Valorization of Berry Fruit By-Products: Bioactive Compounds, Extraction, Health Benefits, Encapsulation and Food Applications
Abstract
:1. Introduction
2. Biologically Active Compounds in Berry and Berry By-Products
3. Extraction of Bioactive Compounds from Berry By-Products
4. Biological Effects of Berry By-Products Extracts
5. Encapsulation in the Processing of Berry By-Products
6. High Value-Added Products from Berry By-Products
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eurostat. Agricultural Production—Crops. 2023. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_crops#Fruit (accessed on 13 January 2025).
- Mezzetti, B. The sustainable improvement of European berry production, quality and nutritional value in a changing environment: Strawberries, currants, blackberries, blueberries and raspberries—The EUBerry project. Acta Hortic. 2016, 1117, 309–314. [Google Scholar] [CrossRef]
- Yang, B.; Kortesniemi, M. Clinical evidence on potential health benefits of berries. Curr. Opin. Food Sci. 2015, 2, 36–42. [Google Scholar] [CrossRef]
- Meremäe, K.; Raudsepp, P.; Rusalepp, L.; Anton, D.; Bleive, U.; Roasto, M. In Vitro Antibacterial and Antioxidative Activity and Polyphenolic Profile of the Extracts of Chokeberry, Blackcurrant, and Rowan Berries and Their Pomaces. Foods 2024, 13, 421. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef]
- Kruczek, M.; Drygaś, B.; Habryka, C. Pomace in fruit industry and their contemporary potential application. World Sci. News 2016, 48, 259–265. [Google Scholar]
- Majerska, J.; Michalska, A.; Figiel, A. A review of new directions in managing fruit and vegetable processing by-products. Trends Food Sci. Technol. 2019, 88, 207–219. [Google Scholar] [CrossRef]
- Chaouch, M.A.; Benvenuti, S. The Role of Fruit by-Products as Bioactive Compounds for Intestinal Health. Foods 2020, 9, 1716. [Google Scholar] [CrossRef]
- May, N.; Guenther, E. Shared benefit by Material Flow Cost Accounting in the food supply chain—The case of berry pomace as upcycled by-product of a black currant juice production. J. Clean. Prod. 2020, 245, 118946. [Google Scholar] [CrossRef]
- Sobhy, R.; Öz, F.; Lorenzo, J.M.; Bakry, A.M.; Mohamed, A. Bioactive components and health promoting effect of berry by-products. In Berry Bioactive Compound By-Products; Khalifa, I., Nawaz, A., Eds.; Academic Press: Oxford, UK, 2023; pp. 73–95. [Google Scholar]
- El Maaiden, E.; Bouzroud, S.; Nasser, B.; Moustaid, K.; El Mouttaqi, A.; Ibourki, M.; Boukcim, H.; Hirich, A.; Kouisni, L.; El Kharrassi, Y. A Comparative Study between Conventional and Advanced Extraction Techniques: Pharmaceutical and Cosmetic Properties of Plant Extracts. Molecules 2022, 27, 2074. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Khanashyam, A.C.; Mundanat, A.S.; Shah, K.R.; Babu, K.S.; Thorakkattu, P.; Al-Asmari, F.; Pandiselvam, R. Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. Foods 2023, 12, 556. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Alrosan, M.; Gammoh, S.; Tranchant, C.C.; Alhamad, M.N.; Rababah, T.; Zghoul, R.; Alzoubi, H.; Ghatasheh, S.; Ghozlan, K.; et al. Encapsulation-based technologies for bioactive compounds and their application in the food industry: A roadmap for food-derived functional and health-promoting ingredients. Food Biosci. 2022, 50, 101971. [Google Scholar] [CrossRef]
- Jiang, Y.; Subbiah, V.; Wu, H.; Bk, A.; Sharifi-Rad, J.; Suleria, H.A.R. Phenolic Profiling of Berries Waste and Determination of Their Antioxidant Potential. J. Food Qual. 2022, 2022, 5605739. [Google Scholar] [CrossRef]
- Dukare, A.S.; Paul, S.; Nambi, V.E.; Gupta, R.K.; Singh, R.; Sharma, K.; Vishwakarma, R.K. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Klavins, L.; Kviesis, J.; Nakurte, I.; Klavins, M. Berry press residues as a valuable source of polyphenolics: Extraction optimisation and analysis. LWT 2018, 93, 583–591. [Google Scholar] [CrossRef]
- Ferlemi, A.V.; Lamari, F.N. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value. Antioxidants 2016, 5, 17. [Google Scholar] [CrossRef]
- Maatta-Riihinen, K.R.; Kamal-Eldin, A.; Torronen, A.R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (Family rosaceae). J. Agric. Food Chem. 2004, 52, 6178–6187. [Google Scholar] [CrossRef]
- Suvanto, J.; Karppinen, K.; Riihinen, K.; Jaakola, L.; Salminen, J.P. Changes in the Proanthocyanidin Composition and Related Gene Expression in Bilberry (Vaccinium myrtillus L.) Tissues. J. Agric. Food Chem. 2020, 68, 7378–7386. [Google Scholar] [CrossRef]
- Yan, Y.F.; Pico, J.; Sun, B.H.; Pratap-Singh, A.; Gerbrandt, E.; Castellarin, S.D. Phenolic profiles and their responses to pre- and post-harvest factors in small fruits: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 3574–3601. [Google Scholar] [CrossRef]
- Bouyahya, A.; El Omari, N.; El Hachlafi, N.; El Jemly, M.; Hakkour, M.; Balahbib, A.; El Menyiy, N.; Bakrim, S.; Mrabti, H.N.; Khouchlaa, A.; et al. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022, 27, 3286. [Google Scholar] [CrossRef]
- Bai, X.Y.; Zhou, L.; Zhou, L.; Cang, S.; Liu, Y.H.; Liu, R.; Liu, J.; Feng, X.; Fan, R.H. The Research Progress of Extraction, Purification and Analysis Methods of Phenolic Compounds from Blueberry: A Comprehensive Review. Molecules 2023, 28, 3610. [Google Scholar] [CrossRef]
- Shi, M.; Loftus, H.; McAinch, A.J.; Su, X.Q. Blueberry as a source of bioactive compounds for the treatment of obesity, type 2 diabetes and chronic inflammation. J. Funct. Foods 2017, 30, 16–29. [Google Scholar] [CrossRef]
- Del Rio, D.; Borges, G.; Crozier, A. Berry flavonoids and phenolics: Bioavailability and evidence of protective effects. Br. J. Nutr. 2010, 104, S67–S90. [Google Scholar] [CrossRef]
- Vendrame, S.; Del Bo’, C.; Ciappellano, S.; Riso, P.; Klimis-Zacas, D. Berry Fruit Consumption and Metabolic Syndrome. Antioxidants 2016, 5, 34. [Google Scholar] [CrossRef]
- Olas, B. The beneficial health aspects of sea buckthorn (Elaeagnus rhamnoides (L.) A.Nelson) oil. J. Ethnopharmacol. 2018, 213, 183–190. [Google Scholar] [CrossRef]
- Bernjak, B.; Kristl, J. A Review of Tannins in Berries. Agric. Sci. 2021, 17, 27–36. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdylo, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Leopold, L.; Rugina, D.; Ayvaz, H.; Socaciu, C. Antiproliferative and Antioxidant Properties of Anthocyanin Rich Extracts from Blueberry and Blackcurrant Juice. Int. J. Mol. Sci. 2015, 16, 2352–2365. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.-J.; Tomas, M.; et al. Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef] [PubMed]
- Okatan, V.; Gündoğdu, M.; Güçlü, S.F.; Çelikay Özaydın, A.; Çolak, A.M.; Korkmaz, N.; Polat, M.; Çelik, F.; Aşkın, M.A. Phenolic Profiles of Currant (Ribes spp.) Cultivars. Yuz. Yıl Univ. J. Agric. Sci. 2017, 27, 192–196. [Google Scholar] [CrossRef]
- Häkkinen, S.H.; Kärenlampi, S.O.; Mykkänen, H.M.; Heinonen, I.M.; Törrönen, A.R. Ellagic acid content in berries: Influence of domestic processing and storage. Eur. Food Res. Technol. 2000, 212, 75–80. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Masuero, D.; Palmieri, L.; Mattivi, F. Identification and quantification of flavonol glycosides in cultivated blueberry cultivars. J. Food Compos. Anal. 2012, 25, 9–16. [Google Scholar] [CrossRef]
- Varzaru, I.; Oancea, A.G.; Vlaicu, P.A.; Saracila, M.; Untea, A.E. Exploring the Antioxidant Potential of Blackberry and Raspberry Leaves: Phytochemical Analysis, Scavenging Activity, and In Vitro Polyphenol Bioaccessibility. Antioxidants 2023, 12, 2125. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Gościniak, A.; Szymanowska, D.; Szwajgier, D.; Baranowska-Wójcik, E.; Szulc, P.; Dreczka, D.; Simon, M.; Cielecka-Piontek, J. Blackberry Leaves as New Functional Food? Screening Antioxidant, Anti-Inflammatory and Microbiological Activities in Correlation with Phytochemical Analysis. Antioxidants 2021, 10, 1945. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Lin, H.S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Ponder, A.; Hallmann, E. Phenolics and Carotenoid Contents in the Leaves of Different Organic and Conventional Raspberry (Rubus idaeus L.) Cultivars and Their In Vitro Activity. Antioxidants 2019, 8, 458. [Google Scholar] [CrossRef]
