical quality parameters and anthocyanin pattern of red-fleshed Weirouge apples. J. Appl. Bot. Food Qual. 2006, 80, 82–87. [Google Scholar]
- Balázs, A.; Tóth, M.; Blazics, B.; Héthelyi, É.; Szarka, S.; Ficsor, E.; Blázovics, A. Investigation of dietary important components in selected red fleshed apples by GC–MS and LC–MS. Fitoterapia 2012, 83, 1356–1363. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Luberriaga, C.; Jin, D.; Wibisono, R.; Wadhwa, S.S.; Waterhouse, G.I.N. Juices, fibres and skin waste extracts from white, pink or red-fleshed apple genotypes as potential food ingredients. Food Bioprocess Technol. 2013, 6, 377–390. [Google Scholar] [CrossRef]
- Hassellund, S.S.; Flaa, A.; Kjeldsen, S.E.; Seljeflot, I.; Karlsen, A.; Erlund, I.; Rostrup, M. Effects of anthocyanins on cardiovascular risk factors and inflammation in pre-hypertensive men: A double-blind randomized placebo-controlled crossover study. J. Hum. Hypertens. 2013, 27, 100–106. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Mieszczakowska-Frąc, M. Przydatność Przetwórcza Jabłek Czerwonomiąższowych do Otrzymania Wysokiej Jakości Produktów; Zeszyty Naukowe Instytutu Ogrodnictwa: Skierniewice, Poland, 2019; 122p, ISBN 978-83-65903-22-8. [Google Scholar]
- van Nocker, S.; Berry, G.; Najdowski, J.; Michelutti, R.; Luffman, M.; Forsline, P.; Alsmairat, N.; Beaudry, R.; Nair, M.G.; Ordidge, M. Genetic diversity of red-fleshed apples (Malus). Euphytica 2012, 185, 281–293. [Google Scholar] [CrossRef]
- Lin-Wang, K.; Bolitho, K.; Grafton, K.; Kortstee, A.; Karunairetnam, S.; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol. 2010, 10, 50. [Google Scholar] [CrossRef]
- Wang, N.; Jiang, S.; Zhang, Z.; Fang, H.; Xu, H.; Wang, Y.; Chen, X. Malus sieversii: The origin, flavonoid synthesis mechanism, and breeding of red-skinned and red-fleshed apples. Hortic. Res. 2018, 5, 70. [Google Scholar] [CrossRef]
- Würdig, J.; Flachowsky, H.; Hőfer, M.; Peil, A.; Eldin Ali, M.A.; Hanke, M.V. Phenotypic and genetic analysis of the German Malus Germplasm Collection in terms of type 1 and type 2 red-flesh apples. Gene 2014, 544, 198–207. [Google Scholar] [CrossRef]
- Ropelewska, E.; Lewandowski, M. The changes in color and image parameters and sensory attributes of freeze-dried clones and a cultivar of red-fleshed apples. Foods 2024, 13, 3784. [Google Scholar] [CrossRef] [PubMed]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [PubMed]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A. Mazda-A software for texture analysis. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Republic of Korea, 23–24 November 2007; pp. 245–249. [Google Scholar]
- Strzelecki, M.; Szczypiński, P.; Materka, A.; Klepaczko, A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 702, 137–140. [Google Scholar]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [PubMed]
