A Revisit of Plant Food Waste Along Food Supply Chains: Impacts and Perspectives
Abstract
:1. Introduction
2. Methodology
3. Analysis of the Studies Included in the Review and Clustering of Co-Occurrences
4. Food Waste in Numbers
5. Primary Production
5.1. Fruits and Vegetables
5.2. Grains and Cereals
5.3. Aquatic Plants
6. Food Processing and Transformation of Products of Plant Origin
6.1. Processing of Foods of Plant Origin
6.2. Problems Generated by the Incorrect Disposal of Industrial Food Waste
7. Transportation and Retail
8. Food Services and Final Consumer
9. Conclusions
10. Limitations and Future Implications
- Make agricultural production more effective and produce higher quality products with a lower percentage of materials to discard;
- Make industrial processing more focused on a more rational utilization of raw materials;
- Create more opportunities to recover industrial food waste;
- Implement better distributions and transportation systems, thus minimizing food loss in retail;
- Educate people to reduce food waste at the household and catering levels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapsoba, L.D.S.; Kiemde, S.M.A.; Lamond, B.F.; Lépine, J. On the Potential of Packaging for Reducing Fruit and Vegetable Losses in Sub-Saharan Africa. Foods 2022, 11, 952. [Google Scholar] [CrossRef] [PubMed]
- Corrado, S.; Caldeira, C.; Eriksson, M.; Hanssen, O.J.; Hauser, H.-E.; van Holsteijn, F.; Liu, G.; Östergren, K.; Parry, A.; Secondi, L.; et al. Food Waste Accounting Methodologies: Challenges, Opportunities, and Further Advancements. Glob. Food Secur. 2019, 20, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Gaur, V.K.; Gupta, S.; Varjani, S.; Pandey, A.; Gnansounou, E.; You, S.; Ngo, H.H.; Wong, J.W.C. Trends in Mitigation of Industrial Waste: Global Health Hazards, Environmental Implications and Waste Derived Economy for Environmental Sustainability. Sci. Total Environ. 2022, 811, 152357. [Google Scholar] [CrossRef]
- Antasouras, G.; Vasios, G.K.; Kontogiorgis, C.; Ioannou, Z.; Poulios, E.; Deligiannidou, G.-E.; Troumbis, A.Y.; Giaginis, C. How to Improve Food Waste Management in Hospitals through Focussing on the Four Most Common Measures for Reducing Plate Waste. Int. J. Health Plan. Manag. 2023, 38, 296–316. [Google Scholar] [CrossRef]
- Talekar, S.; Ekanayake, K.; Holland, B.; Barrow, C. Food Waste Biorefinery towards Circular Economy in Australia. Bioresour. Technol. 2023, 388, 129761. [Google Scholar] [CrossRef] [PubMed]
- Kummu, M.; de Moel, H.; Porkka, M.; Siebert, S.; Varis, O.; Ward, P.J. Lost Food, Wasted Resources: Global Food Supply Chain Losses and Their Impacts on Freshwater, Cropland, and Fertiliser Use. Sci. Total Environ. 2012, 438, 477–489. [Google Scholar] [CrossRef]
- Patel, A.; Hrůzová, K.; Rova, U.; Christakopoulos, P.; Matsakas, L. Sustainable Biorefinery Concept for Biofuel Production through Holistic Volarization of Food Waste. Bioresour. Technol. 2019, 294, 122247. [Google Scholar] [CrossRef]
- Haldar, D.; Shabbirahmed, A.M.; Singhania, R.R.; Chen, C.-W.; Dong, C.-D.; Ponnusamy, V.K.; Patel, A.K. Understanding the Management of Household Food Waste and Its Engineering for Sustainable Valorization- A State-of-the-Art Review. Bioresour. Technol. 2022, 358, 127390. [Google Scholar] [CrossRef]
- Withanage, S.V.; Dias, G.M.; Habib, K. Review of Household Food Waste Quantification Methods: Focus on Composition Analysis. J. Clean. Prod. 2021, 279, 123722. [Google Scholar] [CrossRef]
- Mak, T.M.W.; Xiong, X.; Tsang, D.C.W.; Yu, I.K.M.; Poon, C.S. Sustainable Food Waste Management towards Circular Bioeconomy: Policy Review, Limitations and Opportunities. Bioresour. Technol. 2020, 297, 122497. [Google Scholar] [CrossRef]
- Jouhara, H.; Ahmad, D.; Czajczyńska, D.; Ghazal, H.; Anguilano, L.; Reynolds, A.; Rutkowski, P.; Krzyżyńska, R.; Katsou, E.; Simons, S.; et al. Experimental Investigation on the Chemical Characterisation of Pyrolytic Products of Discarded Food at Temperatures up to 300 °C. Therm. Sci. Eng. Prog. 2018, 5, 579–588. [Google Scholar] [CrossRef]
- Gustavsson, J.; Stage, J. Retail Waste of Horticultural Products in Sweden. Resour. Conserv. Recycl. 2011, 55, 554–556. [Google Scholar] [CrossRef]
- OZHARVEST. Food Waste and Hunger Facts. Available online: https://www.ozharvest.org/food-waste-facts/ (accessed on 8 April 2025).
