Synergistic Amylase and Debranching Enzyme Catalysis to Improve the Stability of Oat Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Single-Factor Tests of Enzyme Ratios
2.2.1. Single-Factor Test of α-Amylase Addition
2.2.2. Single-Factor Test of Amyloglucosidase Addition
2.2.3. Single-Factor Test of Debranching Enzyme Addition
2.2.4. Single-Factor Test of Different Proportions of Pullulanase and Isoamylase
2.3. Stability Coefficient of Oat Milk
2.4. Extraction of Oat Starch (OS)
2.5. Preparation of Enzyme-Hydrolyzed Oat Starch (EHOS)
2.6. Characterization of Enzyme-Hydrolyzed Oat Milk, OS, and EHOS
2.7. Monosaccharide Composition
2.8. Molecular Weight Distribution
2.9. Side Chain Distribution
2.10. Rheological Measurement
2.10.1. Frequency Sweep Test
2.10.2. Steady Shear Test
2.10.3. Time Sweep Test
2.10.4. Peak Hold Step Test
2.11. Characterization of Emulsion
2.11.1. Emulsion Activity Index (EAI) and Emulsion Stability Index (ESI)
2.11.2. Z-Average Size and Zeta Potential Measurement
2.11.3. Storage Stability Determination
2.12. Statistical Analysis
3. Results
3.1. Stability Analysis
3.2. Characterization of OS and EHOS
3.3. Structural Characteristics
3.3.1. Saccharide Composition Analysis
3.3.2. Molecular Weight Distribution Analysis
3.3.3. Chain Length Distribution Analysis
3.4. Rheological Analysis
3.5. Characterization of the Emulsion Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biscotti, P.; Tucci, M.; Angelino, D.; Vinelli, V.; Pellegrini, N.; Del Bo’, C.; Riso, P.; Martini, D. Effects of Replacing Cow’s Milk with Plant-Based Beverages on Potential Nutrient Intake in Sustainable Healthy Dietary Patterns: A Case Study. Nutrients 2024, 16, 3083. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rodríguez, M.L.; Serrano-Carretero, A.; García-Herrera, P.; Cámara-Hurtado, M.; Sánchez-Mata, M.C. Plant-based beverages as milk alternatives? Nutritional and functional approach through food labelling. Food Res. Int. 2023, 173, 113244. [Google Scholar] [CrossRef]
- Marasca, E.; Boulos, S.; Nyström, L. Bile acid-retention by native and modified oat and barley β-glucan. Carbohydr. Polym. 2020, 236, 116034. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Xu, M.; Ji, J.; Zhou, M.; Li, H.; Wen, Y.; Wang, J.; Sun, B. The utilization of oat for the production of wholegrain foods: Processing technology and products. Food Front. 2022, 3, 28–45. [Google Scholar] [CrossRef]
- Bhokarikar, S.; Gurumoorthi, P.; Athmaselvi, K.A.; Pushpadhas, H.A. Optimization of process variables for the preparation of oat milk using the Box–Behnken response surface model and studying the effect of enzyme hydrolysis on structural and thermal properties of oat starch. J. Appl. Biol. Biotechnol. 2024, 12, 261–272. [Google Scholar] [CrossRef]
- Qin, S.; Li, R.; McClements, D.J.; Chen, Y.; Duan, Z.; Chen, M.; Dai, Y.; Liao, L.; Zhou, W.; Li, J. Macronutrient digestion and polyphenol bioaccessibility in oat milk tea products: An in vitro gastrointestinal tract study. Food Funct. 2024, 15, 7478–7490. [Google Scholar] [CrossRef]