- Bars-Cortina, D.; Macià, A.; Iglesias, I.; Romero, M.P.; Motilva, M.-J. Phytochemical Profiles of New Red-Fleshed Apple Varieties Compared with Traditional and New White-Fleshed Varieties. J. Agric. Food Chem. 2017, 65, 1684–1696. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Parameters of inner quality of the scab resistant and susceptible apple in organic and integrated production. Sci. Hortic. 2007, 114, 37–44. [Google Scholar]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, Z. Chemical composition of some apple cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Begić-Akagić, A.; Spaho, N.; Gasi, F.; Drkenda, P.; Vranac, A.; Meland, M. Sugar and organic acid profiles of the traditional and international apple cultivars for processing. J. Hyg. Eng. Des. 2014, 7, 190–196. [Google Scholar]
- Hudina, M.; Stampar, F. Influence of frost damage on the sugars and organic acids contents in apple and pear flowers. Eur. J. Hortic. Sci. 2006, 71, 161–164. [Google Scholar]
- Ropelewska, E.; Szwejda-Grzybowska, J.; Mieszczakowska-Frąc, M.; Celejewska, K.; Kruczyńska, D.E.; Rutkowski, K.P.; Konopacka, D. Physicochemical Properties, Image Textures, and Relationships between Parameters of Red-Fleshed Apples Collected on Different Harvest Dates. Agronomy 2023, 13, 2452. [Google Scholar] [CrossRef]
- Contessa, C.; Botta, R. Comparison of physicochemical traits of red-fleshed, commercial and ancient apple cultivars. Hort. Sci. 2016, 43, 159–166. [Google Scholar] [CrossRef]
- Lemmens, E.; Alós, E.; Rymenants, M.; De Storme, N.; Keulemans, W.J. Dynamics of ascorbic acid content in apple (Malus × domestica) during fruit development and storage. Plant Physiol. Biochem. 2020, 151, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Anwar, F.; Abbas, M.; Boyce, M.C.; Saari, N. Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from Pakistan. Int. J. Mol. Sci. 2012, 13, 1380–1392. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Zhao, X.H.; Zuo, W.F.; Zhang, T.L.; Zhang, Z.Y.; Chen, X.-S. Phytochemical profiles, antioxidant, and antiproliferative activities of four red-fleshed apple varieties in China. J. Food Sci. 2020, 85, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, P.; Wang, X. Using a red-fleshed and six varieties of thinned young apple to make juice and their phytochemicals characterization. J. Food Process Preserv. 2021, 45, e15361. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Laskowski, P. Polyphenolic compounds and antioxidant activity of New and old Apple varieties. J. Agric. Food Chem. 2008, 56, 6520–6530. [Google Scholar] [CrossRef]
- Wang, X.; Wei, Z.; Ma, F. The effects of fruit bagging on levels of phenolic compounds and expression by anthocyanin biosynthetic and regulatory genes in red-fleshed apples. Process Biochem. 2015, 50, 1774–1782. [Google Scholar] [CrossRef]