- UN. Food Waste Index Report; United Nations Environment Programme: Nairobi, Kenia, 2024. [Google Scholar]
- Nandi, P. Food Waste Management Market Reserach Report; Market Reserach Future: New York, NY, USA, 2025; pp. 1–125. [Google Scholar]
- Girelli, A.M.; Astolfi, M.L.; Scuto, F.R. Agro-Industrial Wastes as Potential Carriers for Enzyme Immobilization: A Review. Chemosphere 2020, 244, 125368. [Google Scholar] [CrossRef]
- Mo, J.; Yang, Q.; Zhang, N.; Zhang, W.; Zheng, Y.; Zhang, Z. A Review on Agro-Industrial Waste (AIW) Derived Adsorbents for Water and Wastewater Treatment. J. Environ. Manag. 2018, 227, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Nikmaram, N.; Rosentrater, K.A. Overview of Some Recent Advances in Improving Water and Energy Efficiencies in Food Processing Factories. Front. Nutr. 2019, 6, 20. [Google Scholar] [CrossRef]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.R.; Fawcett, D.; Sharma, S.B.; Poinern, G.E.J. Progress towards Sustainable Utilisation and Management of Food Wastes in the Global Economy. Int. J. Food Sci. 2016, 2016, 3563478. [Google Scholar] [CrossRef]
- Buzby, J.C.; Hyman, J. Total and per Capita Value of Food Loss in the United States. Food Policy 2012, 37, 561–570. [Google Scholar] [CrossRef]
- Redlingshöfer, B.; Soyeux, A. Food Losses and Wastage as a Sustainability Indicator of Food and Farming Systems. In Proceedings of the 10th European IFSA Symposium, Aarhus, Denmark, 1–4 July 2012; pp. 1–12. [Google Scholar]
- Baker, D.; Fear, J.; Denniss, R. What a Waste—An Analysis of Household Expenditure on Food; APO—Analysis and Policy Observatory, The Australia Institute; Swinburne University of Technology: Melbourne, Australia, 2009. [Google Scholar]
- Kantor, L.S.; Lipton, K.; Manchester, A.; Oliveira, V. Estimating and Addressing America’s Food Losses. Food Rev. 1997, 1, 2–12. [Google Scholar]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; et al. Food Waste as a Valuable Resource for the Production of Chemicals, Materials and Fuels. Current Situation and Global Perspective. Energy Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Mena, C.; Adenso-Diaz, B.; Yurt, O. The Causes of Food Waste in the Supplier–Retailer Interface: Evidences from the UK and Spain. Resour. Conserv. Recycl. 2011, 55, 648–658. [Google Scholar] [CrossRef]
- NRDC. Wasted: How America Is Losing Up to 40 Percent of Its Food from Farm to Fork to Landfill; Natural Resources Defense Council: New York, NY, USA, 2017. [Google Scholar]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food Waste within Food Supply Chains: Quantification and Potential for Change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef]
- Stuart, T. Waste: Uncovering the Global Food Scandal; W.W. Norton & Company: New York, NY, USA, 2009; ISBN 978-0-393-34956-6. [Google Scholar]
- dos Santos, S.F.; de Cassia Vieira Cardoso, R.; Borges, Í.M.P.; e Almeida, A.C.; Andrade, E.S.; Ferreira, I.O.; do Carmo Ramos, L. Post-Harvest Losses of Fruits and Vegetables in Supply Centers in Salvador, Brazil: Analysis of Determinants, Volumes and Reduction Strategies. Waste Manag. 2020, 101, 161–170. [Google Scholar] [CrossRef]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Awasthi, M.K.; Dussap, C.-G.; Pandey, A. Assessing the Impact of Industrial Waste on Environment and Mitigation Strategies: A Comprehensive Review. J. Hazard. Mater. 2020, 398, 123019. [Google Scholar] [CrossRef]
- Schneider, F. The Evolution of Food Donation with Respect to Waste Prevention. Waste Manag. 2013, 33, 755–763. [Google Scholar] [CrossRef]
- Chandrasekara, A. Kumar Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits. Int. J. Food Sci. 2016, 2016, 3631647. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High Value-Added Compounds from Fruit and Vegetable by-Products—Characterization, Bioactivities, and Application in the Development of Novel Food Products. Crit. Rev. Food Sci. Nutr. 2022, 60, 1388–1416. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.; Harmanci, R. Modern Farmer, 30 September 2013.