- Wei, Q.; Chen, J.; Dai, T.; Ma, F.; Deng, L.; Ke, Y.; Wang, Y.; Guo, L.; Wang, C.; Zhan, C.; et al. High-Energy Fluidic Microfluidizer Produced Whole Germinant Oat Milk: Effects on Physical Properties and Nutritional Quality. Foods 2024, 13, 3708. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Lee, B.-H.; Li, D. Reducing digestibility and viscoelasticity of oat starch after hydrolysis by pullulanase from Bacillus acidopullulyticus. Food Hydrocoll. 2018, 75, 88–94. [Google Scholar] [CrossRef]
- Deswal, A.; Deora, N.S.; Mishra, H.N. Optimization of Enzymatic Production Process of Oat Milk Using Response Surface Methodology. Food Bioprocess Technol. 2013, 7, 610–618. [Google Scholar] [CrossRef]
- Ren, X.; Yang, Y.; Liu, Q.; Wang, Y.; Jin, Z.; Jiao, A. Effects of enzymatic extrusion on the structure and physicochemical properties of oat flour and its application in oat milk production. Int. J. Food Sci. Technol. 2023, 58, 4638–4651. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, K.; Lu, J.; Lu, A.; Guan, X.; Zhang, Y.; Li, S.; Song, H.; Cao, H.; Sun, Z.; et al. Enzymatic hydrolysis of oat core flour improves physiochemical and sensory behaviors for oat milk. J. Cereal Sci. 2024, 116, 103841. [Google Scholar]
- Li, D.M.; Wan, Y.; Zhang, J.Y.; Zhang, Y.W.; He, R.; Sang, S.Y.; Xing, J.L.; Luo, X.H. Effect of electron beam irradiation on edible quality maintenance of high moisture rice grains. J. Cereal Sci. 2025, 121, 104104. [Google Scholar] [CrossRef]
- Liu, G.; Gu, Z.; Hong, Y.; Cheng, L.; Li, C. Structure, functionality and applications of debranched starch: A review. Trends Food Sci. Technol. 2017, 63, 70–79. [Google Scholar] [CrossRef]
- Zeng, F.; Chen, F.; Kong, F.; Gao, Q.; Aadil, R.M.; Yu, S. Structure and digestibility of debranched and repeatedly crystallized waxy rice starch. Food Chem. 2015, 187, 348–353. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Zhang, L.; Ding, Z.; Gu, Z.; Shi, G. Investigation of debranching pattern of a thermostable isoamylase and its application for the production of resistant starch. Carbohydr. Res. 2017, 446–447, 93–100. [Google Scholar]
- Kiatponglarp, W.; Tongta, S.; Rolland-Sabaté, A.; Buléon, A. Crystallization and chain reorganization of debranched rice starches in relation to resistant starch formation. Carbohydr. Polym. 2015, 122, 108–114. [Google Scholar] [CrossRef]
- Li, Z.; Ji, K.; Zhou, J.; Ye, X.; Wang, T.; Luo, X.; Huang, Y.; Cao, H.; Cui, Z.; Kong, Y. A debranching enzyme IsoM of Corallococcus sp. strain EGB with potential in starch processing. Int. J. Biol. Macromol. 2017, 105, 1300–1309. [Google Scholar]
- Miao, M.; Jiang, B.; Zhang, T. Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch. Carbohydr. Polym. 2009, 76, 214–221. [Google Scholar]
- Su, J.; Qiu, X.; Pei, Y.; Zhang, Z.; Liu, G.; Luan, J.; Nie, J.; Li, X. Physical Stability of Lotus Seed and Lily Bulb Beverage: The Effects of Homogenisation on Particle Size Distribution, Microstructure, Rheological Behaviour, and Sensory Properties. Foods 2024, 13, 769. [Google Scholar] [CrossRef]
- Kaur, P.; Kaur, K.; Basha, S.J.; Kennedy, J.F. Current trends in the preparation, characterization and applications of oat starch—A review. Int. J. Biol. Macromol. 2022, 212, 172–181. [Google Scholar]
