Energy and Macronutrient Dietary Intakes of Vegetarian and Semi-Vegetarian Serbian Adults: Data from the EFSA EU Menu Food Consumption Survey (2017–2022)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Data Processing and Dietary Assessment
2.4. Anthropometric Measurements
2.5. Statistics
3. Results
3.1. Overall Sample and Gender Differences
3.1.1. General, Socio-Demographic, and Physical Activity Data
3.1.2. Anthropometric Data
3.1.3. Total Energy and Macronutrient Intake Dietary Data
3.1.4. Specific Food Groups Contribution to Energy and Macronutrient Intakes
3.2. Comparisons Between Different Vegetarian Dietary Patterns
3.2.1. Socio-Demographic and Anthropometric Data
3.2.2. Differences Between Dietary Patterns in Total Energy and Macronutrient Intake
3.2.3. Differences Between Dietary Patterns in Specific Food Groups Contribution to Energy and Macronutrient Intakes
3.2.4. Differences Between Dietary Patterns in Total Energy and Macronutrient Intake After Adjustments for Sex, Age, and Other Socio-Demographic Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
HbA1c | Glycosylated hemoglobin A1c |
LDL | Low-density lipoprotein |
HDL | High-density lipoprotein |
BCCA | branched-chain amino acids |
EFSA | European Food Safety Authority |
EU | European Union |
UK | United Kingdom |
US | United States |
IOM | Institute of Medicine |
IPAQ-SF | International Physical Activity Questionnaire—Short Form |
METs | Metabolic equivalents of the task |
DAP | Diet Assess and Plan |
FCDB | Food Composition Database |
EuroFIR TM | European Food Information Resource |
%TE | Percentage of total energy |
DRV | Dietary Reference Values |
ARs | Average Requirements |
PAL | Physical activity level |
PRIs | Population Reference Intakes |
AIs | Adequate Intake |
RISs | Reference Intake Ranges |
DRIs | Dietary Reference Intakes |
EERs | Estimated Energy Requirements |
EARs | Estimated Average Requirements |
RDAs | Recommended Dietary Allowances |
AMDRs | Acceptable Macronutrient Distribution Ranges |
SINU | Italian Society of Human Nutrition |
WHO | World Health Organization |
FAO | Food and Agriculture Organization |
IQR | Interquartile range |
ANCOVA | Analysis of covariance |
ISCED | International Standard Classification of Education |
V | Vegan |
LOV | Lacto-ovo vegetarian |
SV | Semi-vegetarian |
NHANES | National Health and Nutrition Examination Surveys |
PDCAAS | Protein Digestibility Corrected Amino Acid Score |
DIAAS | Digestible Indispensable Amino Acid Scores |
ALA | Alpha-linolenic acid |
EPA | Eicosapentaenoic acid |
DPA | Docosapentaenoic acid |
DHA | Docosahexaenoic acid |
GLA | Gamma-linoleic acid |
CLA | Conjugated cis-trans linoleic acid |
FSBDGs | Food system-based dietary guidelines |
References
- Storz, M.A. What Makes a Plant-Based Diet? A Review of Current Concepts and Proposal for a Standardized Plant-Based Dietary Intervention Checklist. Eur. J. Clin. Nutr. 2022, 76, 789–800. [Google Scholar] [CrossRef]
- Segovia-Siapco, G.; Sabaté, J. Health and Sustainability Outcomes of Vegetarian Dietary Patterns: A Revisit of the EPIC-Oxford and the Adventist Health Study-2 Cohorts. Eur. J. Clin. Nutr. 2019, 72, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, D.L. The Psychology of Vegetarianism: Recent Advances and Future Directions. Appetite 2018, 131, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and Nutritional Aspects of Sustainable Diet Strategies and Their Association with Environmental Impacts: A Global Modelling Analysis with Country-Level Detail. Lancet Planet. Health 2018, 2, e451–e461. [Google Scholar] [CrossRef]
- Andreoli, V.; Bagliani, M.; Corsi, A.; Frontuto, V. Drivers of Protein Consumption: A Cross-Country Analysis. Sustainability 2021, 13, 7399. [Google Scholar] [CrossRef]
- Derbyshire, E.J. Flexitarian Diets and Health: A Review of the Evidence-Based Literature. Front. Nutr. 2017, 3, 55. [Google Scholar] [CrossRef]
- Oussalah, A.; Levy, J.; Berthezène, C.; Alpers, D.H.; Guéant, J.-L. Health Outcomes Associated with Vegetarian Diets: An Umbrella Review of Systematic Reviews and Meta-Analyses. Clin. Nutr. 2020, 39, 3283–3307. [Google Scholar] [CrossRef]
- Selinger, E.; Neuenschwander, M.; Koller, A.; Gojda, J.; Kühn, T.; Schwingshackl, L.; Barbaresko, J.; Schlesinger, S. Evidence of a Vegan Diet for Health Benefits and Risks—An Umbrella Review of Meta-Analyses of Observational and Clinical Studies. Crit. Rev. Food Sci. Nutr. 2023, 63, 9926–9936. [Google Scholar] [CrossRef]
- Kent, G.; Kehoe, L.; Flynn, A.; Walton, J. Plant-Based Diets: A Review of the Definitions and Nutritional Role in the Adult Diet. Proc. Nutr. Soc. 2022, 81, 62–74. [Google Scholar] [CrossRef]
- Banati, D. Flexitarianism—The Sustainable Food Consumption? Élelmiszervizsgálati Közlemények 2022, 68, 4075–4091. [Google Scholar] [CrossRef]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-Based Diets: Considerations for Environmental Impact, Protein Quality, and Exercise Performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef] [PubMed]
- Giaginis, C.; Mantzorou, M.; Papadopoulou, S.K.; Gialeli, M.; Troumbis, A.Y.; Vasios, G.K. Christian Orthodox Fasting as a Traditional Diet with Low Content of Refined Carbohydrates That Promotes Human Health: A Review of the Current Clinical Evidence. Nutrients 2023, 15, 1225. [Google Scholar] [CrossRef]
- Hargreaves, S.M.; Rosenfeld, D.L.; Moreira, A.V.B.; Zandonadi, R.P. Plant-Based and Vegetarian Diets: An Overview and Definition of These Dietary Patterns. Eur. J. Nutr. 2023, 62, 1109–1121. [Google Scholar] [CrossRef] [PubMed]
- Philippou, E.; Petersson, S.D.; Rodomar, C.; Nikiphorou, E. Rheumatoid Arthritis and Dietary Interventions: Systematic Review of Clinical Trials. Nutr. Rev. 2021, 79, 410–428. [Google Scholar] [CrossRef]
- Wu, A.-M.; Bisignano, C.; James, S.L.; Abady, G.G.; Abedi, A.; Abu-Gharbieh, E.; Alhassan, R.K.; Alipour, V.; Arabloo, J.; Asaad, M.; et al. Global, Regional, and National Burden of Bone Fractures in 204 Countries and Territories, 1990–2019: A Systematic Analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021, 2, e580–e592. [Google Scholar] [CrossRef]
- Alwarith, J.; Kahleova, H.; Rembert, E.; Yonas, W.; Dort, S.; Calcagno, M.; Burgess, N.; Crosby, L.; Barnard, N.D. Nutrition Interventions in Rheumatoid Arthritis: The Potential Use of Plant-Based Diets. A Review. Front. Nutr. 2019, 6, 141. [Google Scholar] [CrossRef]
- Kim, H.; Rebholz, C.M.; Hegde, S.; LaFiura, C.; Raghavan, M.; Lloyd, J.F.; Cheng, S.; Seidelmann, S.B. Plant-Based Diets, Pescatarian Diets and COVID-19 Severity: A Population-Based Case-Control Study in Six Countries. BMJ Nutr. Prev. Health 2021, 4, 257–266. [Google Scholar] [CrossRef]
- Hou, Y.-C.; Su, W.-L.; Chao, Y.-C. COVID-19 Illness Severity in the Elderly in Relation to Vegetarian and Non-Vegetarian Diets: A Single-Center Experience. Front. Nutr. 2022, 9, 837458. [Google Scholar] [CrossRef]