- Gudej, J. Kaempferol and quercetin glycosides from Rubus idaeus L. leaves. Acta Pol. Pharm. 2003, 60, 313–315. [Google Scholar]
- Ieri, F.; Martini, S.; Innocenti, M.; Mulinacci, N. Phenolic Distribution in Liquid Preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochem. Anal. 2013, 24, 467–475. [Google Scholar] [CrossRef]
- Oszmianski, J.; Wojdylo, A.; Gorzelany, J.; Kapusta, I. Identification and Characterization of Low Molecular Weight Polyphenols in Berry Leaf Extracts by HPLC-DAD and LC-ESI/MS. J. Agric. Food Chem. 2011, 59, 12830–12835. [Google Scholar] [CrossRef]
- Riihinen, K.; Jaakola, L.; Kärenlampi, S.; Hohtola, A. Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum x V. angustifolium). Food Chem. 2008, 110, 156–160. [Google Scholar] [CrossRef]
- Oszmianski, J.; Wojdylo, A.; Nowicka, P.; Teleszko, M.; Cebulak, T.; Wolanin, M. Determination of Phenolic Compounds and Antioxidant Activity in Leaves from Wild Rubus L. Species. Molecules 2015, 20, 4951–4966. [Google Scholar] [CrossRef]
- Vagiri, M.; Conner, S.; Stewart, D.; Andersson, S.C.; Verrall, S.; Johansson, E.; Rumpunen, K. Phenolic compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date. Food Chem. 2015, 172, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Martynenko, K.; Balanov, P.; Smotraeva, I.; Vanchenko, O.I. Exploring the potential of total polyphenols in the leaves of berry plants for a healthy diet. BIO Web Conf. 2022, 48, 02001. [Google Scholar] [CrossRef]
- Huang, H.-W.; Hsu, C.-P.; Yang, B.B.; Wang, C.Y. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci. Technol. 2013, 33, 54–62. [Google Scholar] [CrossRef]
- Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G.; et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trends Anal. Chem. 2018, 100, 82–102. [Google Scholar] [CrossRef]
- Bamba, B.S.B.; Shi, J.; Tranchant, C.C.; Xue, S.J.; Forney, C.F.; Lim, L.T. Influence of Extraction Conditions on Ultrasound-Assisted Recovery of Bioactive Phenolics from Blueberry Pomace and Their Antioxidant Activity. Molecules 2018, 23, 1685. [Google Scholar] [CrossRef]
- Patra, A.; Abdullah, S.; Pradhan, R.C. Review on the extraction of bioactive compounds and characterization of fruit industry by-products. Bioresour. Bioprocess. 2022, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zhang, L.L.; Yue, X.Y.; Liang, J.; Jiang, J.; Gao, X.L.; Yue, P.X. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 2016, 204, 70–76. [Google Scholar] [CrossRef]
- dos Santos, S.S.; Paraíso, C.M.; Romanini, E.B.; Correa, V.G.; Peralta, R.M.; da Costa, S.C.; Santos, O.D.; Visentainer, J.V.; Reis, M.H.M.; Madrona, G.S. Bioavailability of blackberry pomace microcapsules by using different techniques: An approach for yogurt application. Innov. Food Sci. Emerg. Technol. 2022, 81, 103111. [Google Scholar] [CrossRef]
- Piasecka, I.; Brzezińska, R.; Kalisz, S.; Wiktor, A.; Górska, A. Response Surface Methodology for Optimization of Ultrasound-Assisted Antioxidants Extraction from Blackberry, Chokeberry and Raspberry Pomaces. Plants 2024, 13, 1120. [Google Scholar] [CrossRef]
- Garofulic, I.E.; Repajic, M.; Zoric, Z.; Jurendic, T.; Dragovic-Uzelac, V. Evaluation of Microwave- and Ultrasound-Assisted Extraction Techniques for Revalorization of Black Chokeberry (Aronia melanocarpa) Fruit Pomace Anthocyanins. Sustainability 2023, 15, 7047. [Google Scholar] [CrossRef]
- Piasecka, I.; Górska, A.; Kalisz, S.; Brzezińska, R.; Wiktor, A. Ultrasound-Assisted Extraction of Bioactive Compounds from Black Currant and Chokeberry Pomaces. Biol. Life Sci. Forum 2022, 18, 14. [Google Scholar] [CrossRef]
- Pukalskienė, M.; Pukalskas, A.; Dienaitė, L.; Revinytė, S.; Pereira, C.V.; Matias, A.A.; Venskutonis, P.R. Recovery of Bioactive Compounds from Strawberry (Fragaria × ananassa) Pomace by Conventional and Pressurized Liquid Extraction and Assessment Their Bioactivity in Human Cell Cultures. Foods 2021, 10, 1780. [Google Scholar] [CrossRef] [PubMed]
- Brnčić, M.; Tripalo, B.; Penava, A.; Karlović, D.; Ježek, D.; Vikić Topić, D.; Karlović, S.; Bosiljkov, T. Primjena ultrazvuka visokog intenziteta pri obradi hrane. Croat. J. Food Technol. Biotechnol. Nutr. 2009, 4, 32–37. [Google Scholar]
- Kruszewski, B.; Boselli, E. Blackcurrant Pomace as a Rich Source of Anthocyanins: Ultrasound-Assisted Extraction under Different Parameters. Appl. Sci. 2024, 14, 821. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Awad, T.S.; Moharram, H.A.; Shaltout, O.E.; Asker, D.; Youssef, M.M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 2012, 48, 410–427. [Google Scholar] [CrossRef]
- Ahmad-Qasem, M.H.; Cánovas, J.S.; Barrajón-Catalán, E.; Micol, V.; Cárcel, J.A.; García-Pérez, J.V. Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innov. Food Sci. Emerg. Technol. 2013, 17, 120–129. [Google Scholar] [CrossRef]
- dos Santos, S.S.; Paraíso, C.M.; Rodrigues, L.M.; Madrona, G.S. Agro-industrial waste as a source of bioactive compounds: Ultrasound-assisted extraction from blueberry (Vaccinium myrtillus) and raspberry (Rubus idaeus) pomace. Acta Sci.-Technol. 2021, 43, e55564. [Google Scholar] [CrossRef]
- Loncaric, A.; Celeiro, M.; Jozinovic, A.; Jelinic, J.; Kovac, T.; Jokic, S.; Babic, J.; Moslavac, T.; Zavadlav, S.; Lores, M. Green Extraction Methods for Extraction of Polyphenolic Compounds from Blueberry Pomace. Foods 2020, 9, 1521. [Google Scholar] [CrossRef]
- Aybastier, Ö.; Isik, E.; Sahin, S.; Demir, C. Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Ind. Crops Prod. 2013, 44, 558–565. [Google Scholar] [CrossRef]
- Pavlovic, A.V.; Papetti, A.; Dabic Zagorac, D.; Gasic, U.M.; Misic, D.M.; Tesic, Z.L.; Natic, M.M. Phenolics composition of leaf extracts of raspberry and blackberry cultivars grown in Serbia. Ind. Crops Prod. 2016, 87, 304–314. [Google Scholar] [CrossRef]
- Luo, T.; Chen, S.; Zhang, H.; Jia, S.; Wang, J. Phytochemical composition and potential biological activities assessment of raspberry leaf extracts from nine different raspberry species and raspberry leaf tea. J. Berry Res. 2020, 10, 295–309. [Google Scholar] [CrossRef]
- Zhang, W.T.; Xu, S.J.; Gao, M.; Peng, S.J.; Chen, L.Y.; Lao, F.; Liao, X.J.; Wu, J.H. Profiling the water soluble pectin in clear red raspberry (Rubus idaeus L. cv. Heritage) juice: Impact of high hydrostatic pressure and high-temperature short-time processing on the pectin properties. Food Hydrocolloid 2022, 125, 107439. [Google Scholar] [CrossRef]
- Wu, L.Y.; Yang, J.; Wang, C.Y.; Li, N.A.; Liu, Y.P.; Duan, A.B.; Wang, T. Chemical compositions of raspberry leaves influenced by growth season, cultivars and leaf position. Sci. Hortic. 2022, 304, 111349. [Google Scholar] [CrossRef]
- Yang, Y.J.; Yin, X.X.; Zhang, D.J.; Zhang, B.Y.; Lu, J.; Wang, X.H. Structural Characteristics, Antioxidant, and Immunostimulatory Activities of an Acidic Polysaccharide from Raspberry Pulp. Molecules 2022, 27, 4385. [Google Scholar] [CrossRef] [PubMed]
- Gradillas, A.; Martínez-Alcázar, M.P.; Gutiérrez, E.; Ramos-Solano, B.; García, A. A novel strategy for rapid screening of the complex triterpene saponin mixture present in the methanolic extract of blackberry leaves (Rubus cv. Loch Ness) by UHPLC/QTOF-MS. J. Pharm. Biomed. Anal. 2019, 164, 47–56. [Google Scholar] [CrossRef]