- Yu, L.; Jovcevski, B.; Pukala, T.L.; Bulone, V. Profiling and optimized extraction of bioactive polyphenolic compounds from young, red-fleshed apple using eco-friendly deep eutectic solvents. Food Res. Int. 2024, 187, 114334. [Google Scholar] [CrossRef]
- Salidova, E.; Stintzing, F.C.; Carle, R. Thermal degradation of acylated and nonacylated anthocyanins. J. Food Sci. 2006, 71, 504–510. [Google Scholar]
- Henry-Kirk, R.A.; McGhie, T.K.; Andre, C.M.; Hellens, R.P.; Allan, A.C. Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. J. Exp. Bot. 2012, 63, 5437–5450. [Google Scholar] [PubMed]
- Sato, H.; Otagaki, S.; Saelai, P.; Kodo, A.; Shirataki, K.; Matsumoto, S. Varietal differences in phenolic compounds metabolism of type 2 red-fleshed apples. Sci. Hortic. 2017, 219, 1–9. [Google Scholar]
- Bouillon, P.; Fanciullino, A.-L.; Belin, E.; Breard, D.; Boisard, S.; Bonnet, B.; Hanteville, S.; Bernard, F.; Celton, J.-M. Image analysis and polyphenol profiling unveil red-flesh apple phenotype complexity. Plant Methods 2024, 20, 71. [Google Scholar] [CrossRef] [PubMed]
- Soto-Vac, A.; Gutierrez, A.; Losso, J.N.; Xu, Z.; Finley, J.W. Evolution of phenolic compounds from color and flavor problems to health benefits. J. Agric. Food Chem. 2012, 60, 6658–6677. [Google Scholar]
- Chen, Z.; Yu, L.; Liu, W.; Zhang, J.; Wang, N.; Chen, X. Research progress of fruit color development in apple (Malus domestica borkh). Plant Physiol. Biochem. 2021, 162, 267–279. [Google Scholar] [CrossRef]
- Liang, Z.; Liang, H.; Guo, Y.; Yang, D. Cyanidin 3-o-galactoside: A natural compound with multiple health benefits. Int. J. Mol. Sci. 2021, 22, 2261. [Google Scholar] [CrossRef]
- Juhart, J.; Medic, A.; Veberic, R.; Hudina, M.; Jakopic, J.; Stampar, F. Phytochemical Composition of Red-Fleshed Apple Cultivar ‘Baya Marisa’ Compared to Traditional, White-Fleshed Apple Cultivar ‘Golden Delicious’. Horticulturae 2022, 8, 811. [Google Scholar] [CrossRef]
- Sunil, L.; Shetty, N.P. Biosynthesis and regulation of anthocyanin pathway genes. Appl. Microbiol. Biotechnol. 2022, 106, 1783–1798. [Google Scholar]
- Wang, Y.; Lu, Y.; Hao, S.; Zhang, M.; Zhang, J.; Tian, J.; Yao, Y. Different coloration patterns between the red and white-fleshed fruits of malus crabapples. Sci. Hortic. 2015, 194, 26–33. [Google Scholar]
- He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Ann. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar]
- Ropelewska, E. The application of image processing for cultivar discrimination of apples based on texture features of the skin, longitudinal section and cross-section. Eur. Food Res. Technol. 2021, 247, 1319–1331. [Google Scholar]
- Ropelewska, E.; Lewandowski, M. A comparative study of distinguishing apple cultivars and a clone based on features of selected fruit parts and leaves using image processing and artificial intelligence. Acta Sci. Pol. Hortorum Cultus 2024, 23, 79–92. [Google Scholar] [CrossRef]