- Merino, J.; Joshi, A.D.; Nguyen, L.H.; Leeming, E.R.; Mazidi, M.; Drew, D.A.; Gibson, R.; Graham, M.S.; Lo, C.-H.; Capdevila, J.; et al. Diet Quality and Risk and Severity of COVID-19: A Prospective Cohort Study. Gut 2021, 70, 2096–2104. [Google Scholar] [CrossRef]
- Barthels, F.; Meyer, F.; Pietrowsky, R. Orthorexic and Restrained Eating Behaviour in Vegans, Vegetarians, and Individuals on a Diet. Eat. Weight Disord. 2018, 23, 159–166. [Google Scholar] [CrossRef]
- Paslakis, G.; Richardson, C.; Nöhre, M.; Brähler, E.; Holzapfel, C.; Hilbert, A.; de Zwaan, M. Prevalence and Psychopathology of Vegetarians and Vegans—Results from a Representative Survey in Germany. Sci. Rep. 2020, 10, 6840. [Google Scholar] [CrossRef]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef]
- Mensah, E.O.; Danyo, E.K.; Asase, R. V Exploring the Effect of Different Diet Types on Ageing and Age-Related Diseases. Nutrition 2025, 129, 112596. [Google Scholar] [CrossRef] [PubMed]
- Herpich, C.; Müller-Werdan, U.; Norman, K. Role of Plant-Based Diets in Promoting Health and Longevity. Maturitas 2022, 165, 47–51. [Google Scholar] [CrossRef]
- Rocha, J.P.; Laster, J.; Parag, B.; Shah, N.U. Multiple Health Benefits and Minimal Risks Associated with Vegetarian Diets. Curr. Nutr. Rep. 2019, 8, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Soh, B.X.P.; Smith, N.W.; von Hurst, P.R.; McNabb, W.C. Achieving High Protein Quality Is a Challenge in Vegan Diets: A Narrative Review. Nutr. Rev. 2024, nuae176. [Google Scholar] [CrossRef]
- Agnoli, C.; Baroni, L.; Bertini, I.; Ciappellano, S.; Fabbri, A.; Papa, M.; Pellegrini, N.; Sbarbati, R.; Scarino, M.L.; Siani, V.; et al. Position Paper on Vegetarian Diets from the Working Group of the Italian Society of Human Nutrition. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 1037–1052. [Google Scholar] [CrossRef]
- Gajski, G.; Gerić, M.; Vučić Lovrenčić, M.; Božičević, S.; Rubelj, I.; Nanić, L.; Škrobot Vidaček, N.; Bendix, L.; Peraica, M.; Rašić, D.; et al. Analysis of Health-Related Biomarkers between Vegetarians and Non-Vegetarians: A Multi-Biomarker Approach. J. Funct. Foods 2018, 48, 643–653. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Nam, K.; Huang, X.; Ahn, D.U. Plant- and Animal-Based Antioxidants’ Structure, Efficacy, Mechanisms, and Applications: A Review. Antioxidants 2022, 11, 1025. [Google Scholar] [CrossRef]
- Salim, R.; Nehvi, I.B.; Mir, R.A.; Tyagi, A.; Ali, S.; Bhat, O.M. A Review on Anti-Nutritional Factors: Unraveling the Natural Gateways to Human Health. Front. Nutr. 2023, 10, 1215873. [Google Scholar] [CrossRef]
- Wang, T.; Masedunskas, A.; Willett, W.C.; Fontana, L. Vegetarian and Vegan Diets: Benefits and Drawbacks. Eur. Heart J. 2023, 44, 3423–3439. [Google Scholar] [CrossRef]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and Adequacy of the Vegan Diet. A Systematic Review of the Evidence. Clin. Nutr. 2021, 40, 3503–3521. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization of the United Nations. What Are Healthy, Sustainable Diets? Statement by the Food and Agriculture Organization of the United Nations and the World Health Organization; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT -Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Branković, M.; Budžak, A.; Đurašković, I.; Vlajin, B. What Is in a Label: Effects of Labeling on the Preference for Plant-Based Products. Appetite 2024, 206, 107837. [Google Scholar] [CrossRef]
- Uzelac, M. Veg(Etari)Anism in Serbia: Attack on Traditional Values. In Veg(etari)an Arguments in Culture, History, and Practice: The V Word; Hanganu-Bresch, C., Kondrlik, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 93–117. ISBN 978-3-030-53280-2. [Google Scholar]
- Ipsos MORI Global Advisor Survey. An Exploration into Diets Around the World; Ipsos MORI: London, UK, 2018. [Google Scholar]
- Milešević, J.; Zeković, M.; Šarac, I.; Knez, M.; Krga, I.; Takić, M.; Debeljak-Martačić, J.; Stevanović, V.; Vidović, N.; Kadvan, A.; et al. EFSA EU Menu Food Consumption Survey in Serbia 2017–2022: Energy and Macronutrient Dietary Intakes and Anthropometric Status of Serbian Adults 18–64 Years Old. Foods 2025, 14, 1228. [Google Scholar] [CrossRef]
- Zekovic, M.; Gurinovic, M.; Milesevic, J.; Kadvan, A.; Glibetic, M.; University of Belgrade, Institute for Medical Research, National Institute of Republic of Serbia, Centre of Research Excellence in Nutrition and Metabolism, Serbia. National Food Consumption Survey among 10–74 Years Old Individuals in Serbia. EFSA Support. Publ. 2022, 19, 7401E. [Google Scholar] [CrossRef]
- Gurinović, M.; Nikolić, M.; Zeković, M.; Milešević, J.; Kadvan, A.; Ranić, M.; Glibetić, M. Implementation of Harmonized Food Consumption Data Collection in the Balkan Region According to the EFSA EU Menu Methodology Standards. Front. Nutr. 2022, 8, 809328. [Google Scholar] [CrossRef]
- Rizzo, N.S.; Sabaté, J.; Jaceldo-Siegl, K.; Fraser, G.E. Vegetarian Dietary Patterns Are Associated with a Lower Risk of Metabolic Syndrome: The Adventist Health Study. Diabetes Care 2011, 34, 1225–1227. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Nikolić, M.; Milešević, J.; Zeković, M.; Gurinović, M.; Glibetić, M. The Development and Validation of Food Atlas for Portion Size Estimation in the Balkan Region. Front. Nutr. 2018, 5, 78. [Google Scholar] [CrossRef]
- Gurinović, M.; Milešević, J.; Kadvan, A.; Nikolić, M.; Zeković, M.; Djekić-Ivanković, M.; Dupouy, E.; Finglas, P.; Glibetić, M. Development, Features and Application of DIET ASSESS & PLAN (DAP) Software in Supporting Public Health Nutrition Research in Central Eastern European Countries (CEEC). Food Chem. 2018, 238, 186–194. [Google Scholar] [CrossRef]
- Gavrieli, A.; Naska, A.; Konstantinidi, C.; Berry, R.; Roe, M.; Harvey, L.; Finglas, P.; Glibetic, M.; Gurinovic, M.; Trichopoulou, A. Dietary Monitoring Tools for Risk Assessment. EFSA Support. Publ. 2014, 11, 607E. [Google Scholar] [CrossRef]
- Glibetic, M.; Kadvan, A.; Tepsic, J.; Martacic, J.D.; Djekic-Ivankovic, M.; Gurinovic, M. Management of Food Composition Database Harmonized with EuroFIR Criteria Using a Web Application. J. Food Compos. Anal. 2011, 24, 741–743. [Google Scholar] [CrossRef]
- Gurinović, M.; Milešević, J.; Novaković, R.; Kadvan, A.; Djekić-Ivanković, M.; Šatalić, Z.; Korošec, M.; Spiroski, I.; Ranić, M.; Dupouy, E.; et al. Improving Nutrition Surveillance and Public Health Research in Central and Eastern Europe/Balkan Countries Using the Balkan Food Platform and Dietary Tools. Food Chem. 2016, 193, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Gurinović, M.; Milešević, J.; Kadvan, A.; Djekić-Ivanković, M.; Debeljak-Martačić, J.; Takić, M.; Nikolić, M.; Ranković, S.; Finglas, P.; Glibetić, M. Establishment and Advances in the Online Serbian Food and Recipe Data Base Harmonized with EuroFIRTM Standards. Food Chem. 2016, 193, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Caicedo, A.L.; Bell, S.; Hartmann, B. Report on Collection of Rules on Use of Recipe Calculation Procedures Including the Use of Yield and Retention Factors for Imputing Nutrient Values for Composite Foods; EuroFIR Consortium: Brussels, Belgium, 2008. [Google Scholar]
