Preparation, Modification, Food Application, and Health Effects of Protein and Peptide from Hemp (Cannabis sativa L.) Seed: A Review of the Recent Literature
Abstract
:1. Introduction
2. Extraction and Modification of HSP
2.1. Structural and Functional Properties of HSP
2.2. Extraction Method of HSP
2.3. Modification Method of HSP
2.3.1. Physicochemical Technique
- pH-shifting
- 2.
- Protein–polyphenol interactions
- 3.
- Maillard-driven conjugation
- 4.
- Blending other proteins
2.3.2. Bio-Technique
3. Preparation and Identification of Active Peptides from HSP
3.1. Preparation of Peptides
3.2. Purification and Identification of Peptides
4. Application of HSPs in Foods
4.1. Improvements in Food Quality
4.2. Emerging Applications in Food
4.2.1. Food Active Films
4.2.2. Food Additives
4.2.3. Encapsulating Materials of Bioactive Compounds
5. Health Effects of HSPs and Peptides
5.1. Antioxidant and Anti-Inflammatory Effects
5.2. Benefits on Intestinal Health
5.3. Relieving Metabolic Syndrome
5.3.1. Antidiabetic Effect
5.3.2. Antihypertension Effect
5.4. Mitigating Muscle Atrophy
5.5. Some Adverse Health Effects
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alonso-Esteban, J.I.; González-Fernández, M.J.; Dmitri, F.; Sánchez-Mata, M.D.; Torija-Isasa, E.; Guil-Guerrero, J.L. Fatty acids and minor functional compounds of hemp (Cannabis sativa L.) seeds and other Cannabaceae species. J. Food Compos. Anal. 2023, 115, 104962. [Google Scholar] [CrossRef]
- Rizzo, G.; Storz, M.A.; Calapai, G. The role of hemp (Cannabis sativa L.) as a functional food in vegetarian nutrition. Foods 2023, 12, 3505. [Google Scholar] [CrossRef] [PubMed]
- Aloo, S.O.; Mwiti, G.; Ngugi, L.W.; Oh, D.H. Uncovering the secrets of industrial hemp in food and nutrition: The trends, challenges, and new-age perspectives. Crit. Rev. Food Sci. Nutr. 2024, 64, 5093–5112. [Google Scholar] [CrossRef]
- Okomo Aloo, S.; Park, S.; Oh, D.H. Impacts of germination and lactic acid bacteria fermentation on anti-nutrients, bioactive compounds, and selected functional properties of industrial hempseed (Cannabis sativa L.). Food Chem. 2023, 428, 136722. [Google Scholar] [CrossRef] [PubMed]
- Yano, H.; Fu, W. Hemp: A sustainable plant with high industrial value in food processing. Foods 2023, 12, 651. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, B.; Huang, J.; Tian, K.; Shen, C. Prospects of blockchain technology in China’s industrial hemp industry. J. Nat. Fibers 2023, 20, 2160406. [Google Scholar] [CrossRef]
- Chen, Z.T.; Hao, S.X.; He, Z.Y.; Liu, J.; Zhao, J.; Chen, C.R.; Jia, G.J.; Chen, H.L. Widely targeted metabolomics analysis reveals the major metabolites in the hemp seeds from the longevity village of Bama, China. Ind. Crop. Prod. 2023, 206, 117661. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Sharma, B.; Gupta, A.; Shah, A.K.; Mahmud, M.M.C.; Agrawal, S.; Singh, J.; Rasane, P.; Shukla, A.C.; et al. Nutraceutical potential, phytochemistry of hemp seed (Cannabis sativa L.) and its application in food and feed: A review. Food Chem. Adv. 2024, 4, 100671. [Google Scholar] [CrossRef]
- Rasera, G.B.; Ohara, A.; de Castro, R.J.S. Innovative and emerging applications of cannabis in food and beverage products: From an illicit drug to a potential ingredient for health promotion. Trends Food Sci. Tech. 2021, 115, 31–41. [Google Scholar] [CrossRef]
- Montero, L.; Ballesteros-Vivas, D.; Gonzalez-Barrios, A.F.; Sánchez-Camargo, A.D.P. Hemp seeds: Nutritional value, associated bioactivities and the potential food applications in the Colombian context. Front. Nutr. 2022, 9, 1039180. [Google Scholar] [CrossRef]
- Eckhardt, L.; Bu, F.; Franczyk, A.; Michaels, T.; Ismail, B.P. Hemp (Cannabis sativa L.) protein: Impact of extraction method and cultivar on structure, function, and nutritional quality. Curr. Res. Food Sci. 2024, 8, 100746. [Google Scholar] [CrossRef]
- Kahraman, O.; Petersen, G.E.; Fields, C. Physicochemical and functional modifications of hemp protein concentrate by the application of ultrasonication and pH shifting treatments. Foods 2022, 11, 587. [Google Scholar] [CrossRef] [PubMed]
- Julakanti, S.; Charles, A.P.R. Hempseed protein (Cannabis sativa L.): Influence of extraction pH and ball milling on physicochemical and functional properties. Food Hydrocoll. 2023, 143, 108835. [Google Scholar] [CrossRef]
- Chen, H.H.; Li, W.; Hu, W.; Xu, B.; Wang, Y.; Liu, J.Y.; Zhang, C.; Zhang, C.Y.; Zhang, X.Z.; Nie, Q.X.; et al. A novel bifunctional peptide VAMP mined from hemp seed protein hydrolysates improves glucose homeostasis by inhibiting intestinal DPP-IV and increasing the abundance of Akkermansia muciniphila. bioRxiv 2024. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Millan-Linares, M.C.; Montserrat-de-la-Paz, S. Strengths and limitations of in silico tools to assess physicochemical properties, bioactivity, and bioavailability of food-derived peptides. Trends Food Sci. Tech. 2023, 138, 433–440. [Google Scholar] [CrossRef]
- Karabulut, G.; Kahraman, O.; Pandalaneni, K.; Kapoor, R.; Feng, H. A comprehensive review on hempseed protein: Production, functional and nutritional properties, novel modification methods, applications, and limitations. Int. J. Biol. Macromol. 2023, 253 Pt 7, 127240. [Google Scholar] [CrossRef]
- Aguchem, R.N.; Okagu, I.U.; Okagu, O.D.; Ndefo, J.C.; Udenigwe, C.C. A review on the techno-functional, biological, and health-promoting properties of hempseed-derived proteins and peptides. J. Food Biochem. 2022, 46, 14127. [Google Scholar] [CrossRef]
- Aita, S.E.; Montone, C.M.; Taglioni, E.; Capriotti, A.L. Hempseed protein-derived short- and medium-chain peptides and their multifunctional properties. Adv. Food Nutr. Res. 2024, 110, 275–325. [Google Scholar] [CrossRef]
- Santos-Sánchez, G.; Álvarez-López, A.I.; Ponce-España, E.; Carrillo-Vico, A.; Bollati, C.; Bartolomei, M.; Lammi, C.; Cruz-Chamorro, I. Hempseed (Cannabis sativa) protein hydrolysates: A valuable source of bioactive peptides with pleiotropic health-promoting effects. Trends Food Sci. Tech. 2022, 127, 303–318. [Google Scholar] [CrossRef]
- Xu, Y.X.; Sismour, E.; Britland, J.W.; Sellers, A.; Abraha-Eyob, Z.; Yousuf, A.; Rao, Q.C.; Kim, J.; Zhao, W. Physicochemical, structural, and functional properties of hemp protein vs several commercially available plant and animal proteins: A comparative study. ACS Food Sci. Technol. 2022, 2, 1672–1680. [Google Scholar] [CrossRef]
- Do, D.T.; Ye, A.; Singh, H.; Acevedo-Fani, A. Protein bodies from hemp seeds: Isolation, microstructure and physicochemical characterisation. Food Hydrocoll. 2024, 149, 109597. [Google Scholar] [CrossRef]
- Ajibola, C.F.; Aluko, R.E. Physicochemical and functional properties of 2S, 7S, and 11S enriched hemp seed protein fractions. Molecules 2022, 27, 1059. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Rawiwan, P.; Middleditch, M.; Guo, G.; Woo, M.W.; Quek, S.Y. Effects of protein variations by different extraction and dehydration approaches on hempseed protein isolate: Protein pattern, amino acid profiling and label-free proteomics. Food Chem. 2024, 460, 140426. [Google Scholar] [CrossRef]
- Xu, P.W.; Yuan, X.F.; Zhao, B. A study on pH-mediated variations and differences in the structure and function of hemp seed albumin, globulin, and protein isolate. Food Biosci. 2023, 56, 103452. [Google Scholar] [CrossRef]
- Song, W.; Yin, H.; Zhong, Y.; Wang, D.; Xu, W.; Deng, Y. Regional differentiation based on volatile compounds via HS-SPME/GC-MS and chemical compositions comparison of hemp (Cannabis sativa L.) seeds. Food Res. Int. 2022, 162 Pt B, 112151. [Google Scholar] [CrossRef] [PubMed]
- Arango, S.; Kojić, J.; Perović, L.; Đermanović, B.; Stojanov, N.; Sikora, V.; Tomičić, Z.; Raffrenato, E.; Bailoni, L. Chemical characterization of 29 industrial hempseed (Cannabis sativa L.) varieties. Foods 2024, 13, 210. [Google Scholar] [CrossRef]
- Fang, B.; Chen, B.; Rao, J. Effect of protein concentration on the structural, functional properties, linear and nonlinear rheological behaviors of thermally induced hemp protein gels. J. Food Eng. 2023, 359, 111694. [Google Scholar] [CrossRef]
- Barretto, R.; Qi, G.Y.; Xiao, R.S.; Jones, C.; Sun, X.Z.; Li, Y.H.; Griffin, J.; Wang, D.H. Hempseed protein is a potential alternative source for plant protein-based adhesives. Int. J. Adhes. Adhes. 2024, 133, 103740. [Google Scholar] [CrossRef]
- Cabral, E.M.; Poojary, M.M.; Lund, M.N.; Curtin, J.; Fenelon, M.; Tiwari, B.K. Effect of solvent composition on the extraction of proteins from hemp oil processing stream. J. Sci. Food Agric. 2022, 102, 6293–6298. [Google Scholar] [CrossRef]
- Cabral, E.M.; Zhu, X.; Garcia-Vaquero, M.; Pérez-Vila, S.; Tang, J.; Gómez-Mascaraque, L.G.; Poojary, M.M.; Curtin, J.; Tiwari, B.K. Recovery of protein from industrial hemp waste (Cannabis sativa, L.) using high-pressure processing and ultrasound technologies. Foods 2023, 12, 2883. [Google Scholar] [CrossRef]
- Švarc-Gajić, J.; Rodrigues, F.; Moreira, M.M.; Delerue-Matos, C.; Morais, S.; Dorosh, O.; Silva, A.M.; Bassani, A.; Dzedik, V.; Spigno, G. Chemical composition and bioactivity of oilseed cake extracts obtained by subcritical and modified subcritical water. Bioresour. Bioprocess. 2022, 9, 114. [Google Scholar] [CrossRef]
- Qin, N.; Li, Y.; Song, L.; Xu, R.Q.; Liu, X.Y.; Zheng, G.F.; Peng, J.H. Differences in hempseed protein separated by two methods: AOT reverse micelles and alkaline extraction–isoelectric precipitation. Appl. Food Res. 2024, 100683, in press. [Google Scholar] [CrossRef]
- Karabulut, G.; Kapoor, R.; Yemis, O.; Feng, H. Manothermosonication, high-pressure homogenization, and their combinations with pH-shifting improve the techno-functionality and digestibility of hemp protein. Food Hydrocoll. 2024, 150, 109661. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Z.; Cao, Y.; Ming, Y.; Wu, M. Improving the solubility and interfacial absorption of hempseed protein via a novel high pressure homogenization-assisted pH-shift strategy. Food Chem. 2024, 442, 138447. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Wang, Y.; Selomulya, C. Emerging technologies to improve plant protein functionality with protein-polyphenol interactions. Trends Food Sci. Tech. 2024, 147, 104469. [Google Scholar] [CrossRef]
- Xu, P.W.; Yue, X.J.; Yuan, X.F.; Zhao, B. Covalent modification using hemp seed polyphenols improves the structural and functional properties of the hemp seed globulin. Food Biosci. 2023, 56, 103293. [Google Scholar] [CrossRef]
- Xu, P.W.; Yue, X.J.; Yuan, X.F.; Zhao, B. Non-covalent interaction between hemp seed globulin and two hemp seed phenolic compounds: Mechanism and effects on protein structure, bioactivity, and in vitro simulated digestion. Int. J. Biol. Macromol. 2024, 255, 128077. [Google Scholar] [CrossRef]
- Wang, N.; Liu, B.Y.; Han, X.Y.; Wang, L.J.; Yang, F.M.; Wang, T.; Yu, D.Y. Tannic acid/non-covalent interaction-mediated modification of hemp seed proteins: Focused on binding mechanisms, oil-water interface behavior, and rheological properties. Food Hydrocoll. 2024, 157, 110483. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, T.; Huang, X.; Lian, Y.; Yang, F.; Yu, D. Hemp seed protein and chlorogenic acid complex: Effect of ultrasound modification on its structure and functional properties. Int. J. Biol. Macromol. 2023, 233, 123521. [Google Scholar] [CrossRef]
- Karabulut, G.; Feng, H. Enhancing techno-functional attributes of plant protein and curcumin complexation: A comparative examination of Maillard conjugation induced by manothermosonication and ultrasonication. Food Chem. 2024, 442, 138488. [Google Scholar] [CrossRef]
- Gao, K.; Xu, Y.; Rao, J.; Chen, B. Maillard reaction between high-intensity ultrasound pre-treated pea protein isolate and glucose: Impact of reaction time and pH on the conjugation process and the properties of conjugates. Food Chem. 2024, 434, 137486. [Google Scholar] [CrossRef]
- Cermeño, M.; Silva, J.V.; Arcari, M.; Denkel, C. Foaming properties of plant protein blends prepared using commercial faba bean and hemp protein concentrates at different faba bean/hemp protein ratios. LWT 2024, 198, 115948. [Google Scholar] [CrossRef]
- Chuang, C.C.; Ye, A.; Anema, S.G. Loveday SM. Hemp globulin forms colloidal nanocomplexes with sodium caseinate during pH-cycling. Food Res. Int. 2021, 150 Pt B, 110810. [Google Scholar] [CrossRef] [PubMed]
- Bhetwal, P.; Umar, M.; Anal, A.K. Enhanced functional characteristics and digestibility of blends of hemp protein hydrolysate and pea protein isolate. J. Food Meas. Charact. 2024, 18, 7112–7123. [Google Scholar] [CrossRef]
- Liu, M.; Childs, M.; Loos, M.; Taylor, A.; Smart, L.B.; Abbaspourrad, A. The effects of germination on the composition and functional properties of hemp seed protein isolate. Food Hydrocoll. 2023, 134, 108085. [Google Scholar] [CrossRef]
- Farinon, B.; Costantini, L.; Molinari, R.; Matteo, G.D.; Garzoli, S.; Ferri, S.; Ceccantoni, B.; Mannina, L.; Merendino, N. Effect of malting on nutritional and antioxidant properties of the seeds of two industrial hemp (Cannabis sativa L.) cultivars. Food Chem. 2022, 370, 131348. [Google Scholar] [CrossRef] [PubMed]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. Biotechnological transformation of hempseed in the food industry. In Cannabis/Hemp for Sustainable Agriculture and Materials, 1st ed.; Agrawal, D.C., Kumar, R., Dhanasekaran, M., Eds.; Springer: Singapore, 2022; pp. 163–202. [Google Scholar] [CrossRef]
- Park, Y.H.; Kim, J.H.; Shin, D.M.; Lee, S.P. Hemp seed protein hydrolysate enriched with γ-Aminobutyric acid and peptides by microbial bioconversion. Fermentation 2024, 10, 483. [Google Scholar] [CrossRef]
- Zhang, M.; Li, T.; Guo, G.; Liu, Z.; Hao, N. Production of nattokinase from hemp seed meal by solid-state fermentation and improvement of its nutritional quality. Fermentation 2023, 9, 469. [Google Scholar] [CrossRef]
- Nissen, L.; Casciano, F.; Babini, E. Beneficial metabolic transformations and prebiotic potential of hemp bran and its alcalase hydrolysate, after colonic fermentation in a gut model. Sci. Rep. 2023, 13, 1552. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, L.; Fu, D.; Zhang, Y.; Zhang, C. Hemp seed fermented by Aspergillus oryzae attenuates lipopolysaccharide-stimulated inflammatory responses in N9 microglial cells. Foods 2022, 11, 1689. [Google Scholar] [CrossRef]
- Bartkiene, E.; Klupsaite, D.; Starkute, V.; Mockus, E.; Bartkevics, V.; Ruibys, R.; Batkeviciute, G.; Özogul, F.; Khalid, M.U.; Rocha, J.M. Characteristics of lacto-fermented whey, milk, hemp and lupine proteins. LWT 2024, 201, 116259. [Google Scholar] [CrossRef]
- Pasarin, D.; Rovinaru, C.; Matei, C. Obtaining protein hydrolysates from hemp seeds. Chem. Proc. 2022, 7, 34. [Google Scholar] [CrossRef]
- Joshua, S.; Vermont, P. Bromelain Hydrolysis Modified the Functionality, Antioxidant, and Anti-Inflammatory Properties of Hempseed (Cannabis sativa L.) Protein Isolated at pH 12. ACS Food Sci. Technol. 2023, 3, 1049–1056. [Google Scholar] [CrossRef]
- Santos-Sánchez, G.; Aiello, G.; Rivardo, F.; Bartolomei, M.; Bollati, C.; Arnoldi, A.; Cruz-Chamorro, I.; Lammi, C. Antioxidant Effect Assessment and Trans Epithelial Analysis of New Hempseed Protein Hydrolysates. Antioxidants 2023, 12, 1099. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, Y.Y.; Li, M.Y.; Sun, B.Y.; Liu, L.L.; Lv, M.S.; Qu, M.; Guan, H.N.; Zhu, X.Q. High fischer ratio peptide of hemp seed: Preparation and anti-fatigue evaluation in vivo and in vitro. Food Res. Int. 2023, 165, 112534. [Google Scholar] [CrossRef]
- Samaei, S.P.; Martini, S.; Tagliazucchi, D.; Gianotti, A.; Babini, E. Antioxidant and angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from acalase protein hydrolysate fractions of hemp (Cannabis sativa L.) bran. J. Agric. Food Chem. 2021, 69, 9220–9228. [Google Scholar] [CrossRef]
- Gao, J.X.; Li, T.; Chen, D.D.; Gu, H.F.; Mao, X.Y. Identification and molecular docking of antioxidant peptides from hemp seed protein hydrolysates. LWT 2021, 147, 111453. [Google Scholar] [CrossRef]
- Montserrat-de la Paz, S.; Villanueva-Lazo, A.; Millan, F.; Martin-Santiago, V.; Rivero-Pino, F.; Millan-Linares, M.C. Production and identification of immunomodulatory peptides in intestine cells obtained from hemp industrial by-products. Food Res. Int. 2023, 174 Pt 1, 113616. [Google Scholar] [CrossRef]
- Cruz-Chamorro, I.; Santos-Sánchez, G.; Bollati, C.; Bartolomei, M.; Li, J.; Arnoldi, A.; Lammi, C. Hempseed (Cannabis sativa) peptides WVSPLAGRT and IGFLIIWV exert anti-inflammatory activity in the LPS-stimulated human hepatic cell line. J. Agric. Food Chem. 2022, 70, 577–583. [Google Scholar] [CrossRef]
- Givonetti, A.; Tonello, S.; Cattaneo, C.; D’Onghia, D.; Vercellino, N.; Sainaghi, P.P.; Colangelo, D.; Cavaletto, M. Hempseed water-soluble protein fraction and its hydrolysate display different biological features. Life 2025, 15, 225. [Google Scholar] [CrossRef]
- Eom, J.; Choi, S.H.; Kim, H.J.; Kim, D.H.; Bae, J.H.; Kwon, G.S.; Lee, D.H.; Hwang, J.H.; Kim, D.K.; Baek, M.C.; et al. Hemp-derived nanovesicles protect leaky gut and liver injury in dextran sodium sulfate-induced colitis. Int. J. Mol. Sci. 2022, 23, 9955. [Google Scholar] [CrossRef] [PubMed]
- Millan-Linares, M.C.; Rivero-Pino, F.; Gonzalez-de la Rosa, T.; Villanueva, A.; Montserrat-de la Paz, S. Identification, characterization, and molecular docking of immunomodulatory oligopeptides from bioavailable hempseed protein hydrolysates. Food Res. Int. 2024, 176, 113712. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Jang, J.; Seo, H.H.; Lee, J.H.; Moh, S.H. Cannabis sativa (Hemp) seed-derived peptides WVYY and PSLPA modulate the Nrf2 signaling pathway in human keratinocytes. PLoS ONE 2024, 19, 298487. [Google Scholar] [CrossRef]
- Bollati, C.; Cruz-Chamorro, I.; Aiello, G.; Li, J.; Bartolomei, M.; Santos-Sánchez, G.; Ranaldi, G.; Ferruzza, S.; Sambuy, Y.; Arnoldi, A.; et al. Investigation of the intestinal trans-epithelial transport and antioxidant activity of two hempseed peptides WVSPLAGRT (H2) and IGFLIIWV (H3). Food Res. Int. 2022, 152, 110720. [Google Scholar] [CrossRef]
- Hunsakul, K.; Laokuldilok, T.; Sakdatorn, V.; Klangpetch, W.; Brennan, C.S.; Utama-ang, N. Optimization of enzymatic hydrolysis by alcalase and flavourzyme to enhance the antioxidant properties of jasmine rice bran protein hydrolysate. Sci. Rep. 2022, 12, 12582. [Google Scholar] [CrossRef]
- Guzmán, F.; Aróstica, M.; Román, T.; Beltrán, D.; Gauna, A.; Albericio, F.; Cárdenas, C. Peptides, solid-phase synthesis and characterization: Tailor-made methodologies. Electron. J. Biotechn. 2023, 64, 27–33. [Google Scholar] [CrossRef]
- Zhu, F.; Cao, J.; Song, Y.; Yu, P.; Su, E. Plant protein-derived active peptides: A comprehensive review. J. Agric. Food Chem. 2023, 71, 20479–20499. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.M.; Singh, S.K.; White, T.A.; Cesta, D.J.; Simpson, C.L.; Tubb, L.; Houser, C.L. Total wash elimination for solid phase peptide synthesis. Nat. Commun. 2023, 14, 8168. [Google Scholar] [CrossRef]
- Schüttel, M.; Will, E.; Sangouard, G.; Zarda, A.; Habeshian, S.; Nielsen, A.L.; Heinis, C. Solid-phase peptide synthesis in 384-well plates. J. Pept. Sci. 2024, 30, e3555. [Google Scholar] [CrossRef]
- Cerrato, A.; Lammi, C.; Laura Capriotti, A.; Bollati, C.; Cavaliere, C.; Maria Montone, C.; Bartolomei, M.; Boschin, G.; Li, J.; Piovesana, S.; et al. Isolation and functional characterization of hemp seed protein-derived short- and medium-chain peptide mixtures with multifunctional properties for metabolic syndrome prevention. Food Res. Int. 2023, 163, 112219. [Google Scholar] [CrossRef]
- Cai, L.; Wu, S.; Jia, C.; Cui, C.; Sun-Waterhouse, D. Active peptides with hypoglycemic effect obtained from hemp (Cannabis sativa L.) protein through identification, molecular docking, and virtual screening. Food Chem. 2023, 429, 136912. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, C.; Givonetti, A.; Cavaletto, M. Protein mass fingerprinting and antioxidant power of hemp seeds in relation to plant cultivar and environment. Plants 2023, 12, 782. [Google Scholar] [CrossRef]
- Dong, X.; Bi, X.Z.; Quek, S.Y. Integrative approach to assessing bioactivity from hempseed protein isolate extracted and dehydrated by different methods: Synergising in silico prediction and in vitro validation. Food Chem. 2025, 463, 141459. [Google Scholar] [CrossRef]
- El-Sohaimy, S.A.; Androsova, N.V.; Toshev, A.D.; El-Enshasy, H.A. Nutritional quality, chemical, and functional characteristics of hemp (Cannabis sativa ssp. sativa) protein isolate. Plants 2022, 11, 2825. [Google Scholar] [CrossRef]
- Augustyńska-Prejsnar, A.; Topczewska, J.; Ormian, M.; Sokołowicz, Z. Quality of poultry roast enriched with hemp seeds, hemp oil, and hemp flour. Foods 2022, 11, 3907. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, F.; Roman, L.; Swaraj, V.J.S.; Ragavan, K.V.; Vidal, N.P.; Dutcher, J.R.; Martinez, M.M. Hemp (Cannabis sativa L.) protein concentrates from wet and dry industrial fractionation: Molecular properties, nutritional composition, and anisotropic structuring. Food Hydrocoll. 2022, 131, 107755. [Google Scholar] [CrossRef]
- Nemś, A.; Miedzianka, J.; Kita, A. Quality and nutritional value of cookies enriched with plant-based protein preparations. J. Sci. Food Agric. 2022, 102, 4629–4639. [Google Scholar] [CrossRef] [PubMed]
- Wiedemair, V.; Gruber, K.; Knöpfle, N.; Bach, K.E. Technological changes in wheat-based breads enriched with hemp seed press cakes and hemp seed grit. Molecules 2022, 27, 1840. [Google Scholar] [CrossRef]
- Capcanari, T.; Covaliov, E.; Negoița, C.; Siminiuc, R.; Chirsanova, A.; Reșitca, V.; Țurcanu, D. Hemp seed cake flour as a source of proteins, minerals and polyphenols and Its impact on the nutritional, sensorial and technological quality of bread. Foods 2023, 12, 4327. [Google Scholar] [CrossRef]
- Odintsov, S.; Nazarenko, Y.; Synenko, T.; Huba, S. Determining the influence of hemp seed protein on the quality indicators of cheese product and the content of nutrients in it. East. Eur. J. Enterp. Technol. 2024, 2, 6–12. [Google Scholar] [CrossRef]
- Merlino, M.; Tripodi, G.; Cincotta, F.; Prestia, O.; Miller, A.; Gattuso, A.; Verzera, A.; Condurso, C. Technological, nutritional, and sensory characteristics of gnocchi enriched with hemp seed flour. Foods 2022, 11, 2783. [Google Scholar] [CrossRef] [PubMed]
- Axentii, M.; Stroe, S.-G.; Codină, G.G. Development and quality evaluation of rigatoni pasta enriched with hemp seed meal. Foods 2023, 12, 1774. [Google Scholar] [CrossRef] [PubMed]
- Dash, D.R.; Singh, S.K.; Singha, P. Bio-based composite active film/coating from deccan hemp seed protein, taro starch and leaf extract: Characterizations and application in grapes. Sustain. Chem. Pharm. 2024, 39, 101609. [Google Scholar] [CrossRef]
- Rawat, R.; Saini, C.S. A novel biopolymeric composite edible film based on sunnhemp protein isolate and potato starch incorporated with clove oil: Fabrication, characterization, and amino acid composition. Int. J. Biol. Macromol. 2024, 268, 131940. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Ibáñez-Ibáñez, P.F.; Giosafatto, C.V.L.; del Castillo-Santaella, T.; Rodríguez-Valverde, M.A.; Maldonado-Valderrama, J. Surface activity of protein extracts from seed oil by-products and wettability of developed bioplastics. Food Hydrocoll. 2023, 145, 09091. [Google Scholar] [CrossRef]
- Dash, D.R.; Singh, S.K.; Singha, P. Viscoelastic behavior, gelation properties and structural characterization of Deccan hemp seed (Hibiscus cannabinus) protein: Influence of protein and ionic concentrations, pH, and temperature. Int. J. Biol. Macromol. 2024, 263 Pt 1, 130120. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Giosafatto, C.V.L.; Girolamo, R.D.; Famiglietti, M.; Porta, R. Hemp (Cannabis sativa) seed oilcake as a promising by-product for developing protein-based films: Effect of transglutaminase-induced crosslinking. Food Packag. Shelf Life 2022, 31, 100779. [Google Scholar] [CrossRef]
- Mileti, O.; Baldino, N.; Carmona, J.A.; Lupi, F.R.; Muñoz, J.; Gabriele, D. Shear and dilatational rheological properties of veg-etable proteins at the air/water interface. Food Hydrocoll. 2022, 126, 107472. [Google Scholar] [CrossRef]
- Wang, N.; Wang, T.; Yu, Y.; Xing, K.; Qin, L.; Yu, D. Dynamic high-pressure microfluidization assist in stabilizing hemp seed protein-gum Arabic bilayer emulsions: Rheological properties and oxidation kinetic model. Ind. Crop. Prod. 2023, 203, 117201. [Google Scholar] [CrossRef]
- Wang, T.; Li, N.; Zhang, W.; Guo, Y.; Yu, D.; Cheng, J.; Wang, L. Construction of hemp seed protein isolate-phosphatidylcholine stablized oleogel-in-water gel system and its effect on structural properties and oxidation stability. Food Chem. 2023, 404 Pt A, 134520. [Google Scholar] [CrossRef]
- Wang, T.; Wang, N.; Dai, Y.; Yu, D.; Cheng, J. Interfacial adsorption properties, rheological properties and oxidation kinetics of oleogel-in-water emulsion stabilized by hemp seed protein. Food Hydrocoll. 2023, 137, 108402. [Google Scholar] [CrossRef]
- Gholivand, S.; Tan, T.B.; Yusoff, M.M.; Choy, H.W.; Teow, S.J.; Wang, Y.; Liu, Y.; Tan, C. Advanced fabrication of complex biopolymer microcapsules via RSM-optimized supercritical carbon dioxide solution-enhanced dispersion: A comparative analysis of various microencapsulation techniques. Food Chem. 2024, 452, 139591. [Google Scholar] [CrossRef]
- Xu, P.W.; Yue, X.J.; Yuan, X.F.; Zhao, B. Hemp seed globulin-alginate nanoparticles for encapsulation of Cannabisin A with enhanced colloidal stability and antioxidant activity. Int. J. Biol. Macromol. 2024, 256 Pt 1, 128380. [Google Scholar] [CrossRef]
- Gholivand, S.; Tan, T.B.; Yusoff, M.M.; Choy, H.W.; Teow, S.J.; Wang, Y.; Liu, Y.; Tan, C. An in-depth comparative study of various plant-based protein-alginate complexes in the production of hemp seed oil microcapsules by supercritical carbon di-oxide solution-enhanced dispersion. Food Hydrocoll. 2024, 153, 110001. [Google Scholar] [CrossRef]
- Gholivand, S.; Tan, T.B.; Yusoff, M.M.; Choy, H.W.; Teow, S.J.; Wang, Y.; Liu, Y.; Tan, C. Elucidation of synergistic interactions between anionic polysaccharides and hemp seed protein isolate and their functionalities in stabilizing the hemp seed oil-based nanoemulsion. Food Hydrocoll. 2024, 146, 109181. [Google Scholar] [CrossRef]
- Zhang, J.; Griffin, J.; Li, Y.; Wang, D.; Wang, W. Antioxidant properties of hemp proteins: From functional food to phyto-therapy and beyond. Molecules 2022, 27, 7924. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, G.; Feng, H.; Yemiş, O. Physicochemical and antioxidant properties of industrial hemp seed protein isolate treated by high-intensity ultrasound. Plant Foods Hum. Nutr. 2022, 77, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, J. The effect of protein nutritional support on inflammatory bowel disease and its potential mechanisms. Nutrients 2024, 16, 2302. [Google Scholar] [CrossRef]
- Chen, H.H.; Li, W.; Wang, Y.; Xu, B.; Hu, X.; Li, X.B.; Liu, J.Y.; Zhang, C.; Zhang, C.Y.; Xing, X.H. Mining and validation of novel hemp seed-derived DPP-IV-Inhibiting peptides using a combination of multi-omics and molecular Docking. J. Agric. Food Chem. 2023, 71, 9164–9174. [Google Scholar] [CrossRef]
- Thongtak, A.; Yutisayanuwat, K.; Harnkit, N.; Noikaew, T.; Chumnanpuen, P. Computational screening for the dipeptidyl peptidase-IV inhibitory peptides from putative hemp seed hydrolyzed peptidome as a potential antidiabetic agent. Int. J. Mol. Sci. 2024, 25, 5730. [Google Scholar] [CrossRef]
- Cai, L.; Wu, S.; Jia, C.; Cui, C. Hydrolysates of hemp (Cannabis sativa L.) seed meal: Characterization and their inhibitory effect on α-glucosidase activity and glucose transport in Caco-2 cells. Ind. Crop. Prod. 2023, 205, 117559. [Google Scholar] [CrossRef]
- Samsamikor, M.; Mackay, D.; Mollard, R.C.; Aluko, R.E. A double-blind, randomized, crossover trial protocol of whole hemp seed protein and hemp seed protein hydrolysate consumption for hypertension. Trials 2020, 21, 354. [Google Scholar] [CrossRef] [PubMed]
- Samsamikor, M.; Mackay, D.S.; Mollard, R.C.; Alashi, A.M.; Aluko, R.E. Hemp seed protein and its hydrolysate compared with casein protein consumption in adults with hypertension: A double-blind crossover study. Am. J. Clin. Nutr. 2024, 120, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Li, N.; Jia, W.; Wang, N.; Liang, M.; Yang, X.; Du, G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol. Res. 2021, 172, 105807. [Google Scholar] [CrossRef]
- Hwangbo, Y.; Pan, J.H.; Lee, J.J.; Kim, T.; Kim, J.H. Production of protein hydrolysates from hemp (Cannabis sativa L.) seed and its protective effects against dexamethasone-induced muscle atrophy. Food Biosci. 2024, 59, 104046. [Google Scholar] [CrossRef]
- Hwangbo, Y.; Pan, J.H.; Lee, J.J.; Kim, T.; Kim, J.H. Effects of hemp seed protein hydrolysates on the differentiation of C2C12 Cells and Muscle Atrophy. J. Korean Soc. Food Sci. Nutr. 2023, 52, 1225–1232. [Google Scholar] [CrossRef]
- Ebo, D.G.; Toscano, A.; Rihs, H.-P.; Mertens, C.; Sabato, V.; Elst, J.; Beyens, M.; Hagendorens, M.M.; Van Houdt, M.; Van Gasse, A.L. IgE-mediated Cannabis allergy and cross-reactivity syndromes: A roadmap for correct diagnosis and management. Curr. Allergy Asthma Rep. 2024, 24, 407–414. [Google Scholar] [CrossRef]
- Bortolin, K.; Ben-Shoshan, M.; Kalicinsky, C.; Lavine, E.; Lejtenyi, C.; Warrington, R.J.; Pitt, T. Case series of 5 patients with anaphylaxis to hemp seed ingestion. J. Allergy Clin. Immunol. 2016, 137, AB239. [Google Scholar] [CrossRef]
- Aiello, G.; Fasoli, E.; Boschin, G.; Lammi, C.; Zanoni, C.; Citterio, A.; Arnoldi, A. Proteomic characterization of hempseed (Cannabis sativa L.). J. Proteom. 2016, 147, 187–196. [Google Scholar] [CrossRef]
- Beriziky, P.; Cherkaoui, M.; Linxe, L.; Perrin, E.; Rogniaux, H.; Denery-Papini, S.; Morisset, M.; Larré, C.; Dijk, W. Hemp seed: An allergen source with potential cross-reactivity to hazelnut. Food Res. Int. 2023, 169, 112932. [Google Scholar] [CrossRef]
Methods | Benefits | Drawbacks | |
---|---|---|---|
Physicochemical technique | pH-shifting | Easy, versatile | Leading to the partial denaturation of protein, generally requiring combination with other methods |
Protein-polyphenol interactions | Improving functionality, digestibility, stability, and antioxidant activity | Not mentioned | |
Maillard-driven conjugation | Enhancing surface hydrophilicity, lowering the isoelectric point | Time-consuming, leading to protein aggregation | |
Blending other proteins | Improving amino acid profile, solubility, digestibility, etc. | Not mentioned | |
Bio-technique | Germination | Few inputs and minimal waste, improving solubility, foaming ability, emulsifying properties, etc. | Negative impact on the solubility and functionality by short-term germination |
Fermentation | Improving extractability, digestibility, product shelf-life, etc. | Forming undesirable compounds like biogenic amine by lacto-fermentation |
Preparation Method | Peptide Sequence | Bioactivity | Tested Model | Ref. | |
---|---|---|---|---|---|
Enzymatic hydrolysis | Hydrolysis by different enzymes (trypsase, pepsase, papain, etc.) | VAMP | DPP-IV inhibitory, gut-microbial regulating | In silico, in vitro, in vivo | [14] |
Hydrolysis by digestive enzymes from Aspergillus niger, Aspergillus oryzae, and Bacillus licheniformis | QSFILG, ASVTKLG, ASVTKLG, KGVEIEG, VIEGKEG, etc. | Antioxidant | In vitro | [55] | |
Hydrolysis by alkaline protease and papain | Not identified | Antioxidant, anti-fatigue | In vitro, in vivo | [56] | |
Hydrolysis by Alcalase | LLY, LLR, IVY, LIY, IIY, etc. | Antioxidant, ACE-inhibitory | In vitro | [57] | |
Hydrolysis by protamex | YGRDEISV, LDLVKPQ | Antioxidant | In vitro | [58] | |
Sequential hydrolysis by Alcalase and Flavourzyme | MAEKEGFEWVSF, GLHLPSYTNTPQLVYIVK | Immunomodulatory | In silico, in vitro | [59] | |
Hydrolysis by pepsin | WVSPLAGRT, IGFLIIWV | Anti-inflammatory | In vitro | [60] | |
Simulated protease cleavage (trypsin, chymotrypsin, pepsin, etc.) | LPQNIPPL, YPYY, YPW, LPYPY, WWW, etc. | DPP-IV inhibitory | In silico, in vitro | [61] | |
Putative hydrolysis by pepsin, trypsin, and chymotrypsin | FNVDTE, EAQPST | DPP-IV inhibitory | In silico | [62] | |
Chemical synthesis | Fmoc solid-phase synthesis | DDNPRRF, SRRFHLA, RNIFKGF, VREPVFSF, QADIFNPR, SAERGFLY | Immunomodulatory, anti-inflammatory | In silico, in vitro | [63] |
Synthesized by WELLPEP Co., Ltd. (Incheon, South Korea) | WVYY, PSLPA | Antioxidant, antibacterial, wound healing | In vitro | [64] | |
Synthesized by the company GeneScript (Piscataway, NJ, American) | WVSPLAGRT, IGFLIIWV | Antioxidant | In vitro | [65] |
Application | Examples | Quality Improvement | Ref. |
---|---|---|---|
Meat | Poultry roast: add hemp seed (8%), flour (0.2%), and oil (2%) to the recipes | Lower cooking losses; higher fiber, protein, aspartic acid, and arginine content | [76] |
Meat analogs: high moisture and high shear extrusion of hemp protein concentrates | Outstanding level of anisotropy; fibrous-like mesoscale structures | [77] | |
Bakery product | Cookie: replace 10% wheat flour with hemp protein preparation | Higher protein and threonine contents; delicate texture | [78] |
Bread: add 10% hemp press cake flour protein to the recipes | Higher protein content by maintaining similar textural properties | [79] | |
Bread: replace 5% to 40% wheat flour with hemp seed cake flour | Higher protein and total phenol content; stronger DPPH radical scavenging activity | [80] | |
Dairy product | Cheese: replace 10% to 25% milk with hemp seed protein | Increased cheese yield; higher protein content; more balanced amino acid profile | [81] |
Pasta | Gnocchi (potato-based fresh pasta): replace 5% to 20% wheat flour with hemp seed flour | Higher protein content; lower stickiness and cooking loss; good cooking resistance and firmness | [82] |
Rigatoni pasta: replace 5% to 20% wheat flour with hemp seed meal | Higher total phenolic content and antioxidant activity | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhou, W.; Qin, X.; Hou, C.; Yang, X. Preparation, Modification, Food Application, and Health Effects of Protein and Peptide from Hemp (Cannabis sativa L.) Seed: A Review of the Recent Literature. Foods 2025, 14, 1149. https://doi.org/10.3390/foods14071149
Zhang X, Zhou W, Qin X, Hou C, Yang X. Preparation, Modification, Food Application, and Health Effects of Protein and Peptide from Hemp (Cannabis sativa L.) Seed: A Review of the Recent Literature. Foods. 2025; 14(7):1149. https://doi.org/10.3390/foods14071149
Chicago/Turabian StyleZhang, Xiaoqin, Wei Zhou, Xiaoli Qin, Chunsheng Hou, and Xiushi Yang. 2025. "Preparation, Modification, Food Application, and Health Effects of Protein and Peptide from Hemp (Cannabis sativa L.) Seed: A Review of the Recent Literature" Foods 14, no. 7: 1149. https://doi.org/10.3390/foods14071149
APA StyleZhang, X., Zhou, W., Qin, X., Hou, C., & Yang, X. (2025). Preparation, Modification, Food Application, and Health Effects of Protein and Peptide from Hemp (Cannabis sativa L.) Seed: A Review of the Recent Literature. Foods, 14(7), 1149. https://doi.org/10.3390/foods14071149