- Wang, Y.; Bai, Y.; Dong, J.; Liu, J.; Jin, Z. Deciphering the structural and functional characteristics of an innovative small cluster branched α–glucan produced by sequential enzymatic synthesis. Carbohydr. Polym. 2023, 310, 120696. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dong, J.; Jin, Z.; Bai, Y. Analysis of the action pattern of sequential α-amylases from B. stearothermophilus and B. amyloliquefaciens on highly concentrated soluble starch. Carbohydr. Polym. 2023, 320, 121190. [Google Scholar]
- Zhang, H.; Wang, R.; Chen, Z.; Zhong, Q. Enzymatically modified starch with low digestibility produced from amylopectin by sequential amylosucrase and pullulanase treatments. Food Hydrocoll. 2019, 95, 195–202. [Google Scholar] [CrossRef]
- Gao, L.C.; Wan, C.X.; Wang, H.L.; Wang, P.K.; Yang, P.; Eeckhout, M.; Gao, J.F. Changes in the structural and physicochemical characterization of pea starch modified by Bacillus-produced α-amylase. Innov. Food Sci. Emerg. Technol. 2023, 86, 103376. [Google Scholar] [CrossRef]
- Hemmati, S.; Barkey, D.P.; Gupta, N.; Banfield, R. Synthesis and Characterization of Silver Nanowire Suspensions for Printable Conductive Media. ECS J. Solid State Sci. Technol. 2015, 4, P3075–P3079. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, R.; Feng, W.; Chen, Z.X.; Wang, T. High internal phase Pickering emulsions stabilized by co-assembled rice proteins and carboxymethyl cellulose for food-grade 3D printing. Carbohydr. Polym. 2021, 273, 118586. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Lin, C.; Li, Y.; Wang, R.; Feng, W.; Chen, Z.; Wang, T.; Luo, X.; Wu, X. Tuning the electrostatic interaction between rice protein and carboxymethyl cellulose toward hydrophilic composites with enhanced functional properties. Int. J. Biol. Macromol. 2023, 235, 123918. [Google Scholar]
- Silventoinen-Veijalainen, P.; Sneck, A.-M.; Nordlund, E.; Rosa-Sibakov, N. Influence of oat flour characteristics on the physicochemical properties of oat-based milk substitutes. Food Hydrocolloids 2024, 147, 109402. [Google Scholar] [CrossRef]
- Junejo, S.A.; Geng, H.; Wang, N.; Wang, H.; Ding, Y.; Zhou, Y.; Rashid, A. Effects of particle size on physiochemical and in vitro digestion properties of durum wheat bran. Int. J. Food Sci. Technol. 2018, 54, 221–230. [Google Scholar] [CrossRef]
- Shi, J.; Sweedman, M.C.; Shi, Y.-C. Structural changes and digestibility of waxy maize starch debranched by different levels of pullulanase. Carbohydr. Polym. 2018, 194, 350–356. [Google Scholar]
- Shen, R.L.; Zhang, W.J.; Dong, J.L. Preparation, structural characteristics and digestibility of resistant starches from highland barley, oats and buckwheat starches. J. Food Nutr. Res. 2016, 55, 303–312. [Google Scholar]
- Zhang, L.; Chen, D.-L.; Wang, X.-F.; Qian, J.-Y.; He, X.-D. Enzymatically modified quinoa starch-based Pickering emulsion: Effect of enzymolysis and emulsifying conditions. Int. J. Biol. Macromol. 2022, 219, 824–834. [Google Scholar] [CrossRef]
- Ren, N.; Ma, Z.; Xu, J.; Hu, X. Insights into the supramolecular structure and techno-functional properties of starch isolated from oat rice kernels subjected to different processing treatments. Food Chem. 2020, 317, 126464. [Google Scholar] [CrossRef]