- Quested, T.E.; Marsh, E.; Stunell, D.; Parry, A.D. Spaghetti Soup: The Complex World of Food Waste Behaviours. Resour. Conserv. Recycl. 2013, 79, 43–51. [Google Scholar] [CrossRef]
- Osunde, Z. Minimizing Postharvest Losses in Yam (Dioscorea spp.): Treatments and Techniques—Chapter 12. In Using Food Science and Technology to Improve Nutrition and Promote National Development; Robertson, G., Lupien, J., Eds.; International Union of Food Science & Technology: Oakville, ON, Canada, 2008. [Google Scholar]
- Kumla, J.; Suwannarach, N.; Sujarit, K.; Penkhrue, W.; Kakumyan, P.; Jatuwong, K.; Vadthanarat, S.; Lumyong, S. Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules 2020, 25, 2811. [Google Scholar] [CrossRef]
- Ravindran, R.; Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering 2018, 5, 93. [Google Scholar] [CrossRef]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Hyoun Kim, S.; Wong, J.W.C. Sustainable Processing of Food Waste for Production of Bio-Based Products for Circular Bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef]
- Ranaei, V.; Pilevar, Z.; Esfandiari, C.; Khaneghah, A.M.; Dhakal, R.; Vargas-Bello-Pérez, E.; Hosseini, H. Meat Value Chain Losses in Iran. Food Sci. Anim. Resour. 2021, 41, 16–33. [Google Scholar] [CrossRef]
- Morgan, N.; Rios, L.D.; Berania, Z.S. Missing Food: The Case of Postharvest Grain Losses in Sub-Saharan Africa; Worl Bank Group: Washington, DC, USA, 2012. [Google Scholar]
- KUNA. India Wastes 21 Mln Tonnes of Wheat Every Year; Kuwait News Agency: Safat, Kuwait, 2013. [Google Scholar]
- GAI R&I. India Wastes up to 30% of Annual Foodgrain Production Due to Poor Storage Facilities Claims Study; Global AgInvesting Research & Insight: Woburn, MA, USA, 2014. [Google Scholar]
- Evans, F.D.; Critchley, A.T. Seaweeds for Animal Production Use. J. Appl. Phycol. 2014, 26, 891–899. [Google Scholar] [CrossRef]
- Cohen, Z.; Vonshak, A. Fatty Acid Composition of Spirulina and Spirulina-like Cyanobacteria in Relation to Their Chemotaxonomy. Phytochemistry 1991, 30, 205–206. [Google Scholar] [CrossRef]
- Herrero, M.; Ibáñez, E.; Señoráns, J.; Cifuentes, A. Pressurized Liquid Extracts from Spirulina Platensis Microalga. J. Chromatogr. A 2004, 1047, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Kay, R.A.; Barton, L.L. Microalgae as Food and Supplement. Crit. Rev. Food Sci. Nutr. 1991, 30, 555–573. [Google Scholar] [CrossRef]
- Fujiwara-Arasaki, T.; Mino, N.; Kuroda, M. The Protein Value in Human Nutrition of Edible Marine Algae in Japan. Hydrobiologia 1984, 116, 513–516. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-Algae as a Source of Protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Fleurence, J.; Morançais, M.; Dumay, J.; Decottignies, P.; Turpin, V.; Munier, M.; Garcia-Bueno, N.; Jaouen, P. What Are the Prospects for Using Seaweed in Human Nutrition and for Marine Animals Raised through Aquaculture? Trends Food Sci. Technol. 2012, 27, 57–61. [Google Scholar] [CrossRef]
- MacArtain, P.; Gill, C.I.R.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional Value of Edible Seaweeds. Nutr Rev 2007, 65, 535–543. [Google Scholar] [CrossRef]
- McHugh, D.J. A Guide to the Seaweed Industry; FAO Fisheries Technical Paper 441; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 2023. [Google Scholar]
- Panesar, R.; Kaur, S.; Panesar, P.S. Production of Microbial Pigments Utilizing Agro-Industrial Waste: A Review. Curr. Opin. Food Sci. 2015, 1, 70–76. [Google Scholar] [CrossRef]