- Shahedi, Y.; Zandi, M.; Bimakr, M. A computer vision system and machine learning algorithms for prediction of physicochemical changes and classification of coated sweet cherry. Heliyon 2024, 10, e39484. [Google Scholar]
- Al-Saif, A.M.; Abdel-Sattar, M.; Eshra, D.H.; Sas-Paszt, L.; Mattar, M.A. Predicting the Chemical Attributes of Fresh Citrus Fruits Using Artificial Neural Network and Linear Regression Models. Horticulturae 2022, 8, 1016. [Google Scholar] [CrossRef]
- Mohammed, M.; Munir, M.; Aljabr, A. Prediction of Date Fruit Quality Attributes during Cold Storage Based on Their Electrical Properties Using Artificial Neural Networks Models. Foods 2022, 11, 1666. [Google Scholar] [CrossRef]
Properties | Apple Sample | |||||
---|---|---|---|---|---|---|
‘Trinity’ | Clone 90 | Clone 120 | Clone 156 | Clone 158 | ||
Sugars | Sucrose (g kg−1) | 48.15 ± 0.12 a | 27.34 ± 0.34 d | 27.59 ± 0.29 d | 34.08 ± 0.16 b | 29.30 ± 0.13 c |
Glucose (g kg−1) | 5.11 ± 0.15 a | 11.45 ± 0.02 d | 8.12 ± 0.02 c | 6.35 ± 0.02 b | 16.53 ± 0.31 e | |
Fructose (g kg−1) | 42.03 ± 0.17 a | 49.25 ± 0.34 d | 46.86 ± 0.25 b | 48.1 ± 0.28 c | 59.27 ± 0.23 e | |
Sorbitol (g kg−1) | 6.68 ± 0.31 a | 4.17 ± 0.02 c | 3.38 ± 0.13 d | 5.38 ± 0.04 b | 3.51 ± 0.01 d | |
Total sugars (g kg−1) | 102.0 ± 0.74 b | 92.21 ± 0.72 c | 85.94 ± 0.43 d | 93.91 ± 0.18 c | 108.6 ± 0.22 a | |
Acids | L-ascorbic acid (mg 100 g−1) | 9.20 ± 0.06 a | 1.88 ± 0.16 d | 3.76 ± 0.01 c | 5.84 ± 0.26 b | 2.42 ± 0.29 d |
Malic acid (mg 100 g−1) | 1578 ± 0.18 a | 843 ± 0.62 c | 1048 ± 0.24 b | 1449 ± 0.01 a | 954 ± 0.23 bc | |
Citric acid (mg 100 g−1) | 17.67 ± 0.29 a | 13.36 ± 0.84 b | 10.27 ± 0.50 c | 15.09 ± 0.50 b | 14.58 ± 0.46 b |
Phenolic Compounds | Apple Sample | |||||
---|---|---|---|---|---|---|
‘Trinity’ | Clone 90 | Clone 120 | Clone 156 | Clone 158 | ||
Flavanols | Procyanidin B1 (mg 100 g−1) | 0.00 ± 0.00 a | 1.43 ± 0.21 b | 1.12 ± 0.06 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Procyanidin B2 (mg 100 g−1) | 2.18 ± 0.28 a | 3.45 ± 0.18 b | 3.01 ± 0.13 b | 6.14 ± 0.18 c | 1.75 ± 0.14 a | |
Epicatechin (mg 100 g−1) | 0.89 ± 0.01 a | 1.92 ± 0.15 c | 2.05 ± 0.15 c | 8.51 ± 0.21 d | 0.95 ± 0.15 b | |
Total flavanols (mg 100 g−1) | 3.06 ± 0.29 a | 6.80 ± 0.54 b | 6.18 ± 0.23 b | 14.65 ± 0.40 d | 2.70 ± 0.29 a | |
Dihydrochalcones | Phloretin xyloglucoside (mg 100 g−1) | 2.05 ± 0.09 b | 4.86 ± 0.20 c | 4.72 ± 0.27 c | 1.09 ± 0.18 a | 1.31 ± 0.17 a |
Phloridzin (mg 100 g−1) | 2.59 ± 0.18 a | 8.14 ± 0.12 d | 5.55 ± 0.16 c | 4.85 ± 0.14 b | 4.67 ± 0.12 b | |
Total dihydrochalcones (mg 100 g−1) | 4.63 ± 0.27 a | 13.00 ± 0.32 d | 10.27 ± 0.11 c | 5.94 ± 0.32 b | 5.98 ± 0.29 b | |
Phenolic acids | Chlorogenic acid (mg 100 g−1) | 4.38 ± 0.31 a | 16.80 ± 0.10 c | 15.44 ± 0.85 c | 7.76 ± 0.34 b | 6.40 ± 0.09 b |