- Sorndech, W.; Meier, S.; Jansson, A.M.; Sagnelli, D.; Hindsgaul, O.; Tongta, S.; Blennow, A. Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility. Carbohydr. Polym. 2015, 132, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Hashim, S.O.; Delgado, O.D.; Martínez, M.A.; Kaul, R.-H.; Mulaa, F.J.; Mattiasson, B. Alkaline active maltohexaose-forming α-amylase from Bacillus halodurans LBK 34. Enzym. Microb. Technol. 2005, 36, 139–146. [Google Scholar] [CrossRef]
- Homayoonfal, M.; Khodaiyan, F.; Mousavi, M. Modelling and optimising of physicochemical features of walnut-oil beverage emulsions by implementation of response surface methodology: Effect of preparation conditions on emulsion stability. Food Chem. 2015, 174, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Daou, C.; Zhang, H. Oat Beta-Glucan: Its Role in Health Promotion and Prevention of Diseases. Compr. Rev. Food Sci. Food Saf. 2012, 11, 355–365. [Google Scholar] [CrossRef]
- Lin, L.; Guo, D.; Zhao, L.; Zhang, X.; Wang, J.; Zhang, F.; Wei, C. Comparative structure of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocoll. 2016, 52, 19–28. [Google Scholar] [CrossRef]
- Xia, C.; Zhong, L.; Wang, J.; Zhang, L.; Chen, X.; Ji, H.; Ma, S.; Dong, W.; Ye, X.; Huang, Y.; et al. Structural and digestion properties of potato starch modified using an efficient starch branching enzyme AqGBE. Int. J. Biol. Macromol. 2021, 184, 551–557. [Google Scholar] [CrossRef]
- Liu, P.; Gao, W.; Zhang, X.; Wu, Z.; Yu, B.; Cui, B. Physicochemical properties of pea starch-lauric acid complex modified by maltogenic amylase and pullulanase. Carbohydr. Polym. 2020, 242, 116332. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, Y.; Dong, J.; Ji, H.; Liu, J.; Jin, Z. Partial hydrolysis of waxy rice starch by maltogenic α-amylase to regulate its structures, rheological properties and digestibility. Int. J. Food Sci. Technol. 2022, 58, 4881–4890. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, M.; Wang, Y.; Mu, H.; Sun, C.; Chen, H.; Sun, Q. Research Progress on Debranched Starch: Preparation, Characterization, and Application. Food Rev. Int. 2023, 39, 6887–6907. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Truong, V.-D.; Wang, L. Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr. Polym. 2003, 52, 327–333. [Google Scholar] [CrossRef]
- Lee, K.; Kim, Y.; Park, K.; Lee, H. Effects of α-glucanotransferase treatment on the thermo-reversibility and freeze-thaw stability of a rice starch gel. Carbohydr. Polym. 2006, 63, 347–354. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, W.; Ma, W.; Lu, L.; Liu, J.; Cui, B. Effect of branch length of cluster dextrin on the textural and rheological properties of κ-carrageenan emulsion gels. Ind. Crops Prod. 2024, 221, 119455. [Google Scholar] [CrossRef]
- McCarthy, K.S.; Parker, M.; Ameerally, A.; Drake, S.L.; Drake, M.A. Drivers of choice for fluid milk versus plant-based alternatives: What are consumer perceptions of fluid milk? J. Dairy Sci. 2017, 100, 6125–6138. [Google Scholar] [CrossRef]
- Guo, B.; Liu, C.; Grossmann, L.; Weiss, J. Pickering emulsion stabilized by hydrolyzed starch: Effect of the molecular weight. J. Colloid Interface Sci. 2022, 612, 525–535. [Google Scholar] [CrossRef]