- Stefanescu, B.E.; Calinoiu, L.F.; Ranga, F.; Fetea, F.; Mocan, A.; Vodnar, D.C.; Crisan, G. The Chemical and Biological Profiles of Leaves from Commercial Blueberry Varieties. Plants 2020, 9, 1193. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Antioxidant capacity, phenolic compounds and minerals content of blackcurrant (Ribes nigrum L.) leaves as influenced by harvesting date and extraction method. Ind. Crops Prod. 2014, 53, 133–139. [Google Scholar] [CrossRef]
- Wu, H.; Chai, Z.; Hutabarat, R.P.; Zeng, Q.L.; Niu, L.Y.; Li, D.J.; Yu, H.; Huang, W.Y. Blueberry leaves from 73 different cultivars in southeastern China as nutraceutical supplements rich in antioxidants. Food Res. Int. 2019, 122, 548–560. [Google Scholar] [CrossRef]
- Zhang, H.N.; Tchabo, W.; Ma, Y.K. Quality of extracts from blueberry pomace by high hydrostatic pressure, ultrasonic, microwave and heating extraction: A comparison study. Emir. J. Food Agric. 2017, 29, 815–819. [Google Scholar] [CrossRef]
- Liu, C.H.; Zhao, X.L.; Wang, Z.; Zheng, X.Z.; Xue, L.L.; Liu, C.; Chen, Z.Y.; Zhang, B.F. Evaluation of the antioxidant activity of blueberry ethanol extracts under microwave extraction. Int. J. Agric. Biol. Eng. 2022, 15, 205–213. [Google Scholar] [CrossRef]
- Teng, H.; Lee, W.Y.; Choi, Y.H. Optimization of microwave-assisted extraction for anthocyanins, polyphenols, and antioxidants from raspberry (Rubus Coreanus Miq.) using response surface methodology. J. Sep. Sci. 2013, 36, 3107–3114. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Ma, Q.; Zhang, Y.; Peng, Z. Phenolic compounds with antioxidant activity from strawberry leaves: A study on microwave-assisted extraction optimization. Prep. Biochem. Biotechnol. 2020, 50, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Routray, W.; Orsat, V. MAE of phenolic compounds from blueberry leaves and comparison with other extraction methods. Ind. Crops Prod. 2014, 58, 36–45. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Variation of phenolic profile and antioxidant activity of North American highbush blueberry leaves with variation of time of harvest and cultivar. Ind. Crops Prod. 2014, 62, 147–155. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V.; Lefsrud, M. Effect of Postharvest LED Application on Phenolic and Antioxidant Components of Blueberry Leaves. Chemengineering 2018, 2, 56. [Google Scholar] [CrossRef]
- Gao, M.-Z.; Cui, Q.; Wang, L.-T.; Meng, Y.; Yu, L.; Li, Y.-Y.; Fu, Y.-J. A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus alba L.) leaves by deep eutectic solvent. Microchem. J. 2020, 154, 104598. [Google Scholar] [CrossRef]
- Repajić, M.; Elez Garofulić, I.; Cegledi, E.; Dobroslavić, E.; Pedisić, S.; Durgo, K.; Huđek Turković, A.; Mrvčić, J.; Hanousek Čiča, K.; Dragović-Uzelac, V. Bioactive and Biological Potential of Black Chokeberry Leaves Under the Influence of Pressurized Liquid Extraction and Microwave-Assisted Extraction. Antioxidants 2024, 13, 1582. [Google Scholar] [CrossRef]
- Garofulic, I.E.; Repajic, M.; Cegledi, E.; Dobroslavic, E.; Dobrincic, A.; Zoric, Z.; Pedisic, S.; Frankovic, T.; Breski, M.; Dragovic-Uzelac, V. Green Approach to Enhance the Recovery of Polyphenols from Blackcurrant and Bilberry Leaves: Evaluation of Microwave-Assisted and Pressurized Liquid Extraction. Molecules 2024, 29, 1351. [Google Scholar] [CrossRef]
- Paes, J.L.; Dotta, R.; Barbero, G.F.; Martínez, J. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J. Supercrit. Fluids 2014, 95, 8–16. [Google Scholar] [CrossRef]
- Grunovaitė, L.; Pukalskienė, M.; Pukalskas, A.; Venskutonis, P.R. Fractionation of black chokeberry pomace into functional ingredients using high pressure extraction methods and evaluation of their antioxidant capacity and chemical composition. J. Funct. Foods 2016, 24, 85–96. [Google Scholar] [CrossRef]
- Saldaña, M.D.A.; Martinez, E.R.; Sekhon, J.K.; Vo, H. The effect of different pressurized fluids on the extraction of anthocyanins and total phenolics from cranberry pomace. J. Supercrit. Fluids 2021, 175, 105279. [Google Scholar] [CrossRef]
- Terpinc, P.; Dobroslavic, E.; Garofulic, I.E.; Repajic, M.; Cegledi, E.; Dobrincic, A.; Pedisic, S.; Levaj, B. Maximizing the Recovery of Phenolic Antioxidants from Wild Strawberry (Fragaria vesca) Leaves Using Microwave-Assisted Extraction and Accelerated Solvent Extraction. Processes 2023, 11, 3378. [Google Scholar] [CrossRef]
- Secco, M.C.; Fischer, B.; Fernandes, I.A.; Cansian, R.L.; Paroul, N.; Junges, A. Valorization of Blueberry By-Products (Vaccinium spp.): Antioxidants by Pressurized Liquid Extraction (PLE) and Kinetics Models. Biointerface Res. Appl. Chem. 2022, 12, 1692–1704. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Giovagnoli-Vicuña, C.; Chacana-Ojeda, M. High pressure extraction increases the antioxidant potential and in vitro bio-accessibility of bioactive compounds from discarded blueberries. CyTA—J. Food 2019, 17, 622–631. [Google Scholar] [CrossRef]
- Zhang, H.N.; Ma, Y.K. Optimisation of High Hydrostatic Pressure Assisted Extraction of Anthocyanins from Rabbiteye Blueberry Pomace. Czech J. Food Sci. 2017, 35, 180–187. [Google Scholar] [CrossRef]
- Akay, S.; Alpak, I.; Yesil-Celiktas, O. Effects of process parameters on supercritical CO2 extraction of total phenols from strawberry (Arbutus unedo L.) fruits: An optimization study. J. Sep. Sci. 2011, 34, 1925–1931. [Google Scholar] [CrossRef]
- Wozniak, L.; Marszalek, K.; Skapska, S.; Jedrzejczak, R. The Application of Supercritical Carbon Dioxide and Ethanol for the Extraction of Phenolic Compounds from Chokeberry Pomace. Appl. Sci. 2017, 7, 322. [Google Scholar] [CrossRef]
- Veggi, P.C.; Martinez, J.; Meireles, M.A.A. Fundamentals of Microwave Extraction. In Microwave-Assisted Extraction for Bioactive Compounds: Theory and Practice; Chemat, F., Cravotto, G., Eds.; Springer: Boston, MA, USA, 2013; pp. 15–52. [Google Scholar]
- Blekić, M.; Režek Jambrak, A.; Chemat, F. Mikrovalna ekstrakcija bioaktivnih spojeva. Croat. J. Food Sci. Technol. 2011, 3, 32–47. [Google Scholar]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C.; Kung, F.W.L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V.; Gariepy, Y. Effect of Different Drying Methods on the Microwave Extraction of Phenolic Components and Antioxidant Activity of Highbush Blueberry Leaves. Dry. Technol. 2014, 32, 1888–1904. [Google Scholar] [CrossRef]
- Maccarronello, E.A.; Cardullo, N.; Margarida Silva, A.; Di Francesco, A.; Costa, P.C.; Rodrigues, F.; Muccilli, V. From waste to bioactive compounds: A response surface methodology approach to extract antioxidants from Pistacia vera shells for postprandial hyperglycaemia management. Food Chem. 2024, 443, 138504. [Google Scholar] [CrossRef] [PubMed]
- Bouras, M.; Chadni, M.; Barba, F.J.; Grimi, N.; Bals, O.; Vorobiev, E. Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Ind. Crops Prod. 2015, 77, 590–601. [Google Scholar] [CrossRef]
- Jentzer, J.B.; Alignan, M.; Vaca-Garcia, C.; Rigal, L.; Vilarem, G. Response surface methodology to optimise Accelerated Solvent Extraction of steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chem. 2015, 166, 561–567. [Google Scholar] [CrossRef]
- Mottaleb, M.A.; Sarker, S.D. Accelerated Solvent Extraction for Natural Products Isolation. In Natural Products Isolation, Methods in Molecular Biology, 3rd ed.; Sarker, S.D., Nahar, L., Eds.; Springer: Jersey City, NJ, USA, 2012; pp. 75–88. [Google Scholar]
- Ray, A.; Dubey, K.K.; Marathe, S.J.; Singhal, R. Supercritical fluid extraction of bioactives from fruit waste and its therapeutic potential. Food Biosci. 2023, 52, 102418. [Google Scholar] [CrossRef]
- Jokic, S. Matematičko Modeliranje Ekstrakcije Ulja iz Zrna soje Superkritičnim CO2. Ph.D. Thesis, Sveučilište u Osijeku, Osijek, Croatia, 2011. (In Croatian). [Google Scholar]
