Physically Modified Plant Oils as Alternatives to Palm Fat: Effects on Physical and Flavour Properties of Chocolate Fillings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.1.1. Palm Fat and Ingredients of Plant Oil Emulsions
2.1.2. Chocolate Fillings
2.1.3. Chemicals for Sample Preparation, Extraction, and Quantitation of Polyphenols and Alkaloids
2.1.4. Chemicals for Sample Preparation, Extraction, and Quantitation of Selected Aroma Compounds
2.2. Production Methods
2.2.1. Formation of Particle-Stabilised and/or Crystallised Palm Fat Alternatives
Preparation of Suspensions
Lab-Scale Emulsification
Pilot-Scale Emulsification
Pilot-Scale Crystallisation
2.2.2. Preparation of Chocolate Filling
Chocolate Filling Preparation
- Lab-Scale Preparation
- Pilot-Scale Preparation
2.3. Analysis
2.3.1. Texture Analysis
2.3.2. Colour Analysis
2.3.3. Viscosity Analysis
2.3.4. Quantitation of Key Tastants and Aroma Compounds in the Chocolate Fillings
- Quantitation of cocoa key tastants:
- Quantitation of cocoa key aroma compounds:
2.4. Experimental Design
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CO | Crystallised Oil |
COP | Crystallised Oil with Press cake |
PECO | Particle-stabilised Emulsified Crystallised Oil |
COPE | Crystallised Oil with Particle Emulsification |
PEO | Particle-stabilised Emulsified Oil |
References
- Dian, N.L.H.M.; Hamid, R.A.; Kanagaratnam, S.; Isa, W.A.; Hassim, N.A.M.; Ismail, N.H.; Omar, Z.; Sahri, M.M. Palm oil and palm kernel oil: Versatile ingredients for food applications. J. Oil Palm Res. 2017, 29, 487–511. [Google Scholar] [CrossRef]
- Mba, O.I.; Dumont, M.-J.; Ngadi, M. Palm oil: Processing, characterization and utilization in the food industry—A review. Food Biosci. 2015, 10, 26–41. [Google Scholar] [CrossRef]
- Norizzah, A.R.; Nur Azimah, K.; Zaliha, O. Influence of enzymatic and chemical interesterification on crystallisation properties of refined, bleached and deodourised (RBD) palm oil and RBD palm kernel oil blends. Food Res. Int. 2018, 106, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Meijaard, E.; Brooks, T.M.; Carlson, K.M.; Slade, E.M.; Garcia-Ulloa, J.; Gaveau, D.L.A.; Lee, J.S.H.; Santika, T.; Juffe-Bignoli, D.; Struebig, M.J.; et al. The environmental impacts of palm oil in context. Nat. Plants 2020, 6, 1418–1426. [Google Scholar] [CrossRef]
- Husmann, C.; Schmid, T.; Waser, C.; Kaelin, I.; Hollenstein, L.; Müller, N. Crystallized Pickering Emulsions from Plant Oil as a Local Alternative to Palm Oil. Foods 2025, 14, 104. [Google Scholar] [CrossRef]
- Schmid, T.; Kinner, M.; Staeheli, L.; Steinegger, S.; Hollenstein, L.; De la Gala, D.; Kinner, M.; Müller, N. Effect of Press Cake-Based Particles on Quality and Stability of Plant Oil Emulsions. Foods 2024, 13, 2969. [Google Scholar] [CrossRef]
- Norton, J.E.; Fryer, P.J. Investigation of changes in formulation and processing parameters on the physical properties of cocoa butter emulsions. J. Food Eng. 2012, 113, 329–336. [Google Scholar] [CrossRef]
- Mert, B.; Demirkesen, I. Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT—Food Sci. Technol. 2016, 68, 477–484. [Google Scholar] [CrossRef]
- Onacik-Gür, S.; Żbikowska, A. Effect of high-oleic rapeseed oil oleogels on the quality of short-dough biscuits and fat migration. J. Food Sci. Technol. 2020, 57, 1609–1618. [Google Scholar] [CrossRef]
