Methods of Protein Extraction from House Crickets (Acheta domesticus) for Food Purposes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Crickets
2.2.1. Crickets Rearing and Harvesting
2.2.2. Processing Cricket into Powder
2.3. Study Design
2.4. Protein Extraction
2.4.1. Method 1: Protein Extraction with NaOH
2.4.2. Method 2: Protein Extraction with Ascorbic Acid
2.4.3. Method 3: Protein Extraction with Enzyme
2.4.4. Extraction Yield and Rates
2.5. Nutrient Composition
2.6. Statistical Analysis
3. Results
3.1. Nutrient Composition
3.1.1. Cricket Powder (Control)
3.1.2. Cricket Protein Extracts
3.2. Yields and Protein Extraction Rate
3.3. Nutritional Composition in Fat, Carbohydrates, Fiber, Ash and Moisture
4. Discussion
4.1. Nutritional Composition of Cricket Powder
4.2. Nutritional Composition of Cricket Protein Extracts
4.3. Yields and Extraction Rate
4.4. Other Nutritional Components
4.5. Practical Applications of Cricket Protein Extracts in Food Technology
4.5.1. Food Formulation and Functional Properties
4.5.2. Sensorial Profile
4.5.3. Consumer Acceptance and Market Implications
4.5.4. Potential for Industrial Scale-Up
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Report on Food Crisis—2022. Food Security Information Network. Available online: https://docs.wfp.org/api/documents/WFP-0000138913/download/?_ga=2.79685015.2042137803.1683693379-539027021.1683693379 (accessed on 10 August 2024).
- Global Report on Food Crisis—2021. Food Security Information Network. Available online: https://www.fsinplatform.org/sites/default/files/resources/files/GRFC%202021%20050521%20med.pdf (accessed on 5 August 2024).
- Global Agriculture Towards 2050. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 24 July 2024).
- Musungu, A.L.; Muriithi, B.W.; Ghemoh, C.J.; Nakimbugwe, D.; Tanga, C.M. Production, consumption, and market supply of edible crickets: Insights from East Africa. Agric. Econ. 2023, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Alvi, T.; Sameen, A.; Khan, S.; Blinov, A.V.; Nagdalian, A.A.; Mehdizadeh, M.; Adli, D.N.; Onwezen, M. Consumer Acceptance of Alternative Proteins: A Systematic Review of Current Alternative Protein Sources and Interventions Adapted to Increase Their Acceptability. Sustainability 2022, 14, 15370. [Google Scholar] [CrossRef]
- Climate Change, Biodiversity and Nutrition Nexus. Evidence and Emerging Policy and Programming Opportunities. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/dc8635bd-a4c1-427d-ad67-2d886dbb795f/content (accessed on 15 August 2024).
- Boccardo, A.; Hagelaar, G.; Lakemond, C. Evaluation of crises suitability of food systems: A comparison of alternative protein sources. Food Secur. 2023, 15, 1647–1665. [Google Scholar]
- The State of Food Security and Nutrition in the World. Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/1f66b67b-1e45-45d1-b003-86162fd35dab/content (accessed on 17 August 2024).
- Malila, Y.; Owolabi, I.O.; Chotanaphuti, T.; Sakdibhornssup, N.; Elliott, C.T.; Visessanguan, W.; Karoonuthaisiri, N.; Petchkongkaew, A. Current challenges of alternative proteins as future foods. npj Sci. Food 2024, 8, 53. [Google Scholar] [PubMed]
- Talwar, R.; Freymond, M.; Beesabathuni, K.; Lingala, S. Current and Future Market Opportunities for Alternative Proteins in Low- and Middle-Income Countries. Curr. Dev. Nutr. 2024, 8, 102035. [Google Scholar] [PubMed]
- Dossey, A.T.; Oppert, B.; Chu, F.C.; Lorenzen, M.D.; Scheffler, B.; Simpson, S.; Koren, S.; Johnston, J.S.; Kataoka, K.; Ide, K. Genome and Genetic Engineering of the House Cricket (Acheta domesticus): A Resource for Sustainable Agriculture. Biomolecules 2023, 13, 589. [Google Scholar] [CrossRef]
- Pilco-Romero, G.; Chisaguano-Tonato, A.M.; Herrera-Fontana, M.E.; Chimbo-Gándara, L.F.; Sharifi-Rad, M.; Giampieri, F.; Battino, M.; Vernaza, M.G.; Álvarez-Suárez, J.M. House cricket (Acheta domesticus): A review based on its nutritional composition, quality, and potential uses in the food industry. Trends Food Sci. Technol. 2023, 142, 104226. [Google Scholar] [CrossRef]
- Lange, K.W.; Nakamura, Y. Potential contribution of edible insects to sustainable consumption and production. Front. Sustain. 2023, 4, 1112950. [Google Scholar]
- Malla, N.; Nørgaard, J.V.; Lærke, H.N.; Heckmann, L.H.L.; Roos, N. Some Insect Species Are Good-Quality Protein Sources for Children and Adults: Digestible Indispensable Amino Acid Score (DIAAS) Determined in Growing Pigs. J. Nutr. 2022, 152, 1042–1051. [Google Scholar] [PubMed]
- Murugu, D.K.; Onyango, A.N.; Ndiritu, A.K.; Osuga, I.M.; Xavier, C.; Nakimbugwe, D.; Tanga, C.M. From Farm to Fork: Crickets as Alternative Source of Protein, Minerals, and Vitamins. Front. Nutr. 2021, 10, 704002. [Google Scholar]
- Psarianos, M.; Ojha, S.; Schlüter, O.K. Evaluating an emerging technology-based biorefinery for edible house crickets. Front. Nutr. 2023, 10, 1185612. [Google Scholar]
- Ayustaningwarno, F.; Ayu, A.M.; Syiffah, L.; Muthia, H.; Amalina, F.A.; Afifah, D.N.; Nindita, Y.; Maharani, N.; Widyastuti, N.; Anjani, G.; et al. Physicochemical and sensory properties of cookies with cricket powder as an alternative snack to prevent iron deficiency anemia and chronic energy deficiency. Appl. Food Res. 2024, 4, 100485. [Google Scholar]
- Ruggeri, M.; Bianchi, E.; Vigani, B.; Sánchez-Espejo, R.; Spano, M.; Totaro Fila, C.; Mannina, L.; Viseras, C.; Rossi, S.; Sandri, G. Nutritional and Functional Properties of Novel Italian Spray-Dried Cricket Powder. Antioxidants 2023, 12, 112. [Google Scholar] [CrossRef]
- Zafar, A.; Shaheen, M.; Tahir, A.B.; Gomes da Silva, A.P.; Manzoor, H.Y.; Zia, S. Unraveling the nutritional, biofunctional, and sustainable food application of edible crickets: A comprehensive review. Trends Food Sci. Technol. 2024, 143, 104254. [Google Scholar]
- van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar]
- De Souza-Vilela, J.; Andrew, N.; Ruhnke, I. Insect protein in animal nutrition. Anim. Prod. Sci. 2019, 59, 2029–2036. [Google Scholar]
- Mazac, R.; Meinilä, J.; Korkalo, L.; Järviö, N.; Jalava, M.; Tuomisto, H.L. Incorporation of novel foods in European diets can reduce global warming potential, water use and land use by over 80%. Nat. Food 2022, 3, 286–293. [Google Scholar]
- Ridoutt, B.G.; Sanguansri, P.; Harper, G.S. Comparing Carbon and Water Footprints for Beef Cattle Production in Southern Australia. Sustainability 2011, 3, 2443–2455. [Google Scholar] [CrossRef]
- EU Consumer Acceptance of Edible Insects: Survey Report. Available online: https://ipiff.org/eu-consumer-acceptance-of-edible-insects-survey-report/ (accessed on 18 December 2024).
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of insect use for feed and food: Life Cycle Assessment perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Tapanen, T. Environmental Potential of Insects as Food Protein Source. Master’s Thesis, Sustainability Science and Solutions, School of Energy Systems, LUT University, Lappeenranta, Finland, 2018. [Google Scholar]
- Entopowder Production, Global Bugs Asia Scales up Its “EntoFarm project”. Uncategorized/3 October 2022. Available online: https://globalbugs.asia/global-bugs-asia-plans-to-scale-up-entopowder-production/ (accessed on 16 August 2024).