- Punvichai, T.; Pipakdee, J.; Chaitham, H.; Kritsanapuntu, S.; Chotimarkorn, C.; Detarun, P. Factors affecting the quality of supercritical carbon dioxide extract from Curcuma longa Linn in Thailand: Antioxidant and lipid composition. Food Chem. Adv. 2024, 4, 100737. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Morata, A.; Del Fresno, J.M.; Gavahian, M.; Guamis, B.; Palomero, F.; López, C. Effect of HHP and UHPH High-Pressure Techniques on the Extraction and Stability of Grape and Other Fruit Anthocyanins. Antioxidants 2023, 12, 1746. [Google Scholar] [CrossRef]
- Cai, H.; You, S.; Xu, Z.; Li, Z.; Guo, J.; Ren, Z.; Fu, C. Novel extraction methods and potential applications of polyphenols in fruit waste: A review. J. Food Meas. Charact. 2021, 15, 3250–3261. [Google Scholar] [CrossRef]
- Ferro, D.M.; Mayer, D.A.; Oliveira Müller, C.M.; Ferreira, S.R.S. Scale-up simulation of PLE process applied to recover bio-based materials from Sida rhombifolia leaves. J. Supercrit. Fluids 2020, 166, 105033. [Google Scholar] [CrossRef]
- Santos, J.; Santana, L. Conventional and emerging techniques for extraction of bioactive compounds from fruit waste. Braz. J. Food Technol. 2022, 25, e2021130. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Ortega, A.M.M.; Campos, M.R.S. Bioactive Compounds as Therapeutic Alternatives. In Bioactive Compounds: Health Benefits and Potential Applications; Woodhead Publishing: Cambridge, UK, 2019; pp. 247–264. [Google Scholar] [CrossRef]
- Eseberri, I.; Trepiana, J.; Léniz, A.; Gómez-García, I.; Carr-Ugarte, H.; González, M.; Portillo, M.P. Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients 2022, 14, 1925. [Google Scholar] [CrossRef]
- Struck, S.; Plaza, M.; Turner, C.; Rohm, H. Berry pomace—A review of processing and chemical analysis of its polyphenols. Int. J. Food Sci. Technol. 2016, 51, 1305–1318. [Google Scholar] [CrossRef]
- Quirós-Sauceda, A.E.; Palafox-Carlos, H.; Sáyago-Ayerdi, S.G.; Ayala-Zavala, J.F.; Bello-Perez, L.A.; Alvarez-Parrilla, E.; de la Rosa, L.A.; González-Córdova, A.F.; González-Aguilar, G.A. Dietary fiber and phenolic compounds as functional ingredients: Interaction and possible effect after ingestion. Food Funct. 2014, 5, 1063–1072. [Google Scholar] [CrossRef]
- Piechowiak, T.; Skóra, B.; Grzelak-Błaszczyk, K.; Sójka, M. Extraction of Antioxidant Compounds from Blueberry Fruit Waste and Evaluation of Their In Vitro Biological Activity in Human Keratinocytes (HaCaT). Food Anal. Methods 2021, 14, 2317–2327. [Google Scholar] [CrossRef]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef]
- Oszmianski, J.; Wojdylo, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Mayer-Miebach, E.; Adamiuk, M.; Behsnilian, D. Stability of Chokeberry Bioactive Polyphenols during Juice Processing and Stabilization of a Polyphenol-Rich Material from the By-Product. Agriculture 2012, 2, 244–258. [Google Scholar] [CrossRef]
- Kapci, B.; Neradová, E.; Cízková, H.; Voldrich, M.; Rajchl, A.; Capanoglu, E. Investigating the antioxidant potential of chokeberry (Aronia melanocarpa) products. J. Food Nutr. Res. 2013, 52, 219–229. [Google Scholar]
- Reque, P.M.; Stefens, R.S.; Da Silva, A.M.; Jablonski, A.; Flôres, S.H.; Rios, A.D.; De Jong, E.V. Characterization of blueberry fruits (Vaccinium spp.) and derived products. J. Food Sci. Technol. 2014, 34, 773–779. [Google Scholar] [CrossRef]
- Šaponjac, V.T.; Gironés-Vilaplana, A.; Djilas, S.; Mena, P.; Cetković, G.; Moreno, D.A.; Canadanović-Brunet, J.; Vulić, J.; Stajčić, S.; Krunić, M. Anthocyanin profiles and biological properties of caneberry (Rubus spp.) press residues. J. Sci. Food Agric. 2014, 94, 2393–2400. [Google Scholar] [CrossRef]
- Sójka, M.; Król, B. Composition of industrial seedless black currant pomace. Eur. Food Res. Technol. 2009, 228, 597–605. [Google Scholar] [CrossRef]
- Sarv, V.; Venskutonis, P.R.; Rätsep, R.; Aluvee, A.; Kazernavičiūtė, R.; Bhat, R. Antioxidants Characterization of the Fruit, Juice, and Pomace of Sweet Rowanberry (Sorbus aucuparia L.) Cultivated in Estonia. Antioxidants 2021, 10, 1779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-Q.; Zhang, J.; Zhang, Y.-T.; Sun, J.-Y.; Prieto, M.A.; Simal-Gandara, J.; Putnik, P.; Li, N.-Y.; Liu, C. The link between the phenolic composition and the antioxidant activity in different small berries: A metabolomic approach. LWT 2023, 182, 114853. [Google Scholar] [CrossRef]
- Aly, A.A.; Ali, H.G.M.; Eliwa, N.E.R. Phytochemical screening, anthocyanins and antimicrobial activities in some berries fruits. J. Food Meas. Charact. 2019, 13, 911–920. [Google Scholar] [CrossRef]
- Bartkiene, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Ruzauskas, M.; Bernatoniene, J.; Jakstas, V.; Viskelis, P.; Zadeike, D.; Juodeikiene, G. Improvement of the antimicrobial activity of lactic acid bacteria in combination with berries/fruits and dairy industry by-products. J. Sci. Food Agric. 2019, 99, 3992–4002. [Google Scholar] [CrossRef]
- Das, Q.; Islam, M.R.; Marcone, M.F.; Warriner, K.; Diarra, M.S. Potential of berry extracts to control foodborne pathogens. Food Control 2017, 73, 650–662. [Google Scholar] [CrossRef]
- Caillet, S.; Côté, J.; Sylvain, J.F.; Lacroix, M. Antimicrobial effects of fractions from cranberry products on the growth of seven pathogenic bacteria. Food Control 2012, 23, 419–428. [Google Scholar] [CrossRef]
- Perumal, S.; Mahmud, R.; Ismail, S. Mechanism of Action of Isolated Caffeic Acid and Epicatechin 3-gallate from Euphorbia hirta against Pseudomonas aeruginosa. Pharmacogn. Mag. 2017, 13, S311–S315. [Google Scholar] [CrossRef]
- De Rossi, L.; Rocchetti, G.; Lucini, L.; Rebecchi, A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses—A Narrative Review. Antioxidants 2025, 14, 200. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.T.Y.; Barbut, S.; Ross, K.; Diarra, M.S.; Balamurugan, S. The effect of cranberry pomace ethanol extract on the growth of meat starter cultures, Escherichia coli O157:H7, Salmonella enterica serovar Enteritidis and Listeria monocytogenes. LWT 2019, 115, 108452. [Google Scholar] [CrossRef]
- Ospina, M.; Montaña-Oviedo, K.; Díaz-Duque, A.; Toloza-Daza, H.; Narváez-Cuenca, C.E. Utilization of fruit pomace, overripe fruit, and bush pruning residues from Andes berry (Rubus glaucus Benth) as antioxidants in an oil in water emulsion. Food Chem. 2019, 281, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Peiretti, P.G.; Gai, F.; Zorzi, M.; Aigotti, R.; Medana, C. The effect of blueberry pomace on the oxidative stability and cooking properties of pork patties during chilled storage. J. Food Process. Preserv. 2020, 44, e14520. [Google Scholar] [CrossRef]
- Molan, A.L.; Lila, M.A.; Mawson, J.; De, S. In vitro and in vivo evaluation of the prebiotic activity of water-soluble blueberry extracts. World J. Microbiol. Biotechnol. 2009, 25, 1243–1249. [Google Scholar] [CrossRef]
- Lavefve, L.; Howard, L.R.; Carbonero, F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct. 2020, 11, 45–65. [Google Scholar] [CrossRef]
- Raudsepp, P.; Kaldmäe, H.; Kikas, A.; Libek, A.V.; Püssa, T. Nutritional quality of berries and bioactive compounds in the leaves of black currant (Ribes nigrum L.) cultivars evaluated in Estonia. J. Berry Res. 2010, 1, 53–59. [Google Scholar] [CrossRef]
- Rasheed, H.; Nawaz, H.; Rehman, R.; Mushtaq, A.; Rashid, U. The Blackberry: A Review on Its Composition and Chemistry, Uses and Bioavailability and Potential Health Benefits. Int. J. Chem. Biol. Sci. 2017, 11, 120–128. [Google Scholar]
- Zia-Ul-Haq, M.; Riaz, M.; De Feo, V.; Jaafar, H.Z.; Moga, M. Rubus fruticosus L.: Constituents, biological activities and health related uses. Molecules 2014, 19, 10998–11029. [Google Scholar] [CrossRef]
- Tabart, J.; Franck, T.; Kevers, C.; Pincemail, J.; Serteyn, D.; Defraigne, J.O.; Dornmes, J. Antioxidant and anti-inflammatory activities of Ribes nigrum extracts. Food Chem. 2012, 131, 1116–1122. [Google Scholar] [CrossRef]
- Committee on Herbal Medicinal Products (HMPC). Assessment Report on Rubus idaeus L., Folium; Committee on Herbal Medicinal Products: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Garbacki, N.; Angenot, L.; Bassleer, C.; Damas, J.; Tits, M. Effects of prodelphinidins isolated from Ribes nigrum on chondrocyte metabolism and COX activity. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2002, 365, 434–441. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Chen, M. Effective Fractions of Rubus fruticosus Leaf, Its Pharmaceutical Composition and Uses for Prevention and Treatment of Diabetes. Chinese Patent CN1788755, 21 June 2006. [Google Scholar]
- Greenway, F.; Liu, Z.; Woltering, E. Angiogenic Agents from Plant Extracts, Gallic Acid and Derivatives. U.S. Patent US20070031332A1, 5 May 2010. [Google Scholar]
- Gudej, J.; Tomczyk, M. Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch. Pharmacal Res. 2004, 27, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Committee on Herbal Medicinal Products (HMPC). Community Herbal Monograph on Rubus idaeus L., Folium; Committee on Herbal Medicinal Products: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Scientific Committee of the British Herbal Medicine Association (SCBHMA). British Herbal Pharmacopoeia 1983, 2nd ed.; British Herbal Medicine Association: Bournemouth, UK, 1983; pp. 181–182. [Google Scholar]
- Parsons, M.; Simpson, M.; Ponton, T. Raspberry leaf and its effect on labour: Safety and efficacy. Aust. Coll. Midwives Inc. J. 1999, 12, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Cignarella, A.; Nastasi, M.; Cavalli, E.; Puglisi, L. Novel lipid-lowering properties of Vaccinium myrtillus L. leaves, a traditional antidiabetic treatment, in several models of rat dyslipidaemia: A comparison with ciprofibrate. Thromb. Res. 1996, 84, 311–322. [Google Scholar] [CrossRef]
- Petlevski, R.; Hadžija, M.; Slijepčević, M.; Juretić, D. Effect of ‘antidiabetis’ herbal preparation on serum glucose and fructosamine in NOD mice. J. Ethnopharmacol. 2001, 75, 181–184. [Google Scholar] [CrossRef]
- Sadowska, B.; Paszkiewicz, M.; Podsędek, A.; Redzynia, M.; Różalska, B. Vaccinium myrtillus leaves and Frangula alnus bark derived extracts as potential antistaphylococcal agents. Acta Biochim. Pol. 2014, 61, 163–169. [Google Scholar] [CrossRef]
- Mechikova, G.Y.; Kuzmich, A.S.; Ponomarenko, L.P.; Kalinovsky, A.I.; Stepanova, T.A.; Fedorov, S.N.; Stonik, V.A. Cancer-preventive activities of secondary metabolites from leaves of the bilberry Vaccinium smallii A. Gray. Phytother. Res. 2010, 24, 1730–1732. [Google Scholar] [CrossRef]
- Skupien, K.; Osmianski, J.; Kostrzewa-Nowak, D.; Tarasiuk, J. In vitro antileukaemic activity of extracts from berry plant leaves against sensitive and multidrug resistant HL60 cells. Cancer Lett. 2006, 236, 282–291. [Google Scholar] [CrossRef]
- Mudnic, I.; Modun, D.; Brizic, I.; Vukovic, J.; Generalic, I.; Katalinic, V.; Bilusic, T.; Ljubenkov, I.; Boban, M. Cardiovascular effects in vitro of aqueous extract of wild strawberry (Fragaria vesca L.) leaves. Phytomedicine 2009, 16, 462–469. [Google Scholar] [CrossRef]
- Riaz, M.; Ahmad, M.; Rahaman, N. Antimicrobial screening of fruit, leaves, root and stem of Rubus fruticosus. J. Med. Plants Res. 2011, 5, 5920–5924. [Google Scholar]
- Sarkar, A.; Ganguly, S.N. Rubitic acid, a new triterpene acid from Rubus fruticosus. Phytochemistry 1978, 17, 1983–1985. [Google Scholar] [CrossRef]
- Abu-Shandi, K.; Al-Rawashdeh, A.; Al-Mazaideh, G.; Abu-Nameh, E.; Al-Amro, A.; Al-Soufi, H.; Al-Ma’abreh, A.; Al-Dawdeyah, A. Novel strategy for the identification of the medicinal natural products in Rubus fruticosus plant by using GC/MS technique: A study on leaves, stems and roots of the plant. Adv. Anal. Chem. 2015, 5, 31–41. [Google Scholar]
- Mukherjee, M.; Ghatak, K.L.; Ganguly, S.N.; Antoulas, S. Rubinic acid, a triterpene acid from Rubus fruticosus. Phytochemistry 1984, 23, 2581–2582. [Google Scholar] [CrossRef]
- Robinson, G.M.; Robinson, R. A survey of anthocyanins. II. Biochem. J. 1932, 26, 1647–1664. [Google Scholar] [CrossRef] [PubMed]
- Hokkanen, J.; Mattila, S.; Jaakola, L.; Pirttilä, A.M.; Tolonen, A. Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves. J. Agric. Food Chem. 2009, 57, 9437–9447. [Google Scholar] [CrossRef]
- Szakiel, A.; Pączkowski, C.; Huttunen, S. Triterpenoid content of berries and leaves of bilberry Vaccinium myrtillus from Finland and Poland. J. Agric. Food Chem. 2012, 60, 11839–11849. [Google Scholar] [CrossRef]
- Jaakola, L.; Määttä-Riihinen, K.; Kärenlampi, S.; Hohtola, A. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L) leaves. Planta 2004, 218, 721–728. [Google Scholar] [CrossRef]
- Martineau, L.C.; Couture, A.; Spoor, D.; Benhaddou-Andaloussi, A.; Harris, C.; Meddah, B.; Leduc, C.; Burt, A.; Vuong, T.; Mai Le, P.; et al. Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine 2006, 13, 612–623. [Google Scholar] [CrossRef]
- Martz, F.; Jaakola, L.; Julkunen-Tiitto, R.; Stark, S. Phenolic composition and antioxidant capacity of bilberry (Vaccinium myrtillus) leaves in Northern Europe following foliar development and along environmental gradients. J. Chem. Ecol. 2010, 36, 1017–1028. [Google Scholar] [CrossRef]
- Helmstädter, A.; Schuster, N. Vaccinium myrtillus as an antidiabetic medicinal plant--research through the ages. Pharmazie 2010, 65, 315–321. [Google Scholar]
- Piljac-Žegarac, J.; Stipčević, T.; Belščak, A. Antioxidant properties and phenolic content of different floral origin honeys. J. ApiProd. ApiMed. Sci. 2009, 1, 43–50. [Google Scholar] [CrossRef]
- Kumar, J.P.; Prasada Rao, C.M.M.; Singh, R.K.; Garg, A.; Rajeswari, T. A brief review on encapsulation of natural poly-phenolic compounds. Adv. Pharm. J. 2024, 9, 33–39. [Google Scholar] [CrossRef]
- Bamidele, O.P.; Emmambux, M.N. Encapsulation of bioactive compounds by “extrusion” technologies: A review. Crit. Rev. Food Sci. Nutr. 2020, 61, 3100–3118. [Google Scholar] [CrossRef]
- Onsaard, E.; Onsaard, W. Microencapsulated Vegetable Oil Powder. In Microencapsulation—Processes, Technologies and Industrial Applications; Salaün, F., Ed.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Rezagholizade-shirvan, A.; Soltani, M.; Shokri, S.; Radfar, R.; Arab, M.; Shamloo, E. Bioactive compound encapsulation: Characteristics, applications in food systems, and implications for human health. Food Chem. X 2024, 24, 101953. [Google Scholar] [CrossRef] [PubMed]
- Timilsena, Y.; Haque, M.; Adhikari, B. Encapsulation in the Food Industry: A Brief Historical Overview to Recent Developments. Food Nutr. Sci. 2020, 11, 481–508. [Google Scholar] [CrossRef]
- Vila, M.M.D.C.; Chaud, M.V.; Balcão, V.M. Chapter 19—Microencapsulation of Natural Anti-Oxidant Pigments. In Microencapsulation and Microspheres for Food Applications; Sagis, L.M.C., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 369–389. [Google Scholar]
- Azhar, M.D.; Hashib, S.A.; Ibrahim, U.K.; Rahman, N.A. Development of carrier material for food applications in spray drying technology: An overview. Mater. Today Proc. 2021, 47, 1371–1375. [Google Scholar] [CrossRef]
- Marcillo-Parra, V.; Tupuna-Yerovi, D.S.; González, Z.; Ruales, J. Encapsulation of bioactive compounds from fruit and vegetable by-products for food application—A review. Trends Food Sci. Technol. 2021, 116, 11–23. [Google Scholar] [CrossRef]
- Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Dry. Technol. 2020, 38, 235–258. [Google Scholar] [CrossRef]
- Ledri, S.A.; Milani, J.M.; Shahidi, S.A.; Golkar, A. Comparative analysis of freeze drying and spray drying methods for encapsulation of chlorophyll with maltodextrin and whey protein isolate. Food Chem. X 2024, 21, 101156. [Google Scholar] [CrossRef]
- Lu, Y.S.; Liang, X.R.; Cheng, L.S.; Fang, S. Microencapsulation of Pigments by Directly Spray-Drying of Anthocyanins Extracts from Blueberry Pomace: Chemical Characterization and Extraction Modeling. Int. J. Food Eng. 2020, 16, 20190247. [Google Scholar] [CrossRef]
- Flores, F.P.; Singh, R.K.; Kerr, W.L.; Pegg, R.B.; Kong, F. Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Food Chem. 2014, 153, 272–278. [Google Scholar] [CrossRef]
- Bittencourt, L.L.D.; Silva, K.A.; de Sousa, V.P.; Fontes-Sant’Ana, G.C.; Rocha-Leao, M.H. Blueberry Residue Encapsulation by Ionotropic Gelation. Plant Foods Hum. Nutr. 2018, 73, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Tzatsi, P.; Goula, A.M. Encapsulation of Extract from Unused Chokeberries by Spray Drying, Co-crystallization, and Ionic Gelation. Waste Biomass Valorization 2021, 12, 4567–4585. [Google Scholar] [CrossRef]
- Eisinaitė, V.; Leskauskaitė, D.; Pukalskienė, M.; Venskutonis, P.R. Freeze-drying of black chokeberry pomace extract-loaded double emulsions to obtain dispersible powders. J. Food Sci. 2020, 85, 628–638. [Google Scholar] [CrossRef]
- Cezarotto, V.S.; Franceschi, E.P.; Stein, A.C.; Emanuelli, T.; Maurer, L.H.; Sari, M.H.M.; Ferreira, L.M.; Cruz, L. Nanoencapsulation of Vaccinium ashei Leaf Extract in Eudragit® RS100-Based Nanoparticles Increases Its In Vitro Antioxidant and In Vivo Antidepressant-like Actions. Pharmaceuticals 2023, 16, 84. [Google Scholar] [CrossRef]
- Ștefănescu, B.E.; Nemes, S.A.; Teleky, B.E.; Călinoiu, L.F.; Mitrea, L.; Martău, G.A.; Szabo, K.; Mihai, M.; Vodnar, D.C.; Crișan, G. Microencapsulation and Bioaccessibility of Phenolic Compounds of Vaccinium Leaf Extracts. Antioxidants 2022, 11, 674. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kaptso, G.K.; Kwaw, E.; Cheno, R.W.; Xiao, L.; Osae, R.; Wu, M.; Farooq, M. Process Analysis of Mulberry (Morus alba) Leaf Extract Encapsulation: Effects of Spray Drying Conditions on Bioactive Encapsulated Powder Quality. Food Bioprocess Technol. 2019, 12, 122–146. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kaptso, G.K.; Kwaw, E.; Cheno, R.W.; Wu, M.; Osae, R.; Ma, S.; Farooq, M. Carrier Effects on the Chemical and Physical Properties of Freeze-Dried Encapsulated Mulberry Leaf Extract Powder. Acta Chim. Slov. 2018, 65, 823–835. [Google Scholar] [CrossRef]
- Păvăloiu, R.D.; Sha’at, F.; Neagu, G.; Deaconu, M.; Bubueanu, C.; Albulescu, A.; Sha’at, M.; Hlevca, C. Encapsulation of Polyphenols from Lycium barbarum Leaves into Liposomes as a Strategy to Improve Their Delivery. Nanomaterials 2021, 11, 1938. [Google Scholar] [CrossRef]
- Raczkowska, E.; Nowicka, P.; Wojdyło, A.; Styczyńska, M.; Lazar, Z. Chokeberry Pomace as a Component Shaping the Content of Bioactive Compounds and Nutritional, Health-Promoting (Anti-Diabetic and Antioxidant) and Sensory Properties of Shortcrust Pastries Sweetened with Sucrose and Erythritol. Antioxidants 2022, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Szydłowska, M.; Wojdyło, A.; Nowicka, P. Black and Red Currant Pomaces as Raw Materials to Create Smoothies with In Vitro Health-Promoting Potential. Foods 2024, 13, 2715. [Google Scholar] [CrossRef] [PubMed]
- Kidon, M.; Marciszak, E.; Ugur, S.; Kuligowski, M.; Radziejewska-Kubzdela, E. Chokeberry Pomace Utilization for Improving Selected Quality Parameters of Green Tea Leaves or Hibiscus Flower Infusions. Appl. Sci. 2023, 13, 8186. [Google Scholar] [CrossRef]
- Rohm, H.; Brennan, C.; Turner, C.; Günther, E.; Campbell, G.; Hernando, I.; Struck, S.; Kontogiorgos, V. Adding Value to Fruit Processing Waste: Innovative Ways to Incorporate Fibers from Berry Pomace in Baked and Extruded Cereal-based Foods—A SUSFOOD Project. Foods 2015, 4, 690–697. [Google Scholar] [CrossRef]
- Quiles, A.; Llorca, E.; Schmidt, C.; Reissner, A.M.; Struck, S.; Rohm, H.; Hernando, I. Use of berry pomace to replace flour, fat or sugar in cakes. Int. J. Food Sci. Technol. 2018, 53, 1579–1587. [Google Scholar] [CrossRef]
- Zbikowska, A.; Lukasiak, P.; Kowalska, M.; Lukasiak, A.; Kozlowska, M.; Marciniak-Lukasiak, K. Incorporation of Chokeberry Pomace into Baked Products: Influence on the Quality of the Dough and the Muffins. Appl. Sci. 2024, 14, 9675. [Google Scholar] [CrossRef]
- Šarić, B.; Mišan, A.; Mandić, A.; Nedeljković, N.; Pojić, M.; Pestorić, M.; Đilas, S. Valorisation of raspberry and blueberry pomace through the formulation of value-added gluten-free cookies. J. Food Sci. Technol. 2016, 53, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Bialek, M.; Rutkowska, J.; Bialek, A.; Adamska, A. Oxidative Stability of Lipid Fraction of Cookies Enriched with Chokeberry Polyphenols Extract. Pol. J. Food Nutr. Sci. 2016, 66, 77–84. [Google Scholar] [CrossRef]
- Górnas, P.; Juhnevica-Radenkova, K.; Radenkovs, V.; Misina, I.; Pugajeva, I.; Soliven, A.; Seglina, D. The impact of different baking conditions on the stability of the extractable polyphenols in muffins enriched by strawberry, sour cherry, raspberry or black currant pomace. LWT 2016, 65, 946–953. [Google Scholar] [CrossRef]
- Alba, K.; MacNaughtan, W.; Laws, A.P.; Foster, T.J.; Campbell, G.M.; Kontogiorgos, V. Fractionation and characterisation of dietary fibre from blackcurrant pomace. Food Hydrocolloid 2018, 81, 398–408. [Google Scholar] [CrossRef]
- Struck, S.; Straube, D.; Zahn, S.; Rohm, H. Interaction of wheat macromolecules and berry pomace in model dough: Rheology and microstructure. J. Food Eng. 2018, 223, 109–115. [Google Scholar] [CrossRef]
- Reissner, A.M.; Beer, A.; Struck, S.; Rohm, H. Pre-Hydrated Berry Pomace in Wheat Bread: An Approach Considering Requisite Water in Fiber Enrichment. Foods 2020, 9, 1600. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Geweke, I.; Struck, S.; Zahn, S.; Rohm, H. Blackcurrant pomace from juice processing as partial flour substitute in savoury crackers: Dough characteristics and product properties. Int. J. Food Sci. Technol. 2018, 53, 237–245. [Google Scholar] [CrossRef]
- Martins, Z.E.; Pinho, O.; Ferreira, I. Fortification of Wheat Bread with Agroindustry By-Products: Statistical Methods for Sensory Preference Evaluation and Correlation with Color and Crumb Structure. J. Food Sci. 2017, 82, 2183–2191. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, K. Polyphenolic-Rich Products Made with Georgia-Grown Rabbiteye Blueberries. Ph.D. Thesis, The University of Georgia, Athens, GA, USA, 2007. [Google Scholar]
- Diez-Sánchez, E.; Quiles, A.; Llorca, E.; Reissner, A.M.; Struck, S.; Rohm, H.; Hernando, I. Extruded flour as techno-functional ingredient in muffins with berry pomace. LWT 2019, 113, 108300. [Google Scholar] [CrossRef]
- Curutchet, A.; Cozzano, S.; Tárrega, A.; Arcia, P. Blueberry pomace as a source of antioxidant fibre in cookies: Consumer’s expectations and critical attributes for developing a new product. Food Sci. Technol. Int. 2019, 25, 642–648. [Google Scholar] [CrossRef]
- Reissner, A.M.; Struck, S.; Alba, K.; Proserpio, C.; Foschino, R.; Turner, C.; Hernando, I.; Zahn, S.; Rohm, H. Cross-national differences in consumer responses to savoury crackers containing blackcurrant pomace. Int. J. Food Sci. Technol. 2021, 56, 5007–5016. [Google Scholar] [CrossRef]
- Vázquez, C.V.; Rojas, M.G.V.; Ramírez, C.A.; Chávez-Servín, J.L.; García-Gasca, T.; Ferriz Martínez, R.A.; García, O.P.; Rosado, J.L.; López-Sabater, C.M.; Castellote, A.I.; et al. Total phenolic compounds in milk from different species. Design of an extraction technique for quantification using the Folin–Ciocalteu method. Food Chem. 2015, 176, 480–486. [Google Scholar] [CrossRef]
- Sankowski, L.V.; Morales-Medina, R.; Arguello, C.F.; Reibner, A.M.; Struck, S.; Rohm, H.; Drusch, S.; Brückner-Gühmann, M. Thermal-mechanical treatment of blackcurrant pomace for enrichment in yoghurt. Food Hydrocolloid 2024, 146, 109296. [Google Scholar] [CrossRef]
- Du, H.X.; Yang, H.G.; Wang, X.P.; Zhu, F.; Tang, D.B.; Cheng, J.R.; Liu, X.M. Effects of mulberry pomace on physicochemical and textural properties of stirred-type flavored yogurt. J. Dairy Sci. 2021, 104, 12403–12414. [Google Scholar] [CrossRef]
- Raikos, V.; Ni, H.; Hayes, H.; Ranawana, V. Antioxidant Properties of a Yogurt Beverage Enriched with Salal (Gaultheria shallon) Berries and Blackcurrant (Ribes nigrum) Pomace during Cold Storage. Beverages 2019, 5, 2. [Google Scholar] [CrossRef]
- Ni, H.; Hayes, H.E.; Stead, D.; Raikos, V. Incorporating salal berry (Gaultheria shallon) and blackcurrant (Ribes nigrum) pomace in yogurt for the development of a beverage with antidiabetic properties. Heliyon 2018, 4, e00875. [Google Scholar] [CrossRef]
- Trajkovska, B.; Nakov, G.; Prabhat, S.T.; Badgujar, P.C. Effect of Blueberry Pomace Addition on Quality Attributes of Buttermilk-Based Fermented Drinks during Cold Storage. Foods 2024, 13, 1770. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.X.; Wu, T.; Chu, X.Q.; Tang, S.X.; Can, W.W.; Liang, F.Q.; Fang, Y.J.; Pan, S.Y.; Xu, X.Y. Fermented blueberry pomace with antioxidant properties improves fecal microbiota community structure and short chain fatty acids production in an in vitro mode. LWT 2020, 125, 109260. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Mendes, M.; Morais, R.M.; Calhau, C.; Pintado, M.M. Antimicrobial, antiadhesive and antibiofilm activity of an ethanolic, anthocyanin-rich blueberry extract purified by solid phase extraction. J. Appl. Microbiol. 2016, 121, 693–703. [Google Scholar] [CrossRef]
- Babaoğlu, A.S.; Unal, K.; Dilek, N.M.; Poçan, H.B.; Karakaya, M. Antioxidant and antimicrobial effects of blackberry, black chokeberry, blueberry, and red currant pomace extracts on beef patties subject to refrigerated storage. Meat Sci. 2022, 187, 108765. [Google Scholar] [CrossRef]
- Salaheen, S.; Jaiswal, E.; Joo, J.; Peng, M.F.; Ho, R.; OConnor, D.; Adlerz, K.; Aranda-Espinoza, J.H.; Biswas, D. Bioactive extracts from berry byproducts on the pathogenicity of Salmonella Typhimurium. Int. J. Food Microbiol. 2016, 237, 128–135. [Google Scholar] [CrossRef]
- Taraseviciene, Z.; Cechoviciene, I.; Paulauskiene, A.; Gumbyte, M.; Blinstrubiene, A.; Burbulis, N. The Effect of Berry Pomace on Quality Changes of Beef Patties during Refrigerated Storage. Foods 2022, 11, 2180. [Google Scholar] [CrossRef]
- Tamkute, L.; Vaicekauskaite, R.; Melero, B.; Jaime, I.; Rovira, J.; Venskutonis, P.R. Effects of chokeberry extract isolated with pressurized ethanol from defatted pomace on oxidative stability, quality and sensory characteristics of pork meat products. LWT 2021, 150, 111943. [Google Scholar] [CrossRef]
- Sivapragasam, N.; Maqsood, S.; Rupasinghe, H.P.V. Berry bioactive compounds immobilized in starch matrix for active and intelligent packaging: A review. Future Foods 2024, 10, 100397. [Google Scholar] [CrossRef]
- Singh, A.; Gu, Y.X.; Castellarin, S.D.; Kitts, D.D.; Pratap-Singh, A. Development and Characterization of the Edible Packaging Films Incorporated with Blueberry Pomace. Foods 2020, 9, 1599. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.; Benbettaieb, N.; Scetar, M.; Chaudy, E.; Repajic, M.; Klepac, D.; Valic, S.; Debeaufort, F.; Galic, K. Characterization of Food Packaging Films with Blackcurrant Fruit Waste as a Source of Antioxidant and Color Sensing Intelligent Material. Molecules 2021, 26, 2569. [Google Scholar] [CrossRef] [PubMed]
- Tauferova, A.; Pospiech, M.; Javurkova, Z.; Tremlova, B.; Dordevic, D.; Jancikova, S.; Tesikova, K.; Zdarsky, M.; Vitez, T.; Vitezova, M. Plant Byproducts as Part of Edible Coatings: A Case Study with Parsley, Grape and Blueberry Pomace. Polymers 2021, 13, 2578. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yue, J.; Gong, X.; Qian, B.; Wang, H.; Deng, Y.; Zhao, Y. Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biol. Technol. 2014, 92, 46–53. [Google Scholar] [CrossRef]
- Nemetz, N.J.; Schieber, A.; Weber, F. Application of Crude Pomace Powder of Chokeberry, Bilberry, and Elderberry as a Coloring Foodstuff. Molecules 2021, 26, 2689. [Google Scholar] [CrossRef]
- Hasan, M.M.; Islam, M.R.; Haque, A.R.; Kabir, M.R.; Khushe, K.J.; Hasan, S.M.K. Trends and challenges of fruit by-products utilization: Insights into safety, sensory, and benefits of the use for the development of innovative healthy food: A review. Bioresour. Bioprocess. 2024, 11, 10. [Google Scholar] [CrossRef]
Plant Species | Solvent | Extraction Parameters | Total Phenolic Content (mg GAE g−1 dw) | References |
---|---|---|---|---|
UAE | ||||
Rubus idaeus (leaves); Rubus fruticosus (leaves) | 70% MeOH | room temp.; 1 h | 144.20 ± 1.58; 132.90 ± 3.33 | [63] |
Vaccinium angustifolium (pomace) | 0, 10, 50, 90% EtOH | 20, 40, 60 °C; 30, 60, 90 min | 6.31 ± 0.15 | [47] |
blueberry (pomace) | 50% EtOH + 1% HCl; 50% MeOH + 1% HCl | 20, 40, 80 °C; 5, 10, 15 min | 10.52 | [61] |
Vaccinium myrtillus (pomace); Rubus idaeus (pomace) | H2O | 60 °C; 15–45 min | 5.02 ± 0.32; 2.53 ± 0.12 (µg GAE mg−1 extract) | [60] |
blackberry (leaves) | 20–80% MeOH; 0.4–1.6 M HCl | 30–70 °C; 20–120 min | 77.65 | [62] |
raspberry (leaves) | MeOH + 0.1% HCl | room temp.; 1 h | 5.56 ± 0.058 mg g−1 dw | [64] |
Vaccinium spp. (leaves) | 85% MeOH + 0.5% formic acid | room temp.; 20 min | 32.18–200.5 | [71] |
Rubus idaeus var. Tulameen (leaves) | 60% EtOH | 30 min | 40.9 mg g−1 dw | [67] |
Rubus cv. Loch Ness (leaves) | MeOH | room temp.; 30 min | [68] | |
Ribes nigrum L. (leaves) | 40, 80% EtOH | 20 °C; 55 min | 39.96 ± 5.70 | [70] |
blackberry (leaves) | H2O; 70% MeOH | 50 °C; 3 × 30 min | 101.31 ± 0.11 | [35] |
Rubus idaeus (leaves) | 80% MeOH | 30 °C; 10 min | 151.75 ± 20.67 mg 100 g−1 fw | [37] |
blueberry (pomace) | acidified EtOH (fumaric, lactic, malic, and citric acid) | 30, 35, 40 °C; 20, 30, 40 min; 300, 350, 400 W | 108.23 mg/100 g dw | [72] |
Vaccinium ashei Reade (pomace) | 60% EtOH + 12 M HCl (v/v = 99/1) | 300 W; 28 KHz; 1 h | 57.35 ± 7.68% | [72] |
blueberry (leaves) | 40% EtOH | 20 °C; 30 min | 155.67 mg g−1 | [69] |
Aronia melanocarpa (pomace) | 50% EtOH; 1% formic acid in 50% EtOH; | 25, 50, 75% amplitude; 4, 6, 8, 10 min; | 567.3 ± 2.4 mg 100 g−1 (total anthocyanin) | [52] |
black currant and chokeberry (pomace) | H2O | 30, 55, 80% amplitude; 2, 6 and 10 min | [53] | |
MAE | ||||
Aronia melanocarpa (pomace) | 1% formic acid in 50% EtOH; 50% EtOH | 40, 60, 80 °C; 4, 6, 8, 10 min | 552.6 ± 1.0 mg 100 g−1 (total anthocyanin) | [52] |
Vaccinium ashei Reade (pomace) | 60% EtOH + 12 M HCl (v/v = 99/1) | 360 W; 150 s | 55.07 ± 3.32% | [72] |
Vaccinium corymbosum (pomace) | 60% EtOH | 30–70 °C; 2.45 ± 0.05 GHz; 1600 W | 231.56 ± 4.41 mg 100 g−1 (total anthocyanin) | [73] |
Rubus Coreanus Miq. (pomace) | EtOH, MeOH, acetone | 3–9 min; 60–300 W | 38.1 | [74] |
strawberry (leaves) | 20–80% EtOH | 10–60 s; 100–600 W; 1–4 extraction cycles | 87.6 | [75] |
blueberry (leaves) | 15% EtOH, 30% EtOH; 1.5 M citric acid | 4, 10, 16 min; 10–20% absolute power | 92.719–128.76 | [76] |
Vaccinium corymbosum (leaves) | 30% EtOH + 1.5 M citric acid | 24 min; 20% power | 156.861 ± 3.203 | [77] |
Vaccinium corymbosum L. (leaves) | 30% EtOH + 1.5 M citric acid | 24 min; 20% power | 161.709 ± 8.286 | [78] |
Morus alba L. (leaves) | deep eutectic solvent (DES) | 60 °C; 600 W; 20 min | 8.352 mg g−1 | [79] |
black chokeberry (leaves) | 30% EtOH | 60,70, 80 °C; 5, 10 min | 23.9–49.9 | [80] |
Ribes nigrum L.; Vaccinium myrtillus L. (leaves) | 30% EtOH | 60,70, 80 °C; 5, 10 min | 49.45–73.26; 34.32–64.19 | [81] |
PLE | ||||