- Sharma, M.; Usmani, Z.; Gupta, V.K.; Bhat, R. Valorization of Fruits and Vegetable Wastes and By-Products to Produce Natural Pigments. Crit. Rev. Biotechnol. 2021, 41, 535–563. [Google Scholar] [CrossRef]
- Vendruscolo, F.; Albuquerque, P.M.; Streit, F.; Esposito, E.; Ninow, J.L. Apple Pomace: A Versatile Substrate for Biotechnological Applications. Crit. Rev. Biotechnol. 2008, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Zhang, X.; Varjani, S.; Liu, Y. Feasibility Study on a New Pomelo Peel Derived Biochar for Tetracycline Antibiotics Removal in Swine Wastewater. Sci. Total Environ. 2020, 720, 137662. [Google Scholar] [CrossRef] [PubMed]
- Loehr, R.C. Hazardous Solid Waste from Agriculture. Environ. Health Perspect. 1978, 27, 261. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, C.; Vlysidis, A.; Fiore, G.; De Laurentiis, V.; Vignali, G.; Sala, S. Sustainability of Food Waste Biorefinery: A Review on Valorisation Pathways, Techno-Economic Constraints, and Environmental Assessment. Bioresour. Technol. 2020, 312, 123575. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 511–805. [Google Scholar] [CrossRef]
- Crino, M.; Barakat, T.; Travena, H.; Neal, B. Systematic Review and Comparison of Classification Frameworks Describing the Degree of Food Processing. Nutr. Food Technol. 2017, 3, 138. [Google Scholar]
- Jiménez-Moreno, N.; Esparza, I.; Bimbela, F.; Gandía, L.M.; Ancín-Azpilicueta, C. Valorization of Selected Fruit and Vegetable Wastes as Bioactive Compounds: Opportunities and Challenges. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2061–2108. [Google Scholar] [CrossRef]
- Joglekar, S.N.; Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Process of Fruit Peel Waste Biorefinery: A Case Study of Citrus Waste Biorefinery, Its Environmental Impacts and Recommendations. Env. Sci Pollut Res 2019, 26, 34713–34722. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, J.; Chandra, S.; Kumar, R.; Sunil, S.; Singh, K.; Chaudhary, V.; Kumar, P. Post Harvest Technology of Papaya Fruits & Its Value Added Products—A Review. Int. J. Pure App. Biosci. 2019, 7, 169–181. [Google Scholar] [CrossRef]
- Senit, J.J.; Velasco, D.; Gomez Manrique, A.; Sanchez-Barba, M.; Toledo, J.M.; Santos, V.E.; Garcia-Ochoa, F.; Yustos, P.; Ladero, M. Orange Peel Waste Upstream Integrated Processing to Terpenes, Phenolics, Pectin and Monosaccharides: Optimization Approaches. Ind. Crops Prod. 2019, 134, 370–381. [Google Scholar] [CrossRef]
- Raihana, A.R.N.; Marikkar, J.M.N.; Amin, I.; Shuhaimi, M. A Review on Food Values of Selected Tropical Fruits’ Seeds. Int. J. Food Prop. 2015, 18, 2380–2392. [Google Scholar] [CrossRef]
- Kruczek, M.; Drygaś, B.; Habryka, C. Pomace in Fruit Industry and Their Contemporary Potential Application. World Sci. News 2016, 2016, 259–265. [Google Scholar]
- Szabo, K.; Cătoi, A.-F.; Vodnar, D.C. Bioactive Compounds Extracted from Tomato Processing By-Products as a Source of Valuable Nutrients. Plant Foods Hum. Nutr. 2018, 73, 268–277. [Google Scholar] [CrossRef]
- Jeong, D.; Park, H.; Jang, B.-K.; Ju, Y.; Shin, M.H.; Oh, E.J.; Lee, E.J.; Kim, S.R. Recent Advances in the Biological Valorization of Citrus Peel Waste into Fuels and Chemicals. Bioresour. Technol. 2021, 323, 124603. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, T.; Wang, X.; Lü, X. Apple Pomace as a Potential Valuable Resource for Full-Components Utilization: A Review. J. Clean. Prod. 2021, 329, 129676. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Sarma, S.J.; Brar, S.K. Integrated Process for Fungal Citric Acid Fermentation Using Apple Processing Wastes and Sequential Extraction of Chitosan from Waste Stream. Ind. Crops Prod. 2013, 50, 346–351. [Google Scholar] [CrossRef]