- Michel, P.; Begho, T. Paying for sustainable food choices: The role of environmental considerations in consumer valuation of insect-based foods. Food Qual. Pref. 2023, 106, 104816. [Google Scholar]
- Erhard, A.L.; Águas Silva, M.; Damsbo-Svendsen, M.; Menadeva Karpantschof, B.; Sørensen, H.; Bom Frøst, M. Acceptance of insect foods among Danish children: Effects of information provision, food neophobia, disgust sensitivity, and species on willingness to try. Food Qual. Prefer. 2023, 104, 104713. [Google Scholar] [CrossRef]
- Liceaga, A.M. Approaches for Utilizing Insect Protein for Human Consumption: Effect of Enzymatic Hydrolysis on Protein Quality and Functionality. Ann. Entomol. Soc. Am. 2019, 112, 529–532. [Google Scholar] [CrossRef]
- Ververis, E.; Boué, G.; Poulsen, M.; Pires, S.M.; Niforou, A.; Thomsen, S.T.; Tesson, V.; Federighi, M.; Naska, A. A systematic review of the nutrient composition, microbiological and toxicological profile of Acheta domesticus (house cricket). J. Food Compos. Anal. 2022, 114, 104859. [Google Scholar] [CrossRef]
- Ros-Baró, M.; Sánchez-Socarrás, V.; Santos-Pagès, M.; Bach-Faig, A.; Aguilar-Martínez, A. Consumers’ Acceptability and Perception of Edible Insects as an Emerging Protein Source. Int. J. Environ. Res. Public Health 2022, 19, 15756. [Google Scholar] [CrossRef]
- Zugravu, C.; Tarcea, M.; Nedelescu, M.; Nuţă, D.; Guiné, R.P.F.; Constantin, C. Knowledge: A Factor for Acceptance of Insects as Food. Sustainability 2023, 15, 4820. [Google Scholar] [CrossRef]
- Alhujaili, A.; Nocella, G.; Macready, A. Insects as Food: Consumers’ Acceptance and Marketing. Foods 2023, 12, 886. [Google Scholar] [CrossRef]
- Brena-Melendez, A.; Garcia-Amezquita, L.E.; Liceaga, A.; Pascacio-Villafán, C.; Tejada-Ortigoza, V. Novel food ingredients: Evaluation of commercial processing conditions on nutritional and technological properties of edible cricket (Acheta domesticus) and its derived parts. Innov. Food Sci. Emerg. Technol. 2024, 92, 103589. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of frozen and dried formulations from whole house crickets (Acheta domesticus) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06779. [Google Scholar]
- Pan, J.; Xu, H.; Cheng, Y.; Mintah, B.K.; Dabbour, M.; Yang, F.; Chen, W.; Zhang, Z.; Dai, C.; He, R.; et al. Recent Insight on Edible Insect Protein: Extraction, Functional Properties, Allergenicity, Bioactivity, and Applications. Foods 2022, 11, 2931. [Google Scholar] [CrossRef]
- Davalos-Vazquez, A.; Mojica, L.; Sánchez-Velázquez, O.A.; Castillo-Herrera, G.; Urías-Silvas, J.E.W.; Doyen, A.; Moreno-Vilet, L. Techno-functional properties and structural characteristics of cricket protein concentrates affected by pre-treatments and ultrafiltration/diafiltration processes. Food Chem. 2024, 461, 140908. [Google Scholar] [CrossRef]
- Ma, Z.; Mondor, M.; Goycoolea Valencia, F.; Hernández-Álvarez, A.J. Current state of insect proteins: Extraction technologies, bioactive peptides and allergenicity of edible insect proteins. Food Funct. 2023, 14, 8129–8156. [Google Scholar] [CrossRef]
- Parasuraman, S.; Sujithra, J.; Syamittra, B.; Yeng, W.Y.; Ping, W.Y.; Muralidharan, S.; Raj, P.V.; Dhanaraj, S.A. Evaluation of sub-chronic toxic effects of petroleum ether, a laboratory solvent in Sprague-Dawley rats. J. Basic Clin. Pharm. 2014, 5, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Li, Q.; Li, D.; Sun, C.; Bao, Y.; Li, F.; Jiang, S. Optimizing the extraction of protein from broken rice using response surface methodology and comparing the protein functional properties. J. Cereal Sci. 2023, 113, 103726. [Google Scholar]
- Tang, J.; Yao, D.; Xia, S.; Cheong, L.; Tu, M. Recent progress in plant-based proteins: From extraction and modification methods to applications in the food industry. Food Chem. 2024, 23, 101540. [Google Scholar]
- Cao, Z.; Zhang, S.; Ren, F. Antioxidants in protein extraction and stabilization. J. Agric. Food Chem. 2019, 67, 6047–6056. [Google Scholar]
- All About the Composition of Protein Purification Buffers and Why It Matters. Available online: https://goldbio.com/articles/article/all-about-the-composition-of-protein-purification-buffers-and-why-it-matters (accessed on 19 December 2024).
- Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2012, 1826, 443–457. [Google Scholar]
- Amarender, R.V.; Bhargava, K.; Dossey, A.T.; Gamagedara, S. Lipid and protein extraction from edible insects—Crickets (Gryllidae). LWT 2020, 125, 109222. [Google Scholar] [CrossRef]
- Sungsri-In, M.; Moongngarm, A.; Deeseenthum, S.; Luang-In, V.; Butkhup, L.; Somboonwatthanakul, I.; Phankhlong, S.; Yachai, K.; Khawla, Y.; Pimkoksoong, S.; et al. Effect of Alcalase Hydrolysis Time on Physicochemical and Functional Properties of Protein Hydrolysate Extracted from Gryllus bimaculatus Cricket Powder. Nutr. Food Sci. 2024, 12, 1466–1477. [Google Scholar]
- Tacias-Pascacio, V.G.; Morellon-Sterling, R.; Siar, E.; Tavano, O.; Berenguer-Murcia, A.; Fernandez-Lafuente, R. Use of alcalase in the production of bioactive peptides: A review. Int. J. Biol. Macromol. 2020, 165, 2143–2196. [Google Scholar]
- Edward, W.T.; Bunyakanchana, T.; Siripitakpong, P.; Supabowornsathit, K.; Vilaivan, T.; Suppavorasatit, I. Cricket Protein Isolate Extraction: Effect of Ammonium Sulfate on Physicochemical and Functional Properties of Proteins. Foods 2023, 12, 4032. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Haubruge, É.; Francis, F. Insects, the next european foodie craze? In Edible Insects in Sustainable Food Systems, 1st ed.; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 353–361. [Google Scholar]
- Zhao, X.; Vázquez-Gutiérrez, J.L.; Johansson, D.P.; Landberg, R.; Langton, M. Yellow mealworm protein for food purposes—Extraction and functional properties. PLoS ONE 2016, 11, e0147791. [Google Scholar] [CrossRef] [PubMed]
- Hall, F.G.; Jones, O.G.; O’Haire, M.E.; Liceaga, A.M. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chem. 2017, 224, 414–422. [Google Scholar]
- Gravel, A.; Doyen, A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol. 2020, 59, 102272. [Google Scholar] [CrossRef]
- Quinteros, M.F.; Martínez, J.; Barrionuevo, A.; Rojas, M.; Carrillo, W. Functional, Antioxidant, and Anti-Inflammatory Properties of Cricket Protein Concentrate (Gryllus assimilis). Biology 2022, 11, 776. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Maroco, J. Análise Estatística Com Utilização do Spss, 8th ed.; Edições Silabo: Lisboa, Portugal, 2021. [Google Scholar]
- Riffenburgh, R.H. Tests on the Distribution Shape of Continuous Data. In Statistics in Medicine, 2nd ed.; Riffenburgh, R.H., Ed.; Academic Press: Cambridge, MA, USA, 2006; pp. 369–386. [Google Scholar]
- Ritvanen, T.; Pastell, H.; Welling, A.; Raatikainen, M. The nitrogen-to-protein conversion factor of two cricket species—Acheta domesticus and Gryllus bimaculatus. Agric. Food Sci. 2020, 29, 1–5. [Google Scholar]
- Bassett, F.S.; Dunn, M.L.; Pike, O.A.; Jefferies, L.K. Physical, nutritional, and sensory properties of spray-dried and oven-roasted cricket (Acheta domesticus) powders. J. Insects Food Feed 2021, 7, 987–1000. [Google Scholar]
- Ndiritu, A.K.; Kinyuru, J.N.; Kenji, G.M.; Gichuhi, P.N. Extraction technique influences the physico-chemical characteristics and functional properties of edible crickets (Acheta domesticus) protein concentrate. J. Food Meas. Charact. 2017, 11, 2013–2021. [Google Scholar]
- El Hajj, R.; Mhemdi, H.; Besombes, C.; Allaf, K.; Lefrançois, V.; Vorobiev, E. Edible Insects’ Transformation for Feed and Food Uses: An Overview of Current Insights and Future Developments in the Field. Processes 2022, 10, 970. [Google Scholar] [CrossRef]
- Lopez-Santamarina, A.; Mondragon, A.D.C.; Lamas, A.; Miranda, J.M.; Franco, C.M.; Cepeda, A. Animal-Origin Prebiotics Based on Chitin: An Alternative for the Future? A Critical Review. Foods 2020, 9, 782. [Google Scholar] [CrossRef]
- Ayensu, J.; Annan, R.A.; Edusei, A.; Lutterodt, H. Beyond nutrients, health effects of entomophagy: A systematic review. Nutr. Food Sci. 2019, 49, 2–17. [Google Scholar] [CrossRef]
- Trinh, B.T.; Supawong, S. Enzymatic Hydrolysis of Cricket (Gryllodes sigillatus) Protein: Influence of Alcalase and Neutrase Enzyme on Functional Properties of Recovered Protein. Biol. Sci. 2021, 10, 342–353. [Google Scholar]
- Wu, Q.; Ma, Y.; Zhang, L.; Han, J.; Lei, Y.; Le, Y.; Huang, C.; Kan, J.; Fu, C. Extraction, functionality, and applications of Chlorella pyrenoidosa protein/peptide. Curr. Res. Food Sci. 2023, 7, 100621. [Google Scholar] [CrossRef]
- Li, M.; Mao, C.; Li, X.; Jiang, L.; Zhang, W.; Li, M.; Liu, H.; Fang, Y.; Liu, S.; Yang, G.; et al. Edible Insects: A New Sustainable Nutritional Resource Worth Promoting. Foods 2023, 12, 4073. [Google Scholar] [CrossRef] [PubMed]
- Goulding, D.A.; Fox, F.F.; O’Mahony, J.A. Milk proteins: An overview. In Milk Proteins, 3rd ed.; Boland, M., Singh, H., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 21–98. [Google Scholar]
- Cui, Q.; Sun, Y.; Zhou, Z.; Cheng, J.; Guo, M. Effects of Enzymatic Hydrolysis on Physicochemical Properties and Solubility and Bitterness of Milk Protein Hydrolysates. Foods 2021, 10, 2462. [Google Scholar] [CrossRef]
- Juul, L.; Haue, S.K.; Bruhn, A.; Boderskov, T.; Dalsgaard, T.K. Alkaline pH increases protein extraction yield and solubility of the extracted protein from sugar kelp (Saccharina latissima). Food Bioprod. Proc. 2023, 140, 144–150. [Google Scholar] [CrossRef]
- Salt, D.J.; Leslie, R.B.; Lillford, P.J.; Dunnill, P. Factors influencing protein structure during acid precipitation: A study of soya proteins. Eur. J. Appl. Microbiol. Biotechnol. 1982, 14, 144–148. [Google Scholar] [CrossRef]
- Pellerin, G.; Doyen, A. Effect of thermal and defatting treatments on the composition, protein profile and structure of house cricket (Acheta domesticus) protein extracts. Food Chem. 2024, 448, 139149. [Google Scholar] [CrossRef]
- Oshin, T.A.; Abhulimen, K.E.; Abadi, J.C.; Adekanye, T.A. Comparative simulation studies on the countercurrent multi-stage solid–liquid extraction of soybean oil by ethanol and hexane. Chem. Pap. 2024, 78, 5657–5669. [Google Scholar] [CrossRef]
- Sosa-Flores, M.L.; García-Hernández, D.G.; Amaya-Guerra, C.A.; Bautista-Villarreal, M.; González-Luna, A.R. Obtención de aislados e hidrolizados proteicos de grillo (Acheta domesticus) y evaluación de su actividad antioxidante. Investig. Desarro. Cienc. Tecnol. Aliment. 2023, 8, 608–618. [Google Scholar] [CrossRef]
- Makishi, G.L.A.; Lacerda, R.S.; Mamani, H.N.C.; Costa, P.A.; Bittante, A.M.Q.B.; Gomide, C.A.; Sobral, P.J.A. Effect of alkaline agent and pH on the composition of freeze-dried proteins extracted from castor bean (Ricinus communis, L.) cake. Chem. Eng. Trans. 2014, 37, 697–702. [Google Scholar]