Vaccinium myrtillus L. (pomace) | acidified water (pH 2.0), 100% EtOH, 50% EtOH, 100% acetone | 40 °C; 20 MPa; 10 mL/min | 102 ± 1.0 | [82] |
black chokeberry (pomace) | hexane, MeOH, H2O, 80% MeOH, 80% acetone | 40, 130 °C; 10.3 MPa; 45 min | 48.13 ± 0.81 g 100 g−1 dw | [83] |
cranberry (pomace) | H2O, 30, 70, 100% EtOH, 5% citric acid | 40–160 °C; 50 and 200 bar | 42.28 ± 7.82 | [84] |
Fragaria vesca L. (leaves) | 30% EtOH | 100, 125, 150 °C; 5 and 10 min | 8027 mg GA 100 g−1 dw | [85] |
Fragaria X ananassa (pomace) | EtOH; H2O | 90, 110 °C; 10.3 MPa; 3 cycles × 15 min | 21.5–29.6 | [54] |
Vaccinium spp. (pomace) | EtOH; MeOH; ethylene glycol 20%; propylene glycol 20% | 40 °C; 100 bar; solvent flow rate 2 mL min−1; static extraction 30 min, dynamic extraction 180 min | 3541.62–4116.62 mg GAE 100 g−1 dw | [86] |
black chokeberry (leaves) | 30% EtOH | 100,125, 150 °C; 5, 10 min | 35.1 ± 0.2–64.7 ± 0.5 | [80] |
Ribes nigrum L.; Vaccinium myrtillus L. (leaves) | 30% EtOH | 100,125, 150 °C; 5, 10 min | 52.76–78.90; 33.74–70.55 | [81] |
HPE | ||||
blueberry (pomace) | acetone/water/acetic acid (70/29.5/0.5) | room temp.; 500 MPa; 5, 10, 15 min | 96.7–117.1 | [87] |
Vaccinium ashei Reade (pomace) | 60% EtOH + 12 M HCl (v/v = 99/1) | room temp.; 500 MPa; 3 min | 70.26 ± 5.63% | [72] |
Vaccinium ashei (pomace) | 20–80% EtOH | room temp.; 100–600 MPa; 5–30 min; 1–3 extraction cycles | 85.14–108.76 mg 100 g−1 (anthocyanin content) | [88] |
SFE | ||||
Vaccinium myrtillus L. (pomace) | CO2 (100, 90, 50%), water (5, 10, 50%), acidified water (pH 2) (4, 8, 10, 50%), EtOH (1, 2, 5, 10, 50%) | 15, 20, 25 MPa; CO2 flow rate: 1.05 × 10−4 and 1.4 × 10−4 kg/s | 28–134 | [82] |
black chokeberry | 2.5, 10% EtOH | 149 min; 40 MPa; 40 °C; CO2 flow rate 2 L min−1 | 2.95–7.08 g 100 g−1 dw | [83] |
Arbutus unedo L. | 0, 10, 20% EtOH | 40, 60, 80 °C; 150, 250, 350 bar; CO2 flow rate 15 g min−1 | 6.29–25.30 | [89] |
Aronia melanocarpa (pomace) | 20, 50, 80% EtOH | 35, 50, 65 °C; 7.5, 10, 12.5 MPa; CO2 flow rate 1.8 g min−1 | 187.2–1520.7 mg GA100 g−1 | [90] |
Berries | DPPH | ABTS | Reference |
---|---|---|---|
Chokeberry (Aronia melanocarpa Elliot) | 3.01 a | 7.79 a | [115] |
Chokeberry (Aronia melanocarpa) | - | 240–600 b | [116] |
Chokeberry (Aronia melanocarpa) | 100.8 b | 198.4 b | [117] |
Blueberry (Vaccinium spp.) | 919.71 c | 122.56 a | [118] |
Raspberry (Rubus idaeus, cv. ‘Meeker’) | - | 30.89 d | [119] |
Blackberry (Rubus fructicosus, cv. ‘Thornfree’) | - | 12.36 d | [119] |
Blackcurrant (seedless) | 101.0 b | - | [120] |
European Medicines Agency | Traditional Use | In-Vitro/In-Vivo | Clinical Trials | |
---|---|---|---|---|
Blackcurrant | TMP: Minor articular pain Adjuvant in minor urinary complaints [143] | Diaphoretic and diuretic agent Against diarrhea Against spasmodic cough Relief of rheumatic pain [138,143] | Antioxidant, Anti-inflammatory activity [134,143] Analgesic activity [138] | |
Raspberry | TMP: Symptomatic relief of minor spasm associated with menstrual periods Symptomatic treatment of mild inflammation in the mouth or throat Symptomatic treatment of mild diarrhea [135] | Labor stimulator [152] Relief of menstrual cramps Relief of diarrhea Astringent agent Anti-inflammatory agent (mouth, throat) Against chronic skin conditions Treatment of conjunctivitis [153] | Antioxidant activity [134,138] | Indications that it facilitates labor [36,141,144] |
Blackberry | Mouthwash against thrush, gum inflammations, mouth ulcers, sore throat Against respiratory problems Astringent agent Regulation of anemia, diarrhea, dysentery, cystitis, hemorrhoids [40] | Antidiabetic/Hypoglycemic activity [42,142,154] Antimicrobial activity [136] Analgesic, Anti-inflammatory, Angiogenic Activity [40,155,156] | ||
Bilberry | Diuretic, astringent and antiseptic agent for the urinary tract Antibacterial Anti-inflammatory Antidiabetic [38] | Antidiabetic activity [41,157,158] Anti-hyperlipidemic activity [159] Antistaphylococcal activity [160,161] Antioxidant, Anti-neoplastic activity [162] | ||
Cranberry | Antioxidant activity [162] | Antimicrobial agent—urinary tract protection Antioxidant activity [163] |
Extract | Method | Carrier | Properties | Possible Application | References |
---|---|---|---|---|---|
Blueberry pomace extract | Ionic gelling | Na-alginate + ZnCl2 | Retention of 67.01% of TPC | Incorporation into functional beverages, bakery and confectionery products | [176] |
Spray drying | Maltodextrin | High process utilization, powders with moisture content of ≈5% | Natural dyes in the food industry | [174] | |
Spray drying | Whey protein isolate | 5% moisture content in microcapsules, increased stability during storage | Food supplement | [175] | |
Chokeberry pomace extract | Emulsification + Freeze-drying | Oil phase: polyglycerol polyricinoleate + rapeseed oil Aqueous phase: NaCl, milk proteins | Encapsulation efficiency 95.36%, intense color, low moisture content | Confectionery industry | [178] |
unprocessed aronia fruits extract | Spray drying/Co-crystallization/Ionic gelling | Maltodextrin, skimmed milk/Sucrose/Na-alginate + CaCl2 | High efficiency of all encapsulation techniques, the highest stability of phenolic compounds during storage by spray drying encapsulation | Natural antioxidant in the food industry | [177] |
Blueberry leaf extract | Nanoprecipitation | Eudragit® RS 100 | Increased ORAC value of the extract 2 folds, action similar to control antidepressants | Natural antidepressant | [179] |
Bilberry, lingonberry, and blueberry leaf extracts | Spray drying | Maltodextrin + glucose | Encapsulation efficiency 79–81%, increased bioavailability of phenolic compounds | Functional supplements (nutraceuticals) | [180] |
Mulberry leaf extract | Freeze-drying | Maltodextrin/Carboxymethyl cellulose | 91.35–95.79% retention of phenolic acids with maltodextrin, 80.82–97.83% retention of flavonols with carboxymethylcellulose | Functional products; nutraceuticals | [182] |
Freeze-drying | Maltodextrin/Carboxymethyl cellulose | 80.39–91.13% retention of phenolic acids with maltodextrin, 72.18–93.95% retention of flavonols with carboxymethylcellulose | Functional products and nutraceuticals | [181] | |
Goji leaf extract (Lycium barbarum) | Encapsulation in liposomes | Phosphatidylcholine/Phosphatidylcholine + Na-choline | Encapsulation efficiency 75–85%, cytoprotective effect on mouse fibroblast cells | Natural antioxidant | [183] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedisić, S.; Zorić, Z.; Repajić, M.; Levaj, B.; Dobrinčić, A.; Balbino, S.; Čošić, Z.; Dragović-Uzelac, V.; Elez Garofulić, I. Valorization of Berry Fruit By-Products: Bioactive Compounds, Extraction, Health Benefits, Encapsulation and Food Applications. Foods 2025, 14, 1354. https://doi.org/10.3390/foods14081354
Pedisić S, Zorić Z, Repajić M, Levaj B, Dobrinčić A, Balbino S, Čošić Z, Dragović-Uzelac V, Elez Garofulić I. Valorization of Berry Fruit By-Products: Bioactive Compounds, Extraction, Health Benefits, Encapsulation and Food Applications. Foods. 2025; 14(8):1354. https://doi.org/10.3390/foods14081354
Chicago/Turabian StylePedisić, Sandra, Zoran Zorić, Maja Repajić, Branka Levaj, Ana Dobrinčić, Sandra Balbino, Zrinka Čošić, Verica Dragović-Uzelac, and Ivona Elez Garofulić. 2025. "Valorization of Berry Fruit By-Products: Bioactive Compounds, Extraction, Health Benefits, Encapsulation and Food Applications" Foods 14, no. 8: 1354. https://doi.org/10.3390/foods14081354
APA StylePedisić, S., Zorić, Z., Repajić, M., Levaj, B., Dobrinčić, A., Balbino, S., Čošić, Z., Dragović-Uzelac, V., & Elez Garofulić, I. (2025). Valorization of Berry Fruit By-Products: Bioactive Compounds, Extraction, Health Benefits, Encapsulation and Food Applications. Foods, 14(8), 1354. https://doi.org/10.3390/foods14081354