- European Food Safety Authority (EFSA). Dietary Reference Values for Nutrients Summary Report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans 2020–2025, 9th ed.; USDA: Washington, DC, USA, 2020. [Google Scholar]
- 2025 Dietary Guidelines Advisory Committee; U.S. Department of Health and Human Services. Scientific Report of the 2025 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and Secretary of Agriculture; USDA: Washington, DC, USA, 2024. [Google Scholar]
- Kniskern, M.A.; Johnston, C.S. Protein Dietary Reference Intakes May Be Inadequate for Vegetarians If Low Amounts of Animal Protein Are Consumed. Nutrition 2011, 27, 727–730. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation on Obesity, Proceedings of the WHO consultation on Obesity, Geneva, Switzerland, 3–5 June 1997; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Allès, B.; Baudry, J.; Méjean, C.; Touvier, M.; Péneau, S.; Hercberg, S.; Kesse-Guyot, E. Comparison of Sociodemographic and Nutritional Characteristics between Self-Reported Vegetarians, Vegans, and Meat-Eaters from the NutriNet-Santé Study. Nutrients 2017, 9, 1023. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Tong, T.Y.N.; Key, T.J. Dietary Intake of High-Protein Foods and Other Major Foods in Meat-Eaters, Poultry-Eaters, Fish-Eaters, Vegetarians, and Vegans in UK Biobank. Nutrients 2017, 9, 1317. [Google Scholar] [CrossRef]
- Sobiecki, J.G.; Appleby, P.N.; Bradbury, K.E.; Key, T.J. High Compliance with Dietary Recommendations in a Cohort of Meat Eaters, Fish Eaters, Vegetarians, and Vegans: Results from the European Prospective Investigation into Cancer and Nutrition-Oxford Study. Nutr. Res. 2016, 36, 464–477. [Google Scholar] [CrossRef]
- Millward, D.J.; Jackson, A.A. Protein/Energy Ratios of Current Diets in Developed and Developing Countries Compared with a Safe Protein/Energy Ratio: Implications for Recommended Protein and Amino Acid Intakes. Public Health Nutr. 2004, 7, 387–405. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO); World Health Organization (WHO); United Nations University (UNU). Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation: Rome, 17–24 October 2001; FAO food and nutrition series; Food and Agricultural Organization of the United Nations: Rome, Italy, 2004. [Google Scholar]
- Mariotti, F.; Gardner, C.D. Dietary Protein and Amino Acids in Vegetarian Diets—A Review. Nutrients 2019, 11, 2661. [Google Scholar] [CrossRef]
- Bowman, S.A. A Vegetarian-Style Dietary Pattern Is Associated with Lower Energy, Saturated Fat, and Sodium Intakes; and Higher Whole Grains, Legumes, Nuts, and Soy Intakes by Adults: National Health and Nutrition Examination Surveys 2013–2016. Nutrients 2020, 12, 2668. [Google Scholar] [CrossRef]
- Farmer, B. Nutritional Adequacy of Plant-Based Diets for Weight Management: Observations from the NHANES. Am. J. Clin. Nutr. 2014, 100, 365S–368S. [Google Scholar] [CrossRef]
- Rizzo, N.S.; Jaceldo-Siegl, K.; Sabate, J.; Fraser, G.E. Nutrient Profiles of Vegetarian and Nonvegetarian Dietary Patterns. J. Acad. Nutr. Diet. 2013, 113, 1610–1619. [Google Scholar] [CrossRef]
- Schatzkin, A.; Kipnis, V.; Carroll, R.J.; Midthune, D.; Subar, A.F.; Bingham, S.; Schoeller, D.A.; Troiano, R.P.; Freedman, L.S. A Comparison of a Food Frequency Questionnaire with a 24-Hour Recall for Use in an Epidemiological Cohort Study: Results from the Biomarker-Based Observing Protein and Energy Nutrition (OPEN) Study. Int. J. Epidemiol. 2003, 32, 1054–1062. [Google Scholar] [CrossRef]
- Freisling, H.; van Bakel, M.M.E.; Biessy, C.; May, A.M.; Byrnes, G.; Norat, T.; Rinaldi, S.; Santucci de Magistris, M.; Grioni, S.; Bueno-de-Mesquita, H.B.; et al. Dietary Reporting Errors on 24 h Recalls and Dietary Questionnaires Are Associated with BMI across Six European Countries as Evaluated with Recovery Biomarkers for Protein and Potassium Intake. Br. J. Nutr. 2012, 107, 910–920. [Google Scholar] [CrossRef]
- Crispim, S.P.; de Vries, J.H.M.; Geelen, A.; Souverein, O.W.; Hulshof, P.J.M.; Lafay, L.; Rousseau, A.-S.; Lillegaard, I.T.L.; Andersen, L.F.; Huybrechts, I.; et al. Two Non-Consecutive 24 h Recalls Using EPIC-Soft Software Are Sufficiently Valid for Comparing Protein and Potassium Intake between Five European Centres—Results from the European Food Consumption Validation (EFCOVAL) Study. Br. J. Nutr. 2011, 105, 447–458. [Google Scholar] [CrossRef]
- Palaniappan, U.; Cue, R.I.; Payette, H.; Gray-Donald, K. Implications of Day-to-Day Variability on Measurements of Usual Food and Nutrient Intakes. J. Nutr. 2003, 133, 232–235. [Google Scholar] [CrossRef]
- James Stubbs, R.; Horgan, G.; Robinson, E.; Hopkins, M.; Dakin, C.; Finlayson, G. Diet Composition and Energy Intake in Humans. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2023, 378, 20220449. [Google Scholar] [CrossRef]
- World Health Organization. Total Fat Intake for the Prevention of Unhealthy Weight Gain in Adults and Children; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Prentice, A.M. Manipulation of Dietary Fat and Energy Density and Subsequent Effects on Substrate Flux and Food Intake. Am. J. Clin. Nutr. 1998, 67, 535S–541S. [Google Scholar] [CrossRef]
- Vazquez, J.A.; Morse, E.L.; Adibi, S.A. Effect of Dietary Fat, Carbohydrate, and Protein on Branched-Chain Amino Acid Catabolism during Caloric Restriction. J. Clin. Investig. 1985, 76, 737–743. [Google Scholar] [CrossRef]
- Vazquez, J.A.; Kazi, U.; Madani, N. Protein Metabolism during Weight Reduction with Very-Low-Energy Diets: Evaluation of the Independent Effects of Protein and Carbohydrate on Protein Sparing. Am. J. Clin. Nutr. 1995, 62, 93–103. [Google Scholar] [CrossRef]
- Rolands, M.R.; Hackl, L.S.; Bochud, M.; Lê, K.A. Protein Adequacy, Plant Protein Proportion, and Main Plant Protein Sources Consumed Across Vegan, Vegetarian, Pescovegetarian, and Semivegetarian Diets: A Systematic Review. J. Nutr. 2025, 155, 153–167. [Google Scholar] [CrossRef]
- Cade, J.E.; Burley, V.J.; Greenwood, D.C. The UK Women’s Cohort Study: Comparison of Vegetarians, Fish-Eaters and Meat-Eaters. Public Health Nutr. 2004, 7, 871–878. [Google Scholar] [CrossRef]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef]
- Dodevska, M.; Kukic Markovic, J.; Sofrenic, I.; Tesevic, V.; Jankovic, M.; Djordjevic, B.; Ivanovic, N.D. Similarities and Differences in the Nutritional Composition of Nuts and Seeds in Serbia. Front. Nutr. 2022, 9, 1003125. [Google Scholar] [CrossRef]
- Dimina, L.; Rémond, D.; Huneau, J.-F.; Mariotti, F. Combining Plant Proteins to Achieve Amino Acid Profiles Adapted to Various Nutritional Objectives—An Exploratory Analysis Using Linear Programming. Front. Nutr. 2022, 8, 809685. [Google Scholar] [CrossRef]