- Xu, T.; Pan, M.-h.; Chiou, Y.-s.; Li, Z.; Wei, S.; Yin, X.; Ding, B. Improvement of emulsifying properties of potato starch via complexation with nanoliposomes for stabilizing Pickering emulsion. Food Hydrocoll. 2023, 136, 108271. [Google Scholar] [CrossRef]
- Lu, K.; Miao, M.; Ye, F.; Cui, S.W.; Li, X.; Jiang, B. Impact of dual-enzyme treatment on the octenylsuccinic anhydride esterification of soluble starch nanoparticle. Carbohydr. Polym. 2016, 147, 392–400. [Google Scholar] [CrossRef]
OS | 2PI2:1 | 2PI1:1 | 2PI1:2 | 25PI2:1 | 25PI1:1 | 25PI1:2 | 40PI2:1 | 40PI1:1 | 40PI1:2 | |
---|---|---|---|---|---|---|---|---|---|---|
Z-average (nm) | 1990.33 ± 9.02 a | 677.97 ± 5.17 b | 661.10 ± 6.42 c | 421.07 ± 2.18 f | 536.00 ± 0.69 d | 404.27 ± 1.85 g | 348.23 ± 1.55 i | 477.53 ± 4.45 e | 379.97 ± 1.76 h | 330.93 ± 2.72 j |
zeta potential (mV) | −2.13 ± 0.04 a | −21.60 ± 1.00 b | −26.25 ± 1.08 c | −29.23 ± 0.35 d | −28.61 ± 0.77 d | −30.48 ± 0.17 e | −32.20 ± 0.95 e | −29.59 ± 0.30 d | −29.59 ± 1.99 d | −32.42 ± 0.44 e |
amylose content (%) | 27.68 ± 0.69 a | 25.78 ± 1.36 b | 13.29 ± 0.32 e | 10.05 ± 0.95 g | 21.05 ± 0.79 c | 11.60 ± 0.52 f | 10.16 ± 0.27 g | 15.33 ± 0.78 d | 9.06 ± 0.49 g | 4.69 ± 0.40 h |
Sample | Side Chain Distribution (%) | |||
---|---|---|---|---|
DP < 12 | DP13–24 | DP25–36 | DP ≥ 37 | |
OS | 0.51 ± 0.03 g | 0.63 ± 0.03 i | 1.38 ± 0.06 i | 97.48 ± 0.08 a |
2PI2:1 | 0.28 ± 0.02 h | 0.94 ± 0.02 h | 2.05 ± 0.08 h | 96.66 ± 0.08 a |
2PI1:1 | 0.73 ± 0.06 f | 1.92 ± 0.03 f | 2.61 ± 0.21 g | 94.68 ± 0.25 b |
2PI1:2 | 1.00 ± 0.06 e | 4.29 ± 0.24 e | 5.61 ± 0.21 e | 89.03 ± 0.50 d |
25PI2:1 | 0.75 ± 0.03 f | 1.42 ± 0.05 g | 2.70 ± 0.11 g | 95.06 ± 0.07 b |
25PI1:1 | 0.97 ± 0.01 e | 1.96 ± 0.07 f | 4.40 ± 0.03 f | 92.59 ± 0.03 c |
25PI1:2 | 1.61 ± 0.05 b | 7.53 ± 0.07 d | 9.00 ± 0.15 d | 81.79 ± 0.17 e |
40PI2:1 | 1.08 ± 0.01 d | 8.04 ± 0.01 c | 15.97 ± 0.52 c | 82.56 ± 2.19 e |
40PI1:1 | 1.18 ± 0.02 c | 10.08 ± 0.02 b | 18.19 ± 0.22 b | 70.49 ± 0.25 f |
40PI1:2 | 1.71 ± 0.01 a | 12.44 ± 0.37 a | 19.26 ± 0.28 a | 66.52 ± 0.61 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, X.; Zhang, J.; Xing, J.; Xu, J.; Ouyang, D.; Wang, L.; Wan, Y.; Luo, X. Synergistic Amylase and Debranching Enzyme Catalysis to Improve the Stability of Oat Milk. Foods 2025, 14, 1271. https://doi.org/10.3390/foods14071271
Zhan X, Zhang J, Xing J, Xu J, Ouyang D, Wang L, Wan Y, Luo X. Synergistic Amylase and Debranching Enzyme Catalysis to Improve the Stability of Oat Milk. Foods. 2025; 14(7):1271. https://doi.org/10.3390/foods14071271
Chicago/Turabian StyleZhan, Xinyan, Jinye Zhang, Jiali Xing, Jinyi Xu, Dan Ouyang, Li Wang, Ying Wan, and Xiaohu Luo. 2025. "Synergistic Amylase and Debranching Enzyme Catalysis to Improve the Stability of Oat Milk" Foods 14, no. 7: 1271. https://doi.org/10.3390/foods14071271
APA StyleZhan, X., Zhang, J., Xing, J., Xu, J., Ouyang, D., Wang, L., Wan, Y., & Luo, X. (2025). Synergistic Amylase and Debranching Enzyme Catalysis to Improve the Stability of Oat Milk. Foods, 14(7), 1271. https://doi.org/10.3390/foods14071271