Chlorogenic acid derivative (mg 100 g−1) | 1.41 ± 0.14 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 3.30 ± 0.08 c | 0.00 ± 0.00 a | |
Total phenolic acids (mg 100 g−1) | 5.79 ± 0.45 a | 16.8 ± 0.10 d | 15.44 ± 0.85 d | 11.06 ± 0.42 c | 6.40 ± 0.09 a | |
Flavonols | Quercetin-galactoside (mg 100 g−1) | 1.51 ± 0.12 bc | 1.21 ± 0.09 ab | 0.83 ± 0.12 a | 1.84 ± 0.01 cd | 2.21 ± 0.15 d |
Quercetin-glucoside (mg 100 g−1) | 1.23 ± 0.17 a | 0.43 ± 0.07 b | 0.14 ± 0.01 b | 0.32 ± 0.05 b | 0.22 ± 0.04 b | |
Quercetin-xyloside (mg 100 g−1) | 0.32 ± 0.01 a | 0.29 ± 0.02 ab | 0.22 ± 0.04 ab | 0.27 ± 0.06 ab | 0.17 ± 0.00 b | |
Quercetin-arabinoside (mg 100 g−1) | 1.37 ± 0.24 a | 1.21 ± 0.08 ab | 0.73 ± 0.08 b | 0.26 ± 0.06 c | 1.07 ± 0.08 ab | |
Quercetin-rhamnoside (mg 100 g−1) | 0.70 ± 0.08 a | 2.61 ± 0.10 b | 2.24 ± 0.22 b | 0.89 ± 0.06 a | 0.65 ± 0.09 a | |
Total flavonols (mg 100 g−1) | 5.13 ± 0.62 ab | 5.75 ± 0.36 b | 4.17 ± 0.08 bc | 3.58 ± 0.21 c | 4.32 ± 0.03 bc | |
Anthocyanins | Cyanidin-3-galactoside (mg 100 g−1) | 31.74 ± 0.88 b | 20.86 ± 0.52 c | 32.21 ± 2.34 b | 58.39 ± 0.06 a | 12.12 ± 0.30 d |
Unidentified (mg 100 g−1) | 5.79 ± 0.21 a | 0.00 ± 0.00 c | 6.29 ± 0.23 a | 6.08 ± 0.16 a | 1.40 ± 0.03 b | |
Total anthocyanins (mg 100 g−1) | 37.52 ± 1.13 b | 20.86 ± 0.52 c | 38.50 ± 2.11 b | 64.47 ± 0.00 a | 13.52 ± 0.33 d | |
Total phenolic compounds (mg 100 g−1) | 56.14 ± 2.76 c | 63.20 ± 1.21 c | 74.57 ± 3.15 b | 99.70 ± 2.16 a | 32.91 ± 0.98 d |
Image Textures | Apple Sample | ||||
---|---|---|---|---|---|
‘Trinity’ | Clone 90 | Clone 120 | Clone 156 | Clone 158 | |
LS5SH3DifVarnc | 5.00 ± 0.64 a | 3.63 ± 0.33 b | 3.68 ± 0.29 b | 4.03 ± 0.14 b | 3.65 ± 0.46 b |
LS5SN5Contrast | 11.57 ± 1.02 a | 9.35 ± 0.37 c | 9.07 ± 0.42 c | 10.47 ± 0.56 b | 9.05 ± 0.51 c |
RS5SV1DifVarnc | 3.11 ± 0.31 ab | 2.30 ± 0.43 bc | 1.96 ± 0.36 c | 2.19 ± 0.44 bc | 3.43 ± 0.35 a |
LS5SN5DifVarnc | 6.09 ± 0.22 a | 4.69 ± 0.14 b | 4.97 ± 0.19 b | 5.60 ± 0.30 a | 4.80 ± 0.20 b |
GS5SZ5DifVarnc | 5.91 ± 0.30 a | 4.42 ± 0.35 b | 4.63 ± 0.20 b | 5.61 ± 0.27 a | 4.44 ± 0.24 b |
RS5SH5Correlat | 0.66 ± 0.23 a | 0.70 ± 0.22 ab | 0.69 ± 0.21 a | 0.77 ± 0.14 b | 0.66 ± 0.20 a |
RS5SN5SumAverg | 32.83 ± 0.21 a | 32.89 ± 0.20 a | 32.85 ± 0.29 a | 32.86 ± 0.18 a | 32.85 ± 0.31 a |
RS5SN3SumAverg | 32.78 ± 0.24 a | 32.84 ± 0.18 a | 32.83 ± 0.20 a | 32.79 ± 0.21 a | 32.80 ± 0.33 a |
RS5SH5SumAverg | 32.77 ± 0.22 a | 32.82 ± 0.21 a | 32.80 ± 0.29 a | 32.79 ± 0.17 a | 32.77 ± 0.29 a |
VS4RHShrtREmp | 0.30 ± 0.05 a | 0.24 ± 0.05 b | 0.21 ± 0.07 b | 0.23 ± 0.04 b | 0.22 ± 0.07 b |
XS5SH5Entropy | 2.31 ± 0.07 a | 2.30 ± 0.06 a | 2.26 ± 0.08 ab | 2.29 ± 0.09 ab | 2.23 ± 0.07 b |
SS5SH5Contrast | 5.74 ± 0.26 a | 5.10 ± 0.39 ab | 4.68 ± 0.17 b | 3.53 ± 0.12 c | 4.94 ± 0.54 ab |
XHPerc10 | 60.07 ± 1.65 a | 67.56 ± 2.03 b | 67.54 ± 1.98 b | 60.57 ± 2.54 a | 59.94 ± 3.50 a |