- González-Sánchez, M.E.; Pérez-Fabiel, S.; Wong-Villarreal, A.; Bello-Mendoza, R.; Yañez-Ocampo, G. Residuos Agroindustriales Con Potencial Para La Producción de Metano Mediante La Digestión Anaerobia. Rev. Argent. Microbiol. 2015, 47, 229–235. [Google Scholar] [CrossRef]
- Leyva-López, N.; Lizárraga-Velázquez, C.E.; Hernández, C.; Sánchez-Gutiérrez, E.Y. Exploitation of Agro-Industrial Waste as Potential Source of Bioactive Compounds for Aquaculture. Foods 2020, 9, 843. [Google Scholar] [CrossRef]
- Mohan, C.; Prasannakumary, V.; Nair, A.G.H. Tropical Roots and Tubers: Impact on Environment, Biochemical, Molecular Characterization of Different Varieties of Tropical Roots and Tubers. In Tropical Roots and Tubers: Production, Processing and Technology; Sharma, H.K., Njintang, N.Y., Singhal, R.S., Kaushal, P., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2016; pp. 138–182. ISBN 978-1-118-99273-9. [Google Scholar]
- Ebrahimian, F.; Denayer, J.F.M.; Karimi, K. Potato Peel Waste Biorefinery for the Sustainable Production of Biofuels, Bioplastics, and Biosorbents. Bioresour. Technol. 2022, 360, 127609. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Gao, R.; Ye, F.; Zhao, G. Sustainable Valorisation of Tomato Pomace: A Comprehensive Review. Trends Food Sci. Technol. 2019, 86, 172–187. [Google Scholar] [CrossRef]
- Soto, J.L.M.; González, J.V.; Nicanor, A.B.; Cruz, G.; Fernández, J.Y. Chemical Characterization and Nutritional Evaluation of Mountain’s Yam (Dioscorea Remotiflora Kunth) Tubers. Adv. Bioresearch 2014, 5, 153–160. [Google Scholar]
- Duodu, K.G. Effects of Processing on Antioxidant Phenolics of Cereal and Legume Grains. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; Awika, J.M., Piironen, V., Bean, S., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; Volume 1089, pp. 31–54. ISBN 978-0-8412-2636-4. [Google Scholar]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef]
- Franzen, M.; Mulder, M.B. Ecological, Economic and Social Perspectives on Cocoa Production Worldwide. Biodivers Conserv 2007, 16, 3835–3849. [Google Scholar] [CrossRef]
- Beg, M.S.; Ahmad, S.; Jan, K.; Bashir, K. Status, Supply Chain and Processing of Cocoa—A Review. Trends Food Sci. Technol. 2017, 66, 108–116. [Google Scholar] [CrossRef]
- Galati, A.; Oguntoyinbo, F.A.; Moschetti, G.; Crescimanno, M.; Settanni, L. The Cereal Market and the Role of Fermentation in Cereal-Based Food Production in Africa. Food Rev. Int. 2014, 30, 317–337. [Google Scholar] [CrossRef]
- Silva, A.C.; Jorge, N. Bioactive Compounds of Oils Extracted from Fruits Seeds Obtained from Agroindustrial Waste. Eur. J. Lipid Sci. Technol. 2017, 119, 1600024. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Patterson, R.; Levesque, C.L. Nutritive Value of Extruded or Multi-Enzyme Supplemented Cold-Pressed Soybean Cake for Pigs1. J. Anim. Sci. 2016, 94, 5230–5238. [Google Scholar] [CrossRef]
- Rodman, A.D.; Gerogiorgis, D.I. Multi-Objective Process Optimisation of Beer Fermentation via Dynamic Simulation. Food Bioprod. Process. 2016, 100, 255–274. [Google Scholar] [CrossRef]
- Gülcü, M.; Uslu, N.; Özcan, M.M.; Gökmen, F.; Özcan, M.M.; Banjanin, T.; Gezgin, S.; Dursun, N.; Geