Evaluation of Wheat Grain and Processing Quality Under Fusarium Head Blight Control Using Strong Oxidizing Radicals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Field Experiment
2.3. Control Efficacy Survey
2.4. Milling and Processing
2.5. Near-Infrared Analysis
2.6. Flour Color Measurement
2.7. Gluten Content Determination
2.8. Starch Gelatinization Parameter Analysis
2.9. Farinograph Analysis
2.10. Data Analysis
3. Results
3.1. Disease Control Efficacy
3.2. Milling Quality
3.3. Protein Quality
3.4. Starch Gelatinization Properties
3.5. Farinograph Parameter Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheli, F.; Battaglia, D.; Gallo, R.; Dell’Orto, V. EU legislation on cereal safety: An update with a focus on mycotoxins. Food Control 2014, 37, 315–325. [Google Scholar] [CrossRef]
- Campanaro, A.; Srivastava, A.K.; Zhang, C.; Lee, J.; Millyard, L.; Gatehouse, A.M.R.; Byrne, E.; Sadanandom, A. TaWRKY10 transcription factor is a novel jasmonic acid signalling regulator involved in immunity against Septoria tritici blotch disease in wheat. Plant Pathol. 2021, 70, 1397–1408. [Google Scholar]
- Tunio, M.H.; Gao, J.; Talpur, M.A.; Lakhiar, I.A.; Chandio, F.A.; Shaikh, S.A.; Solangi, K.A. Effects of different irrigation frequencies and incorporation of rice straw on yield and water productivity of wheat crop. Int. J. Agric. Biol. Eng. 2020, 13, 138–145. [Google Scholar]
- Zhu, J.; Sun, B.; Cai, J.; Xu, Y.; Lu, F.; Ma, H. Inspection and classification of wheat quality using image processing. Qual. Assur. Saf. Crops Foods 2023, 15, 43–54. [Google Scholar]
- Boyles, R.E.; Ballén-Taborda, C.; Brown-Guedira, G.; Costa, J.; Cowger, C.; DeWitt, N.; Griffey, C.A.; Harrison, S.A.; Ibrahim, A.; Johnson, J.; et al. Approaching 25 years of progress towards Fusarium head blight resistance in southern soft red winter wheat (Triticum aestivum L.). Plant Breed. 2023, 143, 66–81. [Google Scholar]
- Xu, S.; Wang, Y.; Hu, J.; Chen, X.; Qiu, Y.; Shi, J.; Wang, G.; Xu, J. Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone. Food Control 2021, 130, 108259. [Google Scholar] [CrossRef]
- Rabiey, M.; Shaw, M.W. Piriformospora indica reduces fusarium head blight disease severity and mycotoxin DON contamination in wheat under UK weather conditions. Plant Pathol. 2016, 65, 940–952. [Google Scholar]
- Qiu, J.; Gu, H.; Wang, S.; Ji, F.; He, C.; Jiang, C.; Shi, J.; Liu, X.; Shen, G.; Lee, Y.-W.; et al. A diverse Fusarium community is responsible for contamination of rice with a variety of Fusarium toxins. Food Res. Int. 2024, 195, 114987. [Google Scholar]
- Drakopoulos, D.; Kägi, A.; Six, J.; Zorn, A.; Wettstein, F.E.; Bucheli, T.D.; Forrer, H.R.; Vogelgsang, S. The agronomic and economic viability of innovative cropping systems to reduce Fusarium head blight and related mycotoxins in wheat. Agric. Syst. 2021, 192, 103198. [Google Scholar]
- Ji, F.; Xu, J.; Liu, X.; Yin, X.; Shi, J. Natural occurrence of deoxynivalenol and zearalenone in wheat from Jiangsu province, China. Food Chem. 2014, 157, 393–397. [Google Scholar]
- Salgado, J.D.; Madden, L.; Paul, P.A. Quantifying the Effects of Fusarium Head Blight on Grain Yield and Test Weight in Soft Red Winter Wheat. Phytopathology 2015, 105, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Vogelgsang, S.; Musa, T.; Bänziger, I.; Kägi, A.; Bucheli, T.D.; Wettstein, F.E.; Pasquali, M.; Forrer, H.-R. Fusarium Mycotoxins in Swiss Wheat: A Survey of Growers’ Samples between 2007 and 2014 Shows Strong Year and Minor Geographic Effects. Toxins 2017, 9, 246. [Google Scholar] [CrossRef] [PubMed]
- Miedaner, T.; Flamm, C.; Oberforster, M. The importance of Fusarium head blight resistance in the cereal breeding industry: Case studies from Germany and Austria. Plant Breed. 2023, 143, 44–58. [Google Scholar] [CrossRef]
- Maulenbay, A.; Rsaliyev, A. Fungal Disease Tolerance with a Focus on Wheat: A Review. J. Fungi 2024, 10, 482. [Google Scholar] [CrossRef]
- Paul, P.A.; Bradley, C.A.; Madden, L.V.; Lana, F.D.; Bergstrom, G.C.; Dill-Macky, R.; Wise, K.A.; Esker, P.D.; McMullen, M.P.; Grybauskas, A.; et al. Effects of Pre- and Postanthesis Applications of Demethylation Inhibitor Fungicides on Fusarium Head Blight and Deoxynivalenol in Spring and Winter Wheat. Plant Dis. 2018, 102, 2500–2510. [Google Scholar] [CrossRef]