SS5SH3SumEntrp | 1.48 ± 0.13 a | 1.49 ± 0.09 a | 1.46 ± 0.12 a | 1.45 ± 0.13 a | 1.46 ± 0.16 a |
Properties | Strongest Positive Correlations | Strongest Negative Correlations | ||
---|---|---|---|---|
Textures | Correlation Coefficients (R) | Textures | Correlation Coefficients (R) | |
Sucrose (g kg−1) | LS5SH3DifVarnc | 0.996 | RSGSkewness | −0.981 |
Glucose (g kg−1) | GS5SH3SumAverg | 0.994 | LS5SZ1SumOfSqs | −0.974 |
Fructose (g kg−1) | GS5SN1SumAverg | 0.987 | aS4RNGLevNonU | −0.992 |
Sorbitol (g kg−1) | LS5SN5Contrast | 0.993 | GSGKurtosis | −0.997 |
Total sugars (g kg−1) | RS5SV1DifVarnc | 0.975 | GS5SH1SumVarnc | −0.998 |
L-ascorbic acid (mg 100 g−1) | LS5SN5DifVarnc | 0.990 | ZS5SV3SumEntrp | −0.976 |
Malic acid (mg 100 g−1) | GS5SZ5DifVarnc | 0.991 | YHPerc10 | −0.984 |
Citric acid (mg 100 g−1) | LS5SV3Contrast | 0.995 | ZS5SH3Correlat | −0.999 |
Phenolic Compounds (mg 100 g−1) | Strongest Positive Correlations | Strongest Negative Correlations | ||
---|---|---|---|---|
Textures | Correlation Coefficients (R) | Textures | Correlation Coefficients (R) | |
Procyjanidin B1 | RS5SH3SumAverg | 0.996 | bS5SZ1Contrast | −0.970 |
Procyjanidin B2 | RS5SH5Correlat | 0.998 | US5SZ5SumEntrp | −0.995 |
Epicatechin | ZS4RVLngREmph | 0.987 | US5SN5SumEntrp | −0.978 |
Total flavanols | RS5SH5Correlat | 0.999 | US5SN5SumEntrp | −0.996 |
Phloretin xyloglucoside | bS5SN1Correlat | 0.989 | ZHKurtosis | −0.958 |
Phloridzin | RS5SN5SumAverg | 0.967 | XS5SZ5DifVarnc | −0.906 |
Total dihydrochalcones | RS5SN3SumAverg | 0.985 | aS5SV1SumAverg | −0.952 |
Chlorogenic acid | RS5SN3SumAverg | 0.981 | aS5SV1SumAverg | −0.948 |
Chlorogenic acid derivative | bHKurtosis | 0.998 | aS5SH5SumOfSqs | −0.998 |
Total phenolic acids | RS5SH5SumAverg | 0.950 | LHKurtosis | −0.949 |
Quercetin-galactoside | bS5SV1Contrast | 0.971 | bS5SV1Correlat | −0.996 |
Quercetin-glucoside | VS4RHShrtREmp | 0.996 | LS5SH3Correlat | −0.980 |
Quercetin-xyloside | XS5SH5Entropy | 0.999 | SS5SV5AngScMom | −0.991 |
Quercetin-arabinoside | SS5SH5Contrast | 0.973 | US5SV3AngScMom | −0.963 |
Quercetin-rhamnoside | XHPerc10 | 0.990 | bS5SZ1Contrast | −0.947 |
Total flavonols | SS5SH3SumEntrp | 0.997 | VHMaxm01 | −0.911 |
Cyanidin-3-galactoside | bATeta1 | 0.988 | UHPerc99 | −0.988 |
Unidentified anthocyanins | RHPerc01 | 0.952 | BS5SV3Entropy | −0.986 |
Total anthocyanins | bATeta1 | 0.972 | UHPerc99 | −0.972 |
Regression Equations | Coefficients of Determination (R2) | F | df | p |
---|---|---|---|---|
Sucrose (g kg−1) = −26.41 + 14.937 × LS5SH3DifVarnc | 0.992 | 372.4444 | 1.3 | 0.000304 |
Glucose (g kg−1) = −3422.00 + 106.25 × GS5SH3SumAverg | 0.989 | 261.2623 | 1.3 | 0.000515 |
Fructose (g kg−1) = 69.727 − 0.0032 × aS4RNGLevNonU | 0.985 | 193.9769 | 1.3 | 0.000801 |
Sorbitol (g kg−1) = 11.244 − 0.3047 × GSGKurtosis | 0.994 | 518.8034 | 1.3 | 0.000185 |