- Harris, G.K.; Marshall, M.R. Ash Analysis. In Food Analysis, 5th ed.; Nielsen, S.S., Ed.; Springer: New York, NY, USA, 2017; pp. 287–297. [Google Scholar]
- Kontoghiorghes, G.J.; Kolnagou, A.; Kontoghiorghe, C.N.; Mourouzidis, L.; Timoshnikov, V.A.; Polyakov, N.E. Trying to Solve the Puzzle of the Interaction of Ascorbic Acid and Iron: Redox, Chelation and Therapeutic Implications. Medicines 2020, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, D.; Liu, W.; Kan, J.; Zhang, Y. Effect of Dry Processing of Coconut Oil on the Structure and Physicochemical Properties of Coconut Isolate Proteins. Foods 2024, 13, 2496. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Karabulut, G.; Mundada, V.; Feng, H. Unraveling the potential of non-thermal ultrasonic contact drying for enhanced functional and structural attributes of pea protein isolates: A comparative study with spray and freeze-drying methods. Food Chem. 2024, 439, 138137. [Google Scholar] [PubMed]
Method of Extraction | Group | Proximate Analysis (Samples Number) | ||||||
---|---|---|---|---|---|---|---|---|
Protein | Lipids | Carbohydrates | Fiber | Moisture | Ash | |||
1 | Alkaline | Experimental | 3 | 3 | 3 | 3 | 3 | 3 |
2 | Acidic | Experimental | 3 | 3 | 3 | 3 | 3 | 3 |
3 | Enzymatic | Experimental | 3 | 3 | 3 | 3 | 3 | 3 |
4 | Cricket powder | Control * | 5 | 5 | 5 | 5 | 5 | 5 |
Nutritional Components of Cricket Powder | |
---|---|
Nutrient | (%w/w), Dry Basis |
Protein * | 46 ± 0.23 |
Fat | 19 ± 0.1 |
Carbohydrates | 6 ± 0.95 |
Fiber | 9 ± 0.57 |
Moisture | 6 ± 0.03 |
Ash | 4 ± 0.09 |
Method | Extraction Yield (%) | Protein (g/100 g) | Protein Extraction Rate (%) |
---|---|---|---|
1 NaOH | 75.07 | 53.93 | 60.44 |
2 Ascorbic acid | 69.10 | 44.92 | 46.34 |
3 Alcalase | 77.81 | 60.19 | 69.91 |
Lipids | Carbohydrates | Fibre | Ash | Moisture | |
---|---|---|---|---|---|
Method 1 (NaOH) | 5.26 ± 0.2 (c) | Not detectable | 20.32 ± 1.46 (c) | 9.78 ± 0.77 (c) | 1.26 ± 0.26 (a) |
Method 2 (Ascorbic acid) | 0.56 ±0.2 (a) | 26.37 ± 1.39 (c) | 11.51 ± 1.19 (b) | 8.92 ± 0.78 (a) | 4.55 ± 0.007 (c) |
Method 3 (Alcalase) | 1.66 ± 0.3 (b) | 10.78 ± 0.33 (b) | 0.70 ± 0.45 (a) | 1.70 ± 0.03 (c) | 3.90 ± 0.17 (b) |
Control | 19.51 ± 0.1 (d) | 6.75 ± 0.95 (a) | 9.51 ± 0.57 (b) | 4.43 ± 0.03 (b) | 6.05 ± 0.09 (d) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, N.; Andrade, V.; Macedo, A.; Ruivo, P.; Lima, G. Methods of Protein Extraction from House Crickets (Acheta domesticus) for Food Purposes. Foods 2025, 14, 1164. https://doi.org/10.3390/foods14071164
Cunha N, Andrade V, Macedo A, Ruivo P, Lima G. Methods of Protein Extraction from House Crickets (Acheta domesticus) for Food Purposes. Foods. 2025; 14(7):1164. https://doi.org/10.3390/foods14071164
Chicago/Turabian StyleCunha, Nair, Vanda Andrade, Antónia Macedo, Paula Ruivo, and Gabriela Lima. 2025. "Methods of Protein Extraction from House Crickets (Acheta domesticus) for Food Purposes" Foods 14, no. 7: 1164. https://doi.org/10.3390/foods14071164
APA StyleCunha, N., Andrade, V., Macedo, A., Ruivo, P., & Lima, G. (2025). Methods of Protein Extraction from House Crickets (Acheta domesticus) for Food Purposes. Foods, 14(7), 1164. https://doi.org/10.3390/foods14071164