- Matengu, T.T.; Bullock, P.R.; Mkhabela, M.S.; Zvomuya, F.; Henriquez, M.A.; Ojo, E.R.; Fernando, W.G.D. Weather-based models for forecasting Fusarium head blight risks in wheat and barley: A review. Plant Pathol. 2023, 73, 492–505. [Google Scholar] [CrossRef]
- Ma, D.; Zhou, Z.; Wang, G.; Xu, C.; Cao, L.; Dong, F.; Zheng, Y.; Li, Y. Efficient Control of Fusarium Head Blight and Reduction of Deoxynivalenol Accumulation by a Novel Nanopartner-Based Strategy. Environ. Sci. Technol. 2024, 59, 396–407. [Google Scholar] [CrossRef]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef]
- He, H.G.; Wu, C.D.; Hou, K.H.; Zhu, S.Y.; Yi, C.W.; Chu, J.Y. Killing of Escherichia coli by Exogenous Hydroxyl Radicals. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Gao, Y.; Duan, Y.; Fan, W.; Guo, T.; Huo, M.; Yang, W.; Zhu, S.; An, W. Intensifying ozonation treatment of municipal secondary effluent using a combination of microbubbles and ultraviolet irradiation. Environ. Sci. Pollut. Res. 2019, 26, 21915–21924. [Google Scholar] [CrossRef]
- He, H.; Zheng, L.; Li, Y.; Song, W. Research on the Feasibility of Spraying Micro/Nano Bubble Ozonated Water for Airborne Disease Prevention. Ozone Sci. Eng. 2015, 37, 78–84. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, Z.; Liang, Y.; Hu, X.; Shen, T.; Li, Y.; Han, Z.; Zhang, X.; Zou, X. A Novel Strategy for Accelerating Pumpable Ice Slurry Production with Ozone Micro–Nano Bubbles and Extending the Shelf Life of Larimichthys polyactis. Foods 2023, 12, 2206. [Google Scholar] [CrossRef] [PubMed]
- Gebicki, J.M. Oxidative stress, free radicals and protein peroxides. Arch. Biochem. Biophys. 2016, 595, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Chatgilialoglu, C.; Ferreri, C.; Krokidis, M.G.; Masi, A.; Terzidis, M.A. On the relevance of hydroxyl radical to purine DNA damage. Free Radic. Res. 2021, 55, 384–404. [Google Scholar] [PubMed]
- Wu, C.D.; Hou, K.H.; He, H.G.; Zhu, S.Y.; Shi, L.; Yi, C.W.; Chu, J.Y. Killing of Bacillus subtilis by Exogenous Hydroxyl Radicals. In Proceedings of the 2011 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan, China, 10–12 May 2011. [Google Scholar]
- Sun, X.; Ji, J.; Gao, Y.; Zhang, Y.; Zhao, G.; Sun, C. Fate of deoxynivalenol and degradation products degraded by aqueous ozone in contaminated wheat. Food Res. Int. 2020, 137, 109357. [Google Scholar]
- Wang, L.; Luo, Y.; Luo, X.; Wang, R.; Li, Y.; Li, Y.; Shao, H.; Chen, Z. Effect of deoxynivalenol detoxification by ozone treatment in wheat grains. Food Control 2016, 66, 137–144. [Google Scholar]
- Fan, X.; Song, Y. Advanced Oxidation Process as a Postharvest Decontamination Technology To Improve Microbial Safety of Fresh Produce. J. Agric. Food Chem. 2020, 68, 12916–12926. [Google Scholar] [CrossRef]
- Botondi, R.; Barone, M.; Grasso, C. A Review into the Effectiveness of Ozone Technology for Improving the Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods 2021, 10, 748. [Google Scholar] [CrossRef]
- Botondi, R.; Lembo, M.; Carboni, C.; Eramo, V. The Use of Ozone Technology: An Eco–Friendly Method for the Sanitization of the Dairy Supply Chain. Foods 2023, 12, 987. [Google Scholar] [CrossRef]
- Mustapha, A.T.; Zhou, C. Novel assisted/unassisted ultrasound treatment: Effect on respiration rate, ethylene production, enzymes activity, volatile composition, and odor of cherry tomato. LWT 2021, 149, 111779. [Google Scholar]
- Bai, J.-W.; Li, D.-D.; Aheto, J.H.; Qi, Z.-Y.; Reziwanguli, A.; Cai, J.-R.; Tian, X.-Y. Effects of three emerging non-thermal pretreatments on Drying kinetics, Physicochemical Quality, and microstructure of garlic slices. Food Bioprocess Technol. 2024, 17, 4325–4340. [Google Scholar]
- Zhang, H.; Zhang, B.; He, H.; Zhang, L.; Hu, X.; Wu, C. Fungicidal Effect of Strong Oxidative Free Radicals Against Fusarium graminearum and Their Impact on Wheat Growth and Yield. Agriculture 2025, 15, 404. [Google Scholar] [CrossRef]
- NY/T 1464.15-2007; Guidelines for the Field Efficacy Trials of Pesticides, Part 15: Fungicides for Controlling Wheat Fusarium Head Blight. China Agriculture Press: Beijing, China, 2007.
- Shivaprasad, D.P.; Rivera, J.; Siliveru, K. Acidic water tempering and heat treatment, a hurdle approach to reduce wheat Salmonella load during tempering and its effects on flour quality. Food Res. Int. 2024, 176, 113723. [Google Scholar] [PubMed]
- Kim, K.-H.; Kim, J.-Y. Understanding wheat starch metabolism in properties, environmental stress condition, and molecular approaches for value-added utilization. Plants 2021, 10, 2282. [Google Scholar] [CrossRef]
- Wang, J.C.; Wu, X.J.; Wu, D.; Li, M.; Jiang, W.; Liu, D.T.; Gao, D.R.; Zhang, X. Influencing factors of wheat flour and fresh dough sheet color. J. Triticeae Crops 2020, 40, 560–567. [Google Scholar]
- Saiz, A.I.; Manrique, G.D.; Fritz, R. Determination of benzoyl peroxide and benzoic acid levels by HPLC during wheat flour bleaching process. J. Agric. Food Chem. 2001, 49, 98–102. [Google Scholar] [CrossRef]
- Huang, X.W.; Zhuang, K.; Ding, W. Effects of ozone treatment on quality of newly harvested wheat. China Brew. 2014, 33, 113–115. [Google Scholar]
- Ren, X.J.; Zhang, J.; Zhang, W.F.; An, Y.X. Research progress on effects of ozone treatment on quality characteristics of wheat flour. Food Ferment. Ind. 2023, 49, 303–309. [Google Scholar]
- Zheng, B.; Zhang, X.; Wang, Q.; Li, W.; Huang, M.; Zhou, Q.; Cai, J.; Wang, X.; Cao, W.; Dai, T.; et al. Increasing plant density improves grain yield, protein quality and nitrogen agronomic efficiency of soft wheat cultivars with reduced nitrogen rate. Field Crops Res. 2021, 267, 108145. [Google Scholar]
- Chen, J.S.; Deng, Z.Y.; Peng, W.U. Effect of gluten on pasting properties of wheat starch. Agric. Sci. China 2010, 9, 1836–1844. [Google Scholar]
- Zhuang, K.; Zhang, C.; Zhang, W.; Xu, W.; Tao, Q.; Wang, G.; Wang, Y.; Ding, W. Effect of different ozone treatments on the degradation of deoxynivalenol and flour quality in Fusarium-contaminated wheat. Cyta-J. Food 2020, 18, 776–784. [Google Scholar] [CrossRef]
- Li, M.; Zhu, K.-X.; Wang, B.-W.; Guo, X.-N.; Peng, W.; Zhou, H.-M. Evaluation the quality characteristics of wheat flour and shelf-life of fresh noodles as affected by ozone treatment. Food Chem. 2012, 135, 2163–2169. [Google Scholar] [CrossRef] [PubMed]
- Spanic, V.; Marcek, T.; Abicic, I.; Sarkanj, B. Effects of Fusarium head blight on wheat grain and malt infected by Fusarium culmorum. Toxins 2017, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Spanic, V.; Horvat, D.; Drezner, G.; Zdunic, Z. Changes in protein composition in the grain and malt after Fusarium infection dependently of wheat resistance. Pathogens 2019, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Spanic, V.; Viljevac Vuletic, M.; Horvat, D.; Sarkanj, B.; Drezner, G.; Zdunic, Z. Changes in antioxidant system during grain development of wheat (Triticum aestivum L.) and relationship with protein composition under FHB stress. Pathogens 2019, 9, 17. [Google Scholar] [CrossRef]
Treatment | JM23 | FG06 | Application Timing |
---|---|---|---|
The first round of application | CK | SOR | BBCH 61 |
The second round of application | CK | SOR | BBCH 65 |