Total sugars (g kg−1) = 537.37 − 4.493 × GS5SH1SumVarnc | 0.996 | 781.1450 | 1.3 | 0.000101 |
L-ascorbic acid (mg 100 g−1) = −21.31 + 4.9591 × LS5SN5DifVarnc | 0.981 | 156.4119 | 1.3 | 0.001102 |
Malic acid (mg 100 g−1) = −10.84 + 4.5163 × GS5SZ5DifVarnc | 0.982 | 161.2866 | 1.3 | 0.001053 |
Citric acid (mg 100 g−1) = 86.706 − 86.35 × ZS5SH3Correlat | 0.998 | 1578.295 | 1.3 | 0.000035 |
Regression Equations | Coefficients of Determination (R2) |
---|---|
Procyjanidin B1 = −683.50 + 20.887 × RS5SH3SumAverg | 0.992 |
Procyjanidin B2 = −23.49 + 38.597 × RS5SH5Correlat | 0.996 |
Epicatechin = 0.99440 + 0.01605 × ZS4RVLngREmph | 0.974 |
Total flavanols = −68.34 + 108.07 × RS5SH5Correlat | 0.998 |
Phloretin xyloglucoside = −254.10 + 278.71 × bS5SN1Correlat | 0.979 |
Phloridzin = −2935.00 + 89.470 × RS5SN5SumAverg | 0.935 |
Total dihydrochalcones = −4647.00 + 141.89 × RS5SN3SumAverg | 0.971 |
Chlorogenic acid = −7340.00 + 224.06 × RS5SN3SumAverg | 0.963 |
Chlorogenic acid derivative = 28.131 − 1.075 × aS5SH5SumOfSqs | 0.995 |
Total phenolic acids = −7702.00 + 235.23 × RS5SH5SumAverg | 0.903 |
Quercetin-galactoside = 55.779 − 57.39 × bS5SV1Correlat | 0.992 |
Quercetin-glucoside = −2.536 + 12.385 × VS4RHShrtREmp | 0.993 |
Quercetin-xyloside = −3.793 + 1.7772 × XS5SH5Entropy | 0.998 |
Quercetin-arabinoside = −1.624 + 0.53193 × SS5SH5Contrast | 0.947 |
Quercetin-rhamnoside = −13.03 + 0.22878 × XHPerc10 | 0.980 |
Total flavonols = −68.93 + 50.147 × SS5SH3SumEntrp | 0.994 |
Cyanidin-3-galactoside = 796.18 − 6.528 × UHPerc99 | 0.976 |
Unidentified anthocyanins = 6.0582 − 0.2 × 10−3 × BS5SV3Entropy | 0.972 |
Total anthocyanins = −568.90 + 1034.40 × bATeta1 | 0.945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E.; Szwejda-Grzybowska, J.; Lewandowski, M.; Mieszczakowska-Frąc, M. The Estimation of Phenolic Compounds, Sugars, and Acids of the Cultivar and Clones of Red-Fleshed Apples Based on Image Features. Foods 2025, 14, 1138. https://doi.org/10.3390/foods14071138
Ropelewska E, Szwejda-Grzybowska J, Lewandowski M, Mieszczakowska-Frąc M. The Estimation of Phenolic Compounds, Sugars, and Acids of the Cultivar and Clones of Red-Fleshed Apples Based on Image Features. Foods. 2025; 14(7):1138. https://doi.org/10.3390/foods14071138
Chicago/Turabian StyleRopelewska, Ewa, Justyna Szwejda-Grzybowska, Mariusz Lewandowski, and Monika Mieszczakowska-Frąc. 2025. "The Estimation of Phenolic Compounds, Sugars, and Acids of the Cultivar and Clones of Red-Fleshed Apples Based on Image Features" Foods 14, no. 7: 1138. https://doi.org/10.3390/foods14071138
APA StyleRopelewska, E., Szwejda-Grzybowska, J., Lewandowski, M., & Mieszczakowska-Frąc, M. (2025). The Estimation of Phenolic Compounds, Sugars, and Acids of the Cultivar and Clones of Red-Fleshed Apples Based on Image Features. Foods, 14(7), 1138. https://doi.org/10.3390/foods14071138