- Rand, W.M.; Pellett, P.L.; Young, V.R. Meta-Analysis of Nitrogen Balance Studies for Estimating Protein Requirements in Healthy Adults. Am. J. Clin. Nutr. 2003, 77, 109–127. [Google Scholar] [CrossRef]
- Li, M.; Sun, F.; Piao, J.H.; Yang, X.G. Protein Requirements in Healthy Adults: A Meta-Analysis of Nitrogen Balance Studies. Biomed. Environ. Sci. 2014, 27, 606–613. [Google Scholar] [CrossRef]
- Bartholomae, E.; Johnston, C.S. Nitrogen Balance at the Recommended Dietary Allowance for Protein in Minimally Active Male Vegans. Nutrients 2023, 15, 3159. [Google Scholar] [CrossRef]
- Craig, W.J.; Mangels, A.R. Position of the American Dietetic Association: Vegetarian Diets. J. Am. Diet. Assoc. 2009, 109, 1266–1282. [Google Scholar] [CrossRef]
- American Dietetic Association; Dietitians of Canada. Position of the American Dietetic Association and Dietitians of Canada: Vegetarian Diets. J. Am. Diet. Assoc. 2003, 103, 748–765. [Google Scholar] [CrossRef]
- Sievenpiper, J.L.; Chan, C.B.; Dworatzek, P.D.; Freeze, C.; Williams, S.L. Nutrition Therapy. Can. J. Diabetes 2018, 42, S64–S79. [Google Scholar] [CrossRef]
- Lemale, J.; Mas, E.; Jung, C.; Bellaiche, M.; Tounian, P. Vegan Diet in Children and Adolescents. Recommendations from the French-Speaking Pediatric Hepatology, Gastroenterology and Nutrition Group (GFHGNP). Arch. Pediatr. 2019, 26, 442–450. [Google Scholar] [CrossRef]
- Public Health England. Government Dietary Recommendations: Government Recommendations for Energy and Nutrients for Males and Females Ages 1–18 and 19+ Years; Public Health England: London, UK, 2016. [Google Scholar]
- De Gavelle, E.; Huneau, J.-F.; Bianchi, C.M.; Verger, E.O.; Mariotti, F. Protein Adequacy Is Primarily a Matter of Protein Quantity, Not Quality: Modeling an Increase in Plant:Animal Protein Ratio in French Adults. Nutrients 2017, 9, 1333. [Google Scholar] [CrossRef]
- Soh, B.X.P.; Smith, N.W.; von Hurst, P.R.; McNabb, W.C. Evaluation of Protein Adequacy from Plant-Based Dietary Scenarios in Simulation Studies: A Narrative Review. J. Nutr. 2024, 154, 300–313. [Google Scholar] [CrossRef]
- Borkent, J.W.; Grootswagers, P.; Linschooten, J.; Roodenburg, A.J.C.; Ocké, M.; de van der Schueren, M.A.E. A Vegan Dietary Pattern Is Associated with High Prevalence of Inadequate Protein Intake in Older Adults; a Simulation Study. J. Nutr. Health Aging 2024, 28, 100361. [Google Scholar] [CrossRef]
- Elango, R. Protein Requirements in Humans: A Need for Reassessment. J. Nutr. 2023, 153, 3355–3356. [Google Scholar] [CrossRef]
- Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.D.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; et al. Timing and Distribution of Protein Ingestion during Prolonged Recovery from Resistance Exercise Alters Myofibrillar Protein Synthesis. J. Physiol. 2013, 591, 2319–2331. [Google Scholar] [CrossRef] [PubMed]
- Arnal, M.A.; Mosoni, L.; Boirie, Y.; Houlier, M.L.; Morin, L.; Verdier, E.; Ritz, P.; Antoine, J.M.; Prugnaud, J.; Beaufrère, B.; et al. Protein Feeding Pattern Does Not Affect Protein Retention in Young Women. J. Nutr. 2000, 130, 1700–1704. [Google Scholar] [CrossRef] [PubMed]
- Arnal, M.A.; Mosoni, L.; Boirie, Y.; Houlier, M.L.; Morin, L.; Verdier, E.; Ritz, P.; Antoine, J.M.; Prugnaud, J.; Beaufrère, B.; et al. Protein Pulse Feeding Improves Protein Retention in Elderly Women. Am. J. Clin. Nutr. 1999, 69, 1202–1208. [Google Scholar] [CrossRef]
- Clarys, P.; Deliens, T.; Huybrechts, I.; Deriemaeker, P.; Vanaelst, B.; De Keyzer, W.; Hebbelinck, M.; Mullie, P. Comparison of Nutritional Quality of the Vegan, Vegetarian, Semi-Vegetarian, Pesco-Vegetarian and Omnivorous Diet. Nutrients 2014, 6, 1318–1332. [Google Scholar] [CrossRef]
- Kristensen, N.B.; Madsen, M.L.; Hansen, T.H.; Allin, K.H.; Hoppe, C.; Fagt, S.; Lausten, M.S.; Gøbel, R.J.; Vestergaard, H.; Hansen, T.; et al. Intake of Macro- and Micronutrients in Danish Vegans. Nutr. J. 2015, 14, 115. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, A.; Koschizke, J.W.; Leitzmann, C.; Hahn, A. Dietary Intakes and Lifestyle Factors of a Vegan Population in Germany: Results from the German Vegan Study. Eur. J. Clin. Nutr. 2003, 57, 947–955. [Google Scholar] [CrossRef]
- Vucic, V.; Tepsic, J.; Arsic, A.; Popovic, T.; Debeljak-Martacic, J.; Glibetic, M. Fatty Acid Content of Vegetable Oils and Assessment of Their Consumption in Serbia. Acta Aliment. 2012, 41, 343–350. [Google Scholar] [CrossRef]
- Santos, H.O.; Price, J.C.; Bueno, A.A. Beyond Fish Oil Supplementation: The Effects of Alternative Plant Sources of Omega-3 Polyunsaturated Fatty Acids upon Lipid Indexes and Cardiometabolic Biomarkers—An Overview. Nutrients 2020, 12, 3159. [Google Scholar] [CrossRef]
- Murff, H.J.; Edwards, T.L. Endogenous Production of Long-Chain Polyunsaturated Fatty Acids and Metabolic Disease Risk. Curr. Cardiovasc. Risk Rep. 2014, 8, 418. [Google Scholar] [CrossRef]
- Šarac, I.; Debeljak-Martačić, J.; Takić, M.; Stevanović, V.; Milešević, J.; Zeković, M.; Popović, T.; Jovanović, J.; Vidović, N.K. Associations of Fatty Acids Composition and Estimated Desaturase Activities in Erythrocyte Phospholipids with Biochemical and Clinical Indicators of Cardiometabolic Risk in Non-Diabetic Serbian Women: The Role of Level of Adiposity. Front. Nutr. 2023, 10, 1065578. [Google Scholar] [CrossRef]
- Takić, M.; Ranković, S.; Girek, Z.; Pavlović, S.; Jovanović, P.; Jovanović, V.; Šarac, I. Current Insights into the Effects of Dietary α-Linolenic Acid Focusing on Alterations of Polyunsaturated Fatty Acid Profiles in Metabolic Syndrome. Int. J. Mol. Sci. 2024, 25, 4909. [Google Scholar] [CrossRef]
- Lane, K.E.; Wilson, M.; Hellon, T.G.; Davies, I.G. Bioavailability and Conversion of Plant Based Sources of Omega-3 Fatty Acids—A Scoping Review to Update Supplementation Options for Vegetarians and Vegans. Crit. Rev. Food Sci. Nutr. 2022, 62, 4982–4997. [Google Scholar] [CrossRef]
- Takic, M.; Pokimica, B.; Petrovic-Oggiano, G.; Popovic, T. Effects of Dietary α-Linolenic Acid Treatment and the Efficiency of Its Conversion to Eicosapentaenoic and Docosahexaenoic Acids in Obesity and Related Diseases. Molecules 2022, 27, 4471. [Google Scholar] [CrossRef]
- Domenichiello, A.F.; Kitson, A.P.; Bazinet, R.P. Is Docosahexaenoic Acid Synthesis from α-Linolenic Acid Sufficient to Supply the Adult Brain? Prog. Lipid Res. 2015, 59, 54–66. [Google Scholar] [CrossRef]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The Review of Alpha-Linolenic Acid: Sources, Metabolism, and Pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef]
- Davis, B.C.; Kris-Etherton, P.M. Achieving Optimal Essential Fatty Acid Status in Vegetarians: Current Knowledge and Practical Implications. Am. J. Clin. Nutr. 2003, 78, 640S–646S. [Google Scholar] [CrossRef]
- Gerster, H. Can Adults Adequately Convert Alpha-Linolenic Acid (18:3n-3) to Eicosapentaenoic Acid (20:5n-3) and Docosahexaenoic Acid (22:6n-3)? Int. J. Vitam. Nutr. Res. 1998, 68, 159–173. [Google Scholar]
- Burns-Whitmore, B.; Froyen, E.; Heskey, C.; Parker, T.; San Pablo, G. Alpha-Linolenic and Linoleic Fatty Acids in the Vegan Diet: Do They Require Dietary Reference Intake/Adequate Intake Special Consideration? Nutrients 2019, 11, 2365. [Google Scholar] [CrossRef]
- Despotović, M.; Debeljak Martačić, J.; Šarac, I.; Petrović Oggiano, G.; Ranković, S.; Jovanović, P.; Takić, M. Comparative Analysis of Fatty Acid Profiles in Erythrocyte Membranes in Vegetarians Compared to Omnivores. In Proceedings of the 14th European Nutrition Conference FENS 2023, Belgrade, Serbia, 14–17 November 2023; Volume 91. [Google Scholar] [CrossRef]
- Stark, K.D.; Aristizabal Henao, J.J.; Metherel, A.H.; Pilote, L. Translating Plasma and Whole Blood Fatty Acid Compositional Data into the Sum of Eicosapentaenoic and Docosahexaenoic Acid in Erythrocytes. Prostaglandins Leukot. Essent. Fatty Acids 2016, 104, 1–10. [Google Scholar] [CrossRef]
- Hallmann, J.; Kolossa, S.; Gedrich, K.; Celis-Morales, C.; Forster, H.; O’Donovan, C.B.; Woolhead, C.; Macready, A.L.; Fallaize, R.; Marsaux, C.F.M.; et al. Predicting Fatty Acid Profiles in Blood Based on Food Intake and the FADS1 Rs174546 SNP. Mol. Nutr. Food Res. 2015, 59, 2565–2573. [Google Scholar] [CrossRef]
- Jonson, J.B. Effects of Flaxseed Hemp Seed Oils on Erythrocyte Concentrations of Eicosapentaenoic and Docosahexaenoic Acid Vegetarians. Master’s Thesis, University of Hawaii, Honolulu, HI, USA, 2003. [Google Scholar]
- Yu, X.; Huang, T.; Weng, X.; Shou, T.; Wang, Q.; Zhou, X.; Hu, Q.; Li, D. Plasma N-3 and n-6 Fatty Acids and Inflammatory Markers in Chinese Vegetarians. Lipids Health Dis. 2014, 13, 151. [Google Scholar] [CrossRef]
- Kornsteiner, M.; Singer, I.; Elmadfa, I. Very Low N-3 Long-Chain Polyunsaturated Fatty Acid Status in Austrian Vegetarians and Vegans. Ann. Nutr. Metab. 2008, 52, 37–47. [Google Scholar] [CrossRef]
- Harris, W.S. Achieving Optimal N-3 Fatty Acid Status: The Vegetarian’s Challenge… or Not. Am. J. Clin. Nutr. 2014, 100, 449S–452S. [Google Scholar] [CrossRef]
- Welch, A.A.; Shakya-Shrestha, S.; Lentjes, M.A.H.; Wareham, N.J.; Khaw, K.-T. Dietary Intake and Status of N-3 Polyunsaturated Fatty Acids in a Population of Fish-Eating and Non-Fish-Eating Meat-Eaters, Vegetarians, and Vegans and the Product-Precursor Ratio of α-Linolenic Acid to Long-Chain n-3 Polyunsaturated Fatty Acids: Results from the EPIC-Norfolk Chort. Am. J. Clin. Nutr. 2010, 92, 1040–1051. [Google Scholar] [CrossRef]
- Salvador, A.M.; García-Maldonado, E.; Gallego-Narbón, A.; Zapatera, B.; Vaquero, M.P. Fatty Acid Profile and Cardiometabolic Markers in Relation with Diet Type and Omega-3 Supplementation in Spanish Vegetarians. Nutrients 2019, 11, 1659. [Google Scholar] [CrossRef]
- Rosell, M.S.; Lloyd-Wright, Z.; Appleby, P.N.; Sanders, T.A.B.; Allen, N.E.; Key, T.J. Long-Chain n–3 Polyunsaturated Fatty Acids in Plasma in British Meat-Eating, Vegetarian, and Vegan Men. Am. J. Clin. Nutr. 2005, 82, 327–334. [Google Scholar] [CrossRef]
- Zhang, X.; Ritonja, J.A.; Zhou, N.; Chen, B.E.; Li, X. Omega-3 Polyunsaturated Fatty Acids Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2022, 11, e025071. [Google Scholar] [CrossRef]
- Pipoyan, D.; Stepanyan, S.; Stepanyan, S.; Beglaryan, M.; Costantini, L.; Molinari, R.; Merendino, N. The Effect of Trans Fatty Acids on Human Health: Regulation and Consumption Patterns. Foods 2021, 10, 2452. [Google Scholar] [CrossRef]
- Vučić, V.; Arsić, A.; Petrović, S.; Milanović, S.; Gurinović, M.; Glibetić, M. Trans Fatty Acid Content in Serbian Margarines: Urgent Need for Legislative Changes and Consumer Information. Food Chem. 2015, 185, 437–440. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Milk Fatty Acids and Potential Health Benefits: An Updated Vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef]
- Poppitt, S.D. Cow’s Milk and Dairy Consumption: Is There Now Consensus for Cardiometabolic Health? Front. Nutr. 2020, 7, 574725. [Google Scholar] [CrossRef] [PubMed]
- Arsić, A.; Prekajski, N.; Vučić, V.; Tepšić, J.; Popović, T.; Vrvić, M.; Glibetić, M. Milk in Human Nutrition: Comparison of Fatty Acid Profiles. Acta Vet. Beogr. 2009, 59, 569–578. [Google Scholar] [CrossRef]
- World Health Organization. Carbohydrate Intake for Adults and Children; WHO guideline; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Food and Agriculture Organization of the United Nations; World Health Organization; United Nations University. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation, Proceedings of the Joint FAO/WHO/UNU Expert Consultation on Protein and Amino Acid Requirements in Human Nutrition, Geneva, Switzerland, Geneva, 9–16 April 2002; World Health Organization: Geneva, Switzerland, 2007; Volume xi, p. 265. [Google Scholar]
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation, Proceedings of the Joint WHO/FAO Expert Consultation, Geneva, Switzerland, 28 January–1 February 2002; World Health Organization: Geneva, Switzerland, 2003; p. 149. [Google Scholar]
- Springmann, M.; Spajic, L.; Clark, M.A.; Poore, J.; Herforth, A.; Webb, P.; Rayner, M.; Scarborough, P. The Healthiness and Sustainability of National and Global Food Based Dietary Guidelines: Modelling Study. BMJ 2020, 370, m2322. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Regional Office for Europe. Food Based Dietary Guidelines in the WHO European Region; Eur/03/5045414; WHO Regional Office for Europe: Copenhagen, Denmark, 2003. [Google Scholar]
- Gurinovic, M.; Milešević, J.; Zeković, M.; Nikolic, M.; Jehle, R.; Dupouy, E.; Fang, C.; Veer, P. Challenges and Opportunities to Support Food Systems Transformations for Healthy and Sustainable Diets in Central and Southeastern Europe. In Sustainable and Nutrition-Sensitive Food Systems for Healthy Diets and Prevention of Malnutrition in Europe and Central Asia; Fang, C., Gurinović, M., Eds.; FAO: Budapest, Hungary, 2023; pp. 51–95. ISBN 978-92-5-137534-1. [Google Scholar]
- Szenderák, J.; Fróna, D.; Rákos, M. Consumer Acceptance of Plant-Based Meat Substitutes: A Narrative Review. Foods 2022, 11, 1274. [Google Scholar] [CrossRef]
- Katare, B.; Yim, H.; Byrne, A.; Wang, H.H.; Wetzstein, M. Consumer Willingness to Pay for Environmentally Sustainable Meat and a Plant-Based Meat Substitute. Appl. Econ. Perspect. Policy 2023, 45, 145–163. [Google Scholar] [CrossRef]
- Szejda, K.; Urbanovich, T.; Wilks, M. Accelerating Consumer Adoption of Plant-Based Meat: An Evidence-Based Guide for Effective Practice; The Good Food Institue: Washington, DC, USA, 2020; pp. 1–111. [Google Scholar]
- EU SCAR. Sustainable Food Systems Partnership for People, Planet and Climate; Strategic Research And Innovation Agenda; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Herrero, M.; Hugas, M.; Lele, U.; Wirakartakusumah, A.; Torero, M. A Shift to Healthy and Sustainable Consumption Patterns. In Science and Innovations for Food Systems Transformation; von Braun, J., Afsana, K., Fresco, L.O., Hassan, M.H.A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 59–85. ISBN 978-3-031-15703-5. [Google Scholar]
Total Sample n = 314 | Women n = 166 | Men n =148 | p | |
---|---|---|---|---|
Dietary pattern, n (%) | 0.201 | |||
Vegan | 63 (20.1) | 27 (16.3) | 36 (24.3) | |
Lacto-ovo vegetarian | 192 (61.1) | 107 (64.5) | 85 (57.4) | |
Semi-vegetarian (Pescatarian/Flexitarian) | 59 (18.8) | 32 (19.3) | 27 (18.2) | |
Age, years, median (IQR) | 36.0 (27.0–47.0) | 36.9 (26.1–48.0) | 34.7 (27.7–44.0) | 0.351 |
Age group, n (%) | 0.246 | |||
18–64 years | 275 (87.6) | 142 (85.5) | 133 (89.9) | |
65–74 years | 39 (12.4) | 24 (14.5) | 15 (10.1) | |
Distribution per geographical region, n (%) | 0.978 | |||
Belgrade (capital city) region | 86 (27.4) | 46 (27.7) | 40 (27.0) | |
Vojvodina region | 81 (25.8) | 44 (26.5) | 37 (25.0) | |
Region of Šumadija and Western Serbia | 84 (26.8) | 44 (26.5) | 40 (27.0) | |
South-Eastern Serbia region | 63 (20.1) | 32 (19.3) | 31 (20.9) | |
Settlement type, n (%) | 0.473 | |||
Urban | 290 (92.4) | 155 (93.4) | 135 (91.2) | |
Rural | 24 (7.6) | 11 (6.6) | 13 (8.8) | |
Ethnicity, n (%) | 0.058 | |||
Serbian | 282 (89.8) | 144 (86.7) | 138 (93.2) | |
Other | 32 (10.2) | 22 13.3) | 10 (6.8) | |
Religion, n (%) | 0.258 | |||
Orthodox | 198 (63.1) | 112 (67.5) | 86 (58.1) | |
Catholic | 10 (3.2) | 4 (2.4) | 6 (4.1) | |
Islamic | 1 (0.3) | 0 (0.0) | 1 (0.7) | |
Other e.g., Adventist/Atheist/Agnostic | 105 (33.4) | 50 (30.19 | 55 (37.2) | |
Marital status, n (%) | 0.013 * | |||
Single | 170 (54.1) | 79 (47.6) | 91 (61.5) | |
Married | 100 (31.8) | 55 (33.1) | 45 (30.4) | |
Divorced | 18 (5.7) | 15 (9.0) | 3 (2.0) | |
Separated | 11 (3.5) | 5 (3.0) | 6 (4.1) | |
Widowed | 11 (3.5) | 9 (5.4) | 2 (1.4) | |
Other | 4 (1.3) | 3 (1.8) | 1 (0.7) | |
Household size, people per household, median (IQR) | 2.0 (2.0–3.0) | 2.0 (2.0–3.0) | 2.0 (1.0–3.0) | 0.290 |
Highest level of formal education, n (%) | 0.930 | |||
ISCED 1: Primary education | 3 (1.0) | 1 (0.6) | 2 (1.4) | |
ISCED 2: Lower secondary education | 4 (1.3) | 2 (1.2) | 2 (1.4) | |
ISCED 3: Upper secondary education | 82 (26.1) | 41 (24.7) | 41 (27.7) | |
ISCED 4/5: Post-secondary/Short-cycle tertiary education | 25 (8.0) | 12 (7.2) | 13 (8.8) | |
ISCED 6: Bachelor’s or equivalent level | 142 (45.2) | 78 (47.0) | 64 (43.2) | |
ISCED 7/8: Master’s/Doctoral or equivalent level | 58 (18.5) | 32 (19.3) | 26 (17.6) | |
Presence of chronic illness, n (%) | 0.040 * | |||
No | 252 (80.3) | 126 (75.9) | 126 (85.1) | |
Yes: | 62 (19.7) | 40 (24.1) | 22 (14.9) | |
Neoplasms | 4 (1.3) | 2 (1.2) | 2 (1.4) | 1.000 |
Diseases of the blood-forming organs and immune system | 5 (1.6) | 5 (3.0) | 0 (0.0) | 0.063 |
Endocrine, nutritional, and metabolic diseases | 17 (5.4) | 14 (8.4) | 3 (2.0) | 0.013 * |
Mental and behavioral disorders | 9 (2.9) | 4 (2.4) | 5 (3.4) | 0.740 |
Diseases of the nervous system | 6 (1.9) | 4 (2.4) | 2 (1.4) | 0.688 |
Diseases of the circulatory system | 18 (5.7) | 12 (7.2) | 6 (4.1) | 0.227 |
Diseases of the respiratory system | 6 (1.9) | 4 (2.4) | 2 (1.4) | 0.688 |
Diseases of the digestive system | 9 (2.9) | 5 (3.0) | 4 (2.7) | 1.000 |
Diseases of the skin and subcutaneous tissue | 5 (1.6) | 2 (1.2) | 3 (2.0) | 0.669 |
Diseases of the musculoskeletal system and connective tissue | 5 (1.6) | 4 (2.4) | 1 (0.7) | 0.375 |
Diseases of the genitourinary system | 6 (1.9) | 4 (2.4) | 2 (1.4) | 0.688 |
Other | 7 (2.2) | 6 (3.6) | 1 (0.7) | 0.125 |
Chronic medical therapy, n (%) | 0.194 | |||
No | 282 (89.8) | 145 (87.3) | 137 (92.6) | |
Yes | 32 (10.2) | 21 (12.7) | 11 (7.4) | |
Smoking status, n (%) | 0.891 | |||
Current smoker | 67 (21.3) | 34 (20.5) | 33 (22.3) | |
Former smoker | 60 (19.1) | 33 (19.9) | 27 (18.2) | |
Never smoker | 187 (59.6) | 99 (59.6) | 88 (59.5) | |
Physical activity level, n (%) | 0.011 * | |||
Low | 87 (27.7) | 48 (28.9) | 39 (26.4) | |
Medium | 151 (48.1) | 89 (53.6) | 62 (41.9) | |
High | 76 (24.2) | 29 (17.5) | 47 (31.8) | |
Physical activity METs, min/week, median (IQR) | 3492.0 (1966.5–5911.5) | 3442.5 (1793.6–5602.5) | 3639.0 (2085.8–7029.0) | 0.220 |
Season, n (%) | 0.829 | |||
Fall | 82 (26.1) | 46 (27.7) | 36 (24.3) | |
Spring | 77 (24.5) | 41 (24.7) | 36 (24.3) | |
Summer | 76 (24.2) | 37 (22.3) | 39 (26.4) | |
Winter | 79 (25.2) | 42 (25.3) | 37 (25.0) |
Total (n = 314) | Women (n = 166) | Men (n = 148) | p | |
---|---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | ||
Body height (cm) | 174.0 (167.0–181.0) | 168.0 (163.0–173.0) | 181.0 (177.0–185.0) | <0.001 *** |
Body mass (kg) | 68.0 (60.0–78.0) | 61.0 (56.0–67.0) | 78.0 (71.3–84.0) | <0.001 *** |
BMI (kg/m2) | 22.6 (20.5–24.7) | 21.5 (19.9–23.7) | 23.8 (22.2–25.4) | <0.001 *** |
BMI categories, n (%) | <0.001 *** | |||
Underweight | 17 (5.4) | 14 (8.4) | 3 (2.0) | |
Normal weight | 227 (72.3) | 128 (77.1) | 99 (66.9) | |
Overweight | 61 (19.4) | 22 (13.3) | 39 (26.4) | |
Obese | 9 (2.9) | 2 (1.2) | 7 (4.7) |
Total (n = 314) | Women (n = 166) | Men (n = 148) | p | |
---|---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | ||
Total energy (kcal) | 2053.5 (1663.0–2548.8) | 1831.0 (1495.5–2154.5) | 2465.5 (1982.8–3022.3) | <0.001 *** |
Total energy (kcal/kg body mass) | 30.1 (25.0–37.6) | 29.6 (23.6–36.2) | 31.2 (25.7–38.3) | 0.058 |
Protein (g) | 57.3 (40.8–73.0) | 48.3 (36.5–61.9) | 67.4 (51.1–86.3) | <0.001 *** |
Protein (g/kg body mass) | 0.81 (0.61–1.08) | 0.75 (0.59–1.07) | 0.87 (0.63–1.09) | 0.137 |
Protein intake adequacy (general population, AR, EAR, 50%) 1,2, n (%) | 0.110 | |||
<0.66 g/kg body mass (insufficient) | 101 (32.2) | 60 (36.1) | 41 (27.7) | |
≥0.66 g/kg body mass (sufficient) | 213 (67.8) | 106 (63.9) | 107 (72.3) | |
Protein intake adequacy (general population, PRI, 97.5%) 1, n (%) | 0.020 * | |||
<0.83 g/kg body mass (insufficient) | 164 (52.2) | 97 (58.4) | 67 (45.3) | |
≥0.83 g/kg body mass (sufficient) | 150 (48.7) | 69 (41.6) | 81 (54.7) | |
Protein intake categories (general population, RDA, 97.5%) 2, n (%) | 0.011 * | |||
<0.80 g/kg body mass (insufficient) | 151 (48.1) | 91 (54.8) | 60 (40.5) | |
≥0.80 g/kg body mass (sufficient) | 163 (51.9) | 75 (45.2) | 88 (59.5) | |
Protein intake adequacy (vegetarian population), n (%) | 0.872 | |||
<1.00 g/kg body mass (insufficient) | 215 (68.5) | 113 (68.1) | 102 (68.9) | |
≥1.00 g/kg body mass (sufficient) | 99 (31.5) | 53 (31.9) | 46 (31.1) | |
Fat (g) | 82.6 (61.6–113.6) | 73.2 (56.4–98.2) | 98.9 (72.6–125.1) | <0.001 *** |
Carbohydrates (g) | 246.3 (185.7–301.1) | 209.6 (171.9–262.9) | 283.4 (227.4–348.8) | <0.001 *** |
Dietary fiber (g) | 34.6 (27.2–45.7) | 32.1 (22.5–39.9) | 40.8 (31.2–54.9) | <0.001 *** |
Dietary fiber intake adequacy (AI) 1, n (%) | <0.001 *** | |||
<25 g (insufficient) | 68 (21.7) | 53 (31.9) | 15 (10.1) | |
≥25 g (sufficient) | 246 (78.3) | 113 (68.1) | 133 (89.9) | |
Dietary fiber intake adequacy (AI) 2, n (%) | 0.874 | |||
<14 g/1000 kcal (insufficient) | 92 (29.3) | 48 (28.9) | 44 (29.7) | |
≥14 g/1000 kcal (sufficient) | 222 (78.3) | 118 (71.8%) | 104 (70.3) | |
Alcohol (g) | 0.0 (0.0–0.1) | 0.0 (0.0–0.1) | 0.0 (0.0–0.1) | 0.225 |
Protein (kcal) | 229.3 (163.2–292.1) | 193.4 (146.1–247.6) | 269.4 (204.4–345.1) | <0.001 *** |
Fat (kcal) | 743.0 (554.0–1022.2) | 658.9 (507.8–883.4) | 890.0 (653.0–1126.2) | <0.001 *** |
Carbohydrates (kcal) | 985.1 (742.8–1204.5) | 838.3 (687.7–1051.6) | 1133.8 (909.4–1395.2) | <0.001 *** |
Dietary fiber (kcal) | 69.2 (54.5–91.5) | 64.1 (45.1–79.8) | 81.6 (62.3–109.8) | <0.001 *** |
Alcohol (kcal) | 0.0 (0.0–0.6) | 0.0 (0.0–0.4) | 0.1 (0.0–1.0) | 0.225 |
Protein (%TE) | 10.9 (9.2–12.4) | 10.9 (9.2–12.2) | 10.9 (9.1–12.8) | 0.970 |
Fat (%TE) | 37.1 (31.1–42.6) | 37.8 (32.6–41.9) | 36.3 (29.5–43.6) | 0.220 |
Carbohydrates (%TE) | 46.7 (41.5–53.4) | 46.7 (41.9–52.0) | 47.1 (40.7–54.7) | 0.752 |
Dietary fiber (%TE) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.821 |
Alcohol (%TE) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.481 |
Total (n = 314) | Women (n = 166) | Men (n = 148) | ||
---|---|---|---|---|
n (%) | n (%) | n (%) | p | |
Total energy intake 1,2: | 0.187 | |||
<1600 kcal/day (women), <2000 kcal/day (men) | 92 (29.3) | 54 (32.5) | 38 (25.7) | |
1600–2400 kcal/day (women), 2000–3000 kcal/day (men) | 154 (49.0) | 82 (49.4) | 53 (35.8) | |
≥2400 kcal/day (women), ≥3000 kcal/day (men) | 68 (21.7) | 30 (18.1) | 38 (25.7) | |
Percentage of energy intake coming from proteins 2: | 0.430 | |||
<10% (insufficient) | 124 (39.5) | 69 (41.6) | 55 (37.2) | |
10–35% (adequate) | 189 (60.2) | 97 (58.4) | 92 (62.2) | |
>35% (excessive) | 1 (0.3) | 0 (0.0) | 1 (0.7) | |
Percentage of energy intake coming from fats 1,2: | 0.021 * | |||
<20% (insufficient) | 14 (4.5) | 3 (1.8) | 11 (7.4) | |
20–35% (adequate) | 112 (35.7) | 55 (33.1) | 57 (38.5) | |
>35% (excessive) | 188 (59.9) | 108 (65.1) | 80 (54.1) | |
Percentage of energy intake coming from carbohydrates 1: | 0.078 | |||
<45% (insufficient) | 127 (40.4) | 64 (38.6) | 63 (42.6) | |
45–60% (adequate) | 157 (50.0) | 91 (54.8) | 66 (44.6) | |
>60% (excessive) | 30 (9.6) | 11 (6.6) | 19 (12.8) | |
Percentage of energy intake coming from carbohydrates 2: | 0.215 | |||
<45% (insufficient) | 127 (40.4) | 64 (38.6) | 63 (42.6) | |
45–65% (adequate) | 177 (56.4) | 99 (59.6) | 78 (52.7) | |
>65% (excessive) | 10 (3.2) | 3 (1.8) | 7 (4.7) |
Food Group | Total (n = 314) | Women (n = 166) | Men (n = 148) | p |
---|---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | ||
Milk/milk products (%TE) | 1.2 (0.0–8.1) | 1.6 (0.0–9.4) | 0.6 (0.0–5.9) | 0.183 |
Eggs/egg products %TE | 0.0 (0.0–1.2) | 0.0 (0.0–1.3) | 0.0 (0.0–1.2) | 0.898 |
Meat/meat products (%TE) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.880 |
Fish/seafood products (%TE) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.408 |
Fat/oil (%TE) | 16.0 (11.2–22.7) | 17.3 (12.4–22.5) | 15.4 (10.3–22.9) | 0.077 |
Grains/grain products (%TE) | 26.4 (18.2–33.9) | 26.9 (19.2–33.8) | 26.0 (16.5–34.0) | 0.621 |
Nuts/seeds/kernels (%TE) | 8.1 (2.5–15.7) | 8.1 (2.3–14.6) | 8.1 (2.6–16.7) | 0.591 |
Vegetables/vegetable products (%TE) | 13.0 (8.1–19.8) | 12.5 (8.4–19.0) | 13.0 (8.0–20.2) | 0.892 |
Fruits/fruit products (%TE) | 11.6 (5.9–18.8) | 11.4 (5.9–18.6) | 11.8 (5.9–20.6) | 0.783 |
Sugar/sweets (%TE) | 2.8 (0.1–8.5) | 3.6 (0.5–9.9) | 2.1 (0.0–8.0) | 0.030 * |
Beverages/alcohol (%TE) | 1.8 (0.2–6.3) | 2.1 (0.3–6.3) | 1.2 (0.1–6.3) | 0.303 |
Miscellaneous food products (%TE) | 0.3 (0.2–0.6) | 0.3 (0.2–0.6) | 0.3 (0.1–0.6) | 0.340 |
Dietary supplements (%TE) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.890 |
Vegan (n = 63) | Lacto-Ovo Vegetarian (n =192) | Semi-Vegetarian (n = 59) | p | Post Hoc p | |||
---|---|---|---|---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | V vs. LOV | V vs. SV | LOV vs. SV | ||
Age (years) | 38.0 (31.0–50.7) | 33.6 (25.0–44.8) | 41.7 (29.0–55.0) | <0.001 *** | 0.018 * | 1.000 | 0.003 ** |
Distribution per geographical region, n (%) | 0.001 ** | 0.283 | 0.003 * | 0.086 | |||
Belgrade region | 26 (41.3) | 47 (24.5) | 13 (22.0) | ||||
Vojvodina region | 10 (15.9) | 51 (26.6) | 20 (33.9) | ||||
Šumadija&Western S. | 19 (30.2) | 58 (30.2) | 7 (11.9) | ||||
South-Eastern Serbia | 8 (12.7) | 36 (18.8) | 19 (32.2) | ||||
Religion, n (%) | 0.014 * | 0.071 | 0.990 | 1.000 | |||
Orthodox | 37 (58.7) | 120 (62.5) | 41 (69.5) | ||||
Catholic | 6 (9.5) | 3 (1.6) | 1 (1.7) | ||||
Islamic | 0 (0.0) | 0 (0.0) | 1 (1.7) | ||||
Other | 20 (31.7) | 69 (35.9) | 16 (27.1) | ||||
Smoking status, n (%) | 0.029 * | 0.214 | 1.000 | 1.000 | |||
Current smoker | 8 (12.7) | 47 (24.5) | 12 (20.3) | ||||
Former smoker | 16 (25.4) | 27 (14.1) | 17 (28.8) | ||||
Never smoker | 39 (61.9) | 118 (61.5) | 30 (50.8) | ||||
Physical activity level, n (%) | 0.059 | ||||||
Low | 13 (20.6) | 58 (30.2) | 16 (27.1) | ||||
Medium | 26 (41.3) | 93 (48.4) | 32 (54.2) | ||||
High | 24 (38.1) | 41 (21.4) | 11 (18.6) | ||||
Physical activity METs, min/week | 4293.0 (1908.0–7812.0) | 3492.5 (1924.5–5529.0) | 3066.0 (1986.0–4572.0) | 0.178 | |||
Body height (cm) | 178.0 (169.0–183.0) | 174.5 (167.3–180.0) | 172.0 (165.0–180.0) | 0.151 | |||
Body mass (kg) | 67.0 (59.0–80.0) | 70.0 (60.0–78.0) | 68.0 (60.0–79.0) | 0.992 | |||
BMI (kg/m2) | 22.4 (20.3–24.0) | 22.6 (20.6–24.7) | 22.7 (21.1–25.2) | 0.355 | |||
BMI categories, n (%) | 0.120 | ||||||
Underweight | 6 (9.5) | 11 (5.7) | 0 (0.0) | ||||
Normal weight | 44 (69.8) | 140 (72.9) | 43 (72.9) | ||||
Overweight | 13 (20.6) | 33 (17.2) | 15 (25.4) | ||||
Obese | 0 (0.0) | 8 (4.2) | 1 (1.7) |
Vegan (n = 63) | Lacto-Ovo Vegetarian (n =192) | Semi-Vegetarian (n = 59) | p | Post Hoc p | |||
---|---|---|---|---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | V vs. LOV | V vs. SV | LOV vs. SV | ||
Total energy (kcal) | 2043.0 (1618.0–2479.0) | 2093.0 (1679.3–2593.5) | 2015.0 (1654.0–2637.0) | 0.521 | |||
Total energy (kcal/kg body mass) | 29.7 (23.9–37.1) | 30.2 (24.9–37.6) | 29.2 (25.2–37.9) | 0.649 | |||
Protein (g) | 46.5 (32.2–72.1) | 58.9 (44.1–73.0) | 59.3 (39.5–76.4) | 0.018 * | 0.014 * | 0.149 | 1.000 |
Protein (g/kg body mass) | 0.69 (0.50–0.98) | 0.83 (0.64–1.10) | 0.85 (0.62–1.04) | 0.015 * | 0.011 * | 0.228 | 1.000 |
Protein intake adequacy (general population AR, EAR, 50%) 1,2, n (%) | |||||||
<0.66 g/kg body mass | 29 (46.0) | 54 (28.1) | 18 (30.5) | 0.029 * | 0.024 * | 0.234 | 1.000 |
≥0.66 g/kg body mass | 34 (54.0) | 138 (71.9) | 41 (69.5) | ||||
Protein intake adequacy (general population PRI, 97.5%) 1, n (%) | |||||||
<0.83 g/kg body mass | 41 (65.1) | 96 (50.0) | 27 (45.8) | 0.063 | |||
≥0.83 g/kg body mass | 22 (34.9) | 96 (50.0) | 32 (54.2) | ||||
Protein intake adequacy (general population, RDA, 97,5%) 2, n (%) | |||||||