- Schmid, T.; Baumer, B.; Rüegg, R.; Näf, P.; Kinner, M.; Müller, N. Evaluation of innovative technological approaches to replace palm fat with physically modified Swiss rapeseed oil in bakery products. Int. J. Food Sci. Technol. 2020, 55, 2990–2999. [Google Scholar] [CrossRef]
- Tanislav, A.E.; Pușcaș, A.; Păucean, A.; Mureșan, A.E.; Semeniuc, C.A.; Mureșan, V.; Mudura, E. Evaluation of Structural Behavior in the Process Dynamics of Oleogel-Based Tender Dough Products. Gels 2022, 8, 317. [Google Scholar] [CrossRef] [PubMed]
- Thakur, D.; Suhag, R.; Singh, A.; Upadhyay, A.; Prabhakar, P.K.; Sharma, A. Comparative evaluation of soybean oil-carnauba wax oleogel as an alternative to conventional oil for potato chips frying. Food Struct. 2023, 37, 100334. [Google Scholar] [CrossRef]
- Gravelle, A.J.; Marangoni, A.G.; Davidovich-Pinhas, M. Chapter 14—Ethylcellulose Oleogels. In Edible Oleogels, 2nd ed.; Marangoni, A.G., Garti, N., Eds.; AOCS Press: Champaign, IL, USA, 2018; pp. 331–362. [Google Scholar]
- Li, Y.; Zou, Y.; Que, F.; Zhang, H. Recent advances in fabrication of edible polymer oleogels for food applications. Curr. Opin. Food Sci. 2022, 43, 114–119. [Google Scholar]
- Selvasekaran, P.; Chidambaram, R. Food-grade aerogels obtained from polysaccharides, proteins, and seed mucilages: Role as a carrier matrix of functional food ingredients. Trends Food Sci. Technol. 2021, 112, 455–470. [Google Scholar]
- Alison, L. Pickering Emulsions Stabilized by Particles and Surface-Active Molecules: From Food to Porous Materials. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2018. [Google Scholar]
- Calabrese, V.; Courtenay, J.C.; Edler, K.J.; Scott, J.L. Pickering emulsions stabilized by naturally derived or biodegradable particles. Curr. Opin. Green Sustain. Chem. 2018, 12, 83–90. [Google Scholar] [CrossRef]
- Hwang, H.S.; Singh, M.; Bakota, E.L.; Winkler-Moser, J.K.; Kim, S.; Liu, S.X. Margarine from Organogels of Plant Wax and Soybean Oil. J. Am. Oil Chem. Soc. 2013, 90, 1705–1712. [Google Scholar] [CrossRef]
- Toro-Vazquez, J.F.; Mauricio-Pérez, R.; González-Chávez, M.M.; Sánchez-Becerril, M.; de Jesús Ornelas-Paz, J.; Pérez-Martínez, J.D. Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food Res. Int. 2013, 54, 1360–1368. [Google Scholar]
- Liu, C.; Zheng, Z.; Zaaboul, F.; Cao, C.; Huang, X.; Liu, Y. Effects of wax concentration and carbon chain length on the structural modification of fat crystals. Food Funct. 2019, 10, 5413–5425. [Google Scholar]
- Oba, Ş.; Yıldırım, T. Using plant-based hydrogel-oleogels to replace palm oil: Impact on texture, sensory, and fatty acid composition of chocolate spreads. J. Food Meas. Charact. 2024, 18, 8931–8943. [Google Scholar]
- Patel, A.R.; Cludts, N.; Sintang, M.D.B.; Lesaffer, A.; Dewettinck, K. Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application. Food Funct. 2014, 5, 2833–2841. [Google Scholar] [CrossRef]
- Gonçalves, E.V.; Lannes, S.C.D.S. Chocolate rheology. Ciência Tecnol. Aliment. 2010, 30, 845–851. [Google Scholar] [CrossRef]
- Prosapio, V.; Norton, I.T. Development of fat-reduced chocolate by using water-in-cocoa butter emulsions. J. Food Eng. 2019, 261, 165–170. [Google Scholar] [CrossRef]