Treatment | The Disease Index Under Medication with 14 Days | The Control Effect Under Medication with 14 Days (%) |
---|---|---|
JM23 | 28.29 | — |
FG06 | 3.43 | 87.87 |
Quality Parameter | JM23 (Mean ± SD) | FG06 (Mean ± SD) | p-Value |
---|---|---|---|
Milling yield | 71.51 ± 0.09 | 71.24 ± 0.03 | 0.00 |
Ash Content (%) | 0.57 ± 0.01 | 0.58 ± 0.00 | 0.00 |
L* (%) | 93.27 ± 0.06 | 93.39 ± 0.09 | 0.00 |
a* (%) | −0.14 ± 0.04 | −0.06 ± 0.02 | 0.01 |
b* (%) | 6.94 ± 0.03 | 6.52 ± 0.08 | 0.36 |
Flour Whiteness | 82.00 ± 0.08 | 81.30 ± 0.13 | 0.07 |
Quality Parameter | JM23 (Mean ± SD) | FG06 (Mean ± SD) | p-Value |
---|---|---|---|
Grain Dry Basis Protein (%) | 12.41 ± 0.08 | 10.94 ± 0.07 | 0.02 |
Flour Dry Basis Protein (%) | 11.69 ± 0.02 | 10.67 ± 0.03 | 0.01 |
Wet Gluten Content (%) | 21.00 ± 0.41 | 28.70 ± 0.46 | 0.00 |
Dry Gluten Content (%) | 7.00 ± 0.32 | 9.40 ± 0.00 | 0.00 |
Gluten Index (%) | 96.00 ± 1.81 | 85.50 ± 1.92 | 0.01 |
Flour Sedimentation Value (mL) | 52.50 ± 0.52 | 73.00 ± 0.77 | 0.00 |
Quality Parameter | JM23 (Mean ± SD) | FG06 (Mean ± SD) | p-Value |
---|---|---|---|
Peak Viscosity (cp) | 3350.37 ± 11.34 | 2891.34 ± 8.09 | 0.00 |
Trough Viscosity (cp) | 2100.00 ± 15.09 | 1864.69 ± 7.54 | 0.00 |
Pasting Viscosity (cp) | 1250.57 ± 14.13 | 1027.67 ± 11.68 | 0.27 |
Final Viscosity (cp) | 3579.68 ± 23.82 | 3146.35 ± 5.59 | 0.00 |
Setback Viscosity (cp) | 1479.67 ± 17.24 | 1282.27 ± 3.53 | 0.00 |
Peak Time (min) | 6.20 ± 0.04 | 6.27 ± 0.00 | 0.00 |
Gelatinization Temperature (°C) | 67.85 ± 0.00 | 68.61 ± 0.58 | 0.23 |
Quality Parameter | JM23 (Mean ± SD) | FG06 (Mean ± SD) | p-Value |
---|---|---|---|
Water Absorption (%) | 53.50 ± 0.16 | 55.70 ± 0.21 | 0.01 |
Development Time (min) | 1.09 ± 0.25 | 2.18 ± 0.15 | 0.07 |
Stability Time (min) | 2.16 ± 0.11 | 3.59 ± 0.06 | 0.01 |
10 min Softening Degree (FE) | 90.00 ± 7.00 | 27.00 ± 2.63 | 0.00 |
12 min Softening Degree (FE) | 38.00 ± 2.63 | 68.00 ± 4.00 | 0.00 |
Flour quality Index (mm) | 21.00 ± 4.58 | 110.00 ± 0.48 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, B.; He, H.; Zhang, L.; Hu, X.; Wu, C. Evaluation of Wheat Grain and Processing Quality Under Fusarium Head Blight Control Using Strong Oxidizing Radicals. Foods 2025, 14, 1236. https://doi.org/10.3390/foods14071236
Zhang H, Zhang B, He H, Zhang L, Hu X, Wu C. Evaluation of Wheat Grain and Processing Quality Under Fusarium Head Blight Control Using Strong Oxidizing Radicals. Foods. 2025; 14(7):1236. https://doi.org/10.3390/foods14071236
Chicago/Turabian StyleZhang, Huanhuan, Bo Zhang, Huagang He, Lulu Zhang, Xinkang Hu, and Chundu Wu. 2025. "Evaluation of Wheat Grain and Processing Quality Under Fusarium Head Blight Control Using Strong Oxidizing Radicals" Foods 14, no. 7: 1236. https://doi.org/10.3390/foods14071236
APA StyleZhang, H., Zhang, B., He, H., Zhang, L., Hu, X., & Wu, C. (2025). Evaluation of Wheat Grain and Processing Quality Under Fusarium Head Blight Control Using Strong Oxidizing Radicals. Foods, 14(7), 1236. https://doi.org/10.3390/foods14071236