<0.8 g/kg body mass | 39 (61.9) | 86 (44.8) | 26 (44.1) | 0.049 * | 0.055 | 0.145 | 1.000 |
≥0.8 g/kg body mass | 24 (38.1) | 106 (55.2) | 33 (55.9) | ||||
Protein intake adequacy (vegetarian population), n (%) | |||||||
<1.00 g/kg body mass | 48 (76.2) | 124 (64.6) | 43 (72.9) | 0.146 | |||
≥1.00 g/kg body mass | 15 (23.8) | 68 (35.4) | 16 (27.1) | ||||
Fat (g) | 68.5 (48.5–98.4) | 84.4 (64.5–117.7) | 83.5 (64.0–110.8) | 0.002 ** | 0.002 ** | 0.030 * | 1.000 |
Carbohydrates (g) | 259.0 (206.1–338.9) | 248.7 (182.0–298.9) | 217.2 (181.7–275.6) | 0.089 | |||
Dietary fiber (g) | 40.8 (30.2–55.8) | 32.9 (26.4–43.3) | 35.5 (27.4–43.1) | 0.006 ** | 0.004 ** | 0.112 | 1.000 |
Dietary fiber intake categories (AI) 1, n (%) | |||||||
<25 g (insufficient) | 9 (14.3) | 45 (23.4) | 14 (23.7) | 0.283 | |||
≥25 g (sufficient) | 54 (85.7) | 147 (76.6) | 45 (76.3) | ||||
Dietary fiber intake categories (AI) 2, n (%) | |||||||
<14 g/1000 kcal (insuff.) | 8 (12.7%) | 63 (32.8%) | 21 (35.6%) | 0.005 ** | 0.006 ** | 0.009 ** | 1.000 |
≥14 g/1000 kcal (suff.) | 55 (87.3) | 129 (67.2) | 38 (64.4%) | ||||
Alcohol (g) | 0.0 (0.0–0.1) | 0.0 (0.0–0.1) | 0.0 (0.0–0.1) | 0.390 | |||
Protein (kcal) | 185.9 (128.9–288.4) | 235.6 (176.5–292.1) | 237.3 (158.0–305.5) | 0.018 * | 0.014 * | 0.149 | 1.000 |
Fat (kcal) | 616.1 (436.7–885.6) | 759.7 (580.6–1059.5) | 751.8 (575.8–997.4) | 0.002 ** | 0.002 ** | 0.030 * | 1.000 |
Carbohydrates (kcal) | 1035.9 (824.5–1355.5) | 994.8 (727.9–1195.4) | 868.8 (726.7–1102.3) | 0.089 | |||
Dietary fiber (kcal) | 81.6 (60.5–111.5) | 65.9(52.8–86.5) | 71.0 (54.9–86.1) | 0.006 ** | 0.004 ** | 0.112 | 1.000 |
Alcohol (kcal) | 0.0 (0.0–0.5) | 0.1 (0.0–1.1) | 0.0 (0.0–0.4) | 0.390 | |||
Protein (%TE) | 9.2 (7.1–12.2) | 11.1 (9.5–12.4) | 10.9 (9.5–12.5) | 0.002 ** | 0.001 ** | 0.043 * | 1.000 |
Fat (%TE) | 32.1 (26.1–38.5) | 37.5 (32.1–43.3) | 40.1 (33.2–44.5) | <0.001 *** | <0.001 *** | <0.001 *** | 0.921 |
Carbohydrates (%TE) | 51.7(45.1–60.4) | 46.2 (41.7–51.2) | 44.0 (38.6–51.0) | <0.001 *** | <0.001 *** | <0.001 *** | 0.527 |
Dietary fiber (%TE) | 0.0 (0.0–0.1) | 0.0 (0.00.0) | 0.0 (0.0–0.0) | <0.001 *** | <0.001 *** | 0.003 ** | 0.928 |
Alcohol (%TE) | 0.0 (0.0–0.0) | 0.0 (0.0–0.1) | 0.0 (0.0–0.0) | 0.518 |
Vegan (n = 63) | Lacto-Ovo Vegetarian (n =192) | Semi-Vegetarian (n = 59) | p | Post Hoc p | |||
---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | V vs. LOV | V vs. SV | LOV vs. SV | ||
Total energy intake 1,2: | 0.532 | ||||||
<1600 kcal/day (W), <2000 kcal/day (M) | 22 (34.9) | 52 (27.1) | 18 (30.5) | ||||
1600–2400 kcal/day (W), 2000–3000 kcal/day (M) | 32 (50.8) | 94 (49.0) | 28 (47.5) | ||||
≥2400 kcal/day (W), ≥3000 kcal/day (M) | 9 (14.3) | 46 (24.0) | 13 (22.0) | ||||
Percentage of energy intake coming from proteins 2: | 0.002 * | <0.001 *** | 0.011 * | 1.000 | |||
<10% (insufficient) | 39 (61.9) | 64 (33.3) | 21 (35.6) | ||||
10–35% (adequate) | 24 (38.1) | 127 (66.1) | 38 (64.4) | ||||
>35% (excessive) | 0 (0.0) | 1 (0.5) | 0 (0.0) | ||||
Percentage of energy intake coming from fats 1,2: | <0.001 *** | <0.001 *** | 0.006 ** | 1.000 | |||
<20% (insufficient) | 10 (15.9) | 2 (1.0) | 2 (3.4) | ||||
20–35% (adequate) | 27 (42.9) | 70 (36.5) | 15 (25.4) | ||||
>35% (excessive) | 26 (41.3) | 120 (62.5) | 42 (71.2) | ||||
Percentage of energy intake coming from carbohydrates 1: | <0.001 *** | <0.001 *** | 0.001 ** | 0.151 | |||
<45% (insufficient) | 14 (22.2) | 82 (42.7) | 31 (52.5) | ||||
45–60% (adequate) | 30 (47.6) | 104 (54.2) | 23 (39.0) | ||||
>60% (excessive) | 19 (30.2) | 6 (3.1) | 5 (8.5) | ||||
Percentage of energy intake coming from carbohydrates 2: | <0.001 *** | <0.001 *** | 0.002 ** | 1.000 | |||
<45% (insufficient) | 14 (22.2) | 82 (42.7) | 31 (52.5) | ||||
45–65% (adequate) | 41 (65.1) | 109 (56.8) | 27 (45.8) | ||||
>65% (excessive) | 8 (12.7) | 1 (0.5) | 1 (1.7) |
Food Group | Vegan (n = 63) | Lacto-Ovo Vegetarian (n = 192) | Semi-Vegetarian (n = 59) | p | Post Hoc p | ||
---|---|---|---|---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | V vs. LOV | V vs. SV | LOV vs. SV | ||
Milk/milk products (%TE) | 0.0 (0.0–0.0) | 2.9 (0.0–9.8) | 3.0 (0.0–10.9) | <0.001 *** | <0.001 *** | <0.001 *** | 1.000 |
Eggs/egg products %TE | 0.0 (0.0–0.0) | 0.5 (0.0–2.0) | 0.0 (0.0–1.6) | <0.001 *** | <0.001 *** | <0.001 *** | 0.588 |
Meat/meat products (%TE) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | <0.001 *** | 1.000 | <0.001 *** | <0.001 *** |
Fish/seafood products (%TE) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–1.6) | <0.001 *** | 1.000 | <0.001 *** | <0.001 *** |
Fat/oil (%TE) | 13.2 (7.3–21.2) | 15.9 (11.7–22.7) | 18.0 (12.8–23.7) | 0.005 ** | 0.028 * | 0.006 ** | 0.630 |
Grains/grain products (%TE) | 23.2 (10.3–35.6) | 27.5 (19.4–34.3) | 25.0 (18.9–30.5) | 0.124 | |||
Nuts/seeds/kernels (%TE) | 10.6 (2.2–18.1) | 7.4 (2.7–13.5) | 8.9 (2.1–13.4) | 0.321 | |||
Vegetables/vegetable products (%TE) | 15.8 (8.7–22.9) | 12.6 (8.3–19.4) | 10.9 (6.9–17.6) | 0.020 * | 0.161 | 0.017 * | 0.409 |
Fruits/fruit products (%TE) | 18.1 (7.1–38.5) | 10.7 (5.8–16.3) | 11.5 (4.5–20.1) | <0.001 *** | <0.001 *** | 0.034 * | 0.867 |
Sugar/sweets (%TE) | 0.0 (0.0–4.6) | 3.8 (0.8–10.6) | 2.4 (0.4–7.3) | <0.001 *** | <0.001 *** | 0.010 * | 0.340 |
Beverages/alcohol (%TE) | 0.9 (0.0–6.5) | 2.1 (0.3–6.5) | 1.9 (0.2–6.0) | 0.136 | |||
Miscellaneous food products (%TE) | 0.3 (0.1–0.6) | 0.3 (0.2–0.5) | 0.4 (0.2–0.6) | 0.200 | |||
Dietary supplements (%TE) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šarac, I.; Milešević, J.; Knez, M.; Despotović, M.; Takić, M.; Debeljak-Martačić, J.; Zeković, M.; Kadvan, A.; Gurinović, M. Energy and Macronutrient Dietary Intakes of Vegetarian and Semi-Vegetarian Serbian Adults: Data from the EFSA EU Menu Food Consumption Survey (2017–2022). Foods 2025, 14, 1285. https://doi.org/10.3390/foods14081285
Šarac I, Milešević J, Knez M, Despotović M, Takić M, Debeljak-Martačić J, Zeković M, Kadvan A, Gurinović M. Energy and Macronutrient Dietary Intakes of Vegetarian and Semi-Vegetarian Serbian Adults: Data from the EFSA EU Menu Food Consumption Survey (2017–2022). Foods. 2025; 14(8):1285. https://doi.org/10.3390/foods14081285
Chicago/Turabian StyleŠarac, Ivana, Jelena Milešević, Marija Knez, Marta Despotović, Marija Takić, Jasmina Debeljak-Martačić, Milica Zeković, Agneš Kadvan, and Mirjana Gurinović. 2025. "Energy and Macronutrient Dietary Intakes of Vegetarian and Semi-Vegetarian Serbian Adults: Data from the EFSA EU Menu Food Consumption Survey (2017–2022)" Foods 14, no. 8: 1285. https://doi.org/10.3390/foods14081285
APA StyleŠarac, I., Milešević, J., Knez, M., Despotović, M., Takić, M., Debeljak-Martačić, J., Zeković, M., Kadvan, A., & Gurinović, M. (2025). Energy and Macronutrient Dietary Intakes of Vegetarian and Semi-Vegetarian Serbian Adults: Data from the EFSA EU Menu Food Consumption Survey (2017–2022). Foods, 14(8), 1285. https://doi.org/10.3390/foods14081285