- di Bari, V.; Norton, J.E.; Norton, I.T. Effect of processing on the microstructural properties of water-in-cocoa butter emulsions. J. Food Eng. 2014, 122, 8–14. [Google Scholar] [CrossRef]
- Biswas, N.; Cheow, Y.L.; Tan, C.P.; Siow, L.F. Physical, rheological and sensorial properties, and bloom formation of dark chocolate made with cocoa butter substitute (CBS). LWT—Food Sci. Technol. 2017, 82, 420–428. [Google Scholar] [CrossRef]
- Rhim, J.; Wu, Y.; Weller, C.; Schnepf, M. Physical characteristics of a composite film of soy protein isolate and propyleneglycol alginate. J. Food Sci. 1999, 64, 149–152. [Google Scholar] [CrossRef]
- Adekunte, A.; Tivari, B.; Cullen, P.; Scannell, A.; O’Donnell, C. Effect of sonication on color, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2012, 6, 36–60. [Google Scholar] [CrossRef]
- Streule, S.; André, A.; Freimüller Leischtfeld, S.; Chatelain, K.; Gillich, E.; Chetschik, I.; Miescher Schwenninger, S. Influences of Depulping, Pod Storage and Fermentation Time on Fermentation Dynamics and Quality of Ghanaian Cocoa. Foods 2024, 13, 2590. [Google Scholar] [CrossRef]
- Ullrich, L.; Casty, B.; André, A.; Hühn, T.; Steinhaus, M.; Chetschik, I. Decoding the Fine Flavor Properties of Dark Chocolates. J. Agric. Food Chem. 2022, 70, 13730–13740. [Google Scholar] [CrossRef]
- Raoufi, N.; Tehrani, M.M.; Farhoosh, R.; Golmohammadzadeh, S. The effects of adding water and polyglycerol polyricinoleate on the texture, appearance, and sensory qualities of compound milk chocolate. Eur. J. Lipid Sci. Technol. 2012, 114, 1390–1399. [Google Scholar]
- Norton, J.E. Fat Reduction in Chocolate: A Multidisciplinary Approach Considering Emulsion Science and Consumer Expectations. Ph.D. Thesis, The University of Birmingham, Birmingham, UK, 2011. [Google Scholar]
- Farah, M.A.; Oliveira, R.C.; Caldas, J.N.; Rajagopal, K. Viscosity of water-in-oil emulsions: Variation with temperature and water volume fraction. J. Pet. Sci. Eng. 2005, 48, 169–184. [Google Scholar] [CrossRef]
- Chikhoune, A.; Shashkov, M.; Piligaev, A.V.; Lee, J.; Boudjellal, A.; Martini, S. Isothermal Crystallization of Palm Oil-Based Fats with and without the Addition of Essential Oils. J. Am. Oil Chem. Soc. 2020, 97, 861–878. [Google Scholar] [CrossRef]
- Michels, R.; Foschun, F.; Kienle, A. Optical properties of fat emulsions. Opt. Express 2008, 16, 5907–5925. [Google Scholar] [CrossRef]
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Vieira, J. Effects of tempering and fat crystallisation behaviour on microstructure, mechanical properties and appearance in dark chocolate systems. J. Food Eng. 2008, 89, 128–136. [Google Scholar] [CrossRef]
- Debaste, F.; Kegelaers, Y.; Liégeois, S.; Amor, H.B.; Halloin, V. Contribution to the modelling of chocolate tempering process. J. Food Eng. 2008, 88, 568–575. [Google Scholar]
- Hamad, A.M.A. Evaluation of Dietary Fiber and the Effect on Physicochemical Properties of Foods. Int. J. Sci. Res. Sci. Technol. 2016, 8, 421–433. [Google Scholar] [CrossRef]
- Grahovac, N.; Lužaić, T.; Živančev, D.; Stojanović, Z.; Đurović, A.; Romanić, R.; Kravić, S.; Miklič, V. Assessing Nutritional Characteristics and Bioactive Compound Distribution in Seeds, Oil, and Cake from Confectionary Sunflowers Cultivated in Serbia. Foods 2024, 13, 1882. [Google Scholar] [CrossRef]
- Blicharz-Kania, A.; Pecyna, A.; Zdybel, B.; Andrejko, D.; Marczuk, A. Sunflower seed cake as a source of nutrients in gluten-free bread. Sci. Rep. 2023, 13, 10864. [Google Scholar] [CrossRef]
- Ancuta, P.; Sonia, A. Oil Press-Cakes and Meals Valorization through Circular Economy Approaches: A Review. Appl. Sci. 2020, 10, 7432. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Poliński, S.; Momot, M. Optimization of Ingredients for Biscuits Enriched with Rapeseed Press Cake—Changes in Their Antioxidant and Sensory Properties. Appl. Sci. 2021, 11, 1558. [Google Scholar] [CrossRef]
Raw Material | Dark Chocolate Filling [%] | Light Chocolate Filling [%] |
---|---|---|
Rolling stock | 50.4 | 63.9 |
Palm oil | 4.2 | 20.1 |
Dark chocolate mass | 45.3 | 0.0 |
Light chocolate mass | 0.0 | 15.9 |
Soy lecithin | 0.1 | 0.1 |
Rapeseed-Based Recipes [–] | Sunflower-Based Recipes [–] | |
---|---|---|
Palm oil—pure oil | 0.39 | 0.54 |
Palm oil—PEO | 0.48 | 1.29 |
Palm oil—PECO | 1.50 | 1.61 |
Palm oil—CO | 0.24 | 0.85 |
Palm oil—COP | 0.44 | 0.35 |
Palm oil—COPE | 1.22 | 0.60 |
Palm Fat | Sunflower Seed-Based Recipe | |||
---|---|---|---|---|
Pure Oil | Pure Oil | COP | COPE | |
Key tastants | mg/kg fat free dry matter | |||
Theobromine | 2155.71 ± 119.98 a | 2181.97 ± 15.1 a | 2121.7 ± 119.67 a | 2019.42 ± 190.82 a |
Caffeine | 257.16 ± 15.32 a | 259.54 ± 4.17 a | 236.31 ± 17.05 a | 254.48 ± 13.41 a |
Catechin | 39.25 ± 5.53 b | 65.24 ± 8.69 a | 67.73 ± 10.18 a | 80.71 ± 4.20 a |
Epicatechin | 264.99 ± 37.48 b | 369.27 ± 48.8 a | 374.03 ± 42.19 a | 446.15 ± 5.06 a |
Procyanidin B2 | 92.98 ± 13.84 b | 160.91 ± 23.74 a | 150.37 ± 27.91 a | 192.07 ± 9.6 a |
Procyanidin C1 | 76.51 ± 10.53 b | 135.38 ± 12.98 a | 133.71 ± 26.74 a | 176.06 ± 8.31 a |
Cinnamtannin A2 | 10.56 ± 8.68 b | 60.3 ± 18.62 a | 54.43 ± 20.09 a | 87.11 ± 5.04 a |
Rapeseed-Based Recipes [−] | Sunflower-Based Recipes [−] | |
---|---|---|
Palm oil—pure oil | 2.26 | 1.96 |
Palm oil—CO | 2.10 | 2.05 |
Palm oil—COP | 3.55 | 6.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmid, T.; Gillich, E.; André, A.; Kinner, M.; Chetschik, I.; Müller, N. Physically Modified Plant Oils as Alternatives to Palm Fat: Effects on Physical and Flavour Properties of Chocolate Fillings. Foods 2025, 14, 1179. https://doi.org/10.3390/foods14071179
Schmid T, Gillich E, André A, Kinner M, Chetschik I, Müller N. Physically Modified Plant Oils as Alternatives to Palm Fat: Effects on Physical and Flavour Properties of Chocolate Fillings. Foods. 2025; 14(7):1179. https://doi.org/10.3390/foods14071179
Chicago/Turabian StyleSchmid, Tamara, Elodie Gillich, Amandine André, Mathias Kinner, Irene Chetschik, and Nadina Müller. 2025. "Physically Modified Plant Oils as Alternatives to Palm Fat: Effects on Physical and Flavour Properties of Chocolate Fillings" Foods 14, no. 7: 1179. https://doi.org/10.3390/foods14071179
APA StyleSchmid, T., Gillich, E., André, A., Kinner, M., Chetschik, I., & Müller, N. (2025). Physically Modified Plant Oils as Alternatives to Palm Fat: Effects on Physical and Flavour Properties of Chocolate Fillings. Foods, 14(7), 1179. https://doi.org/10.3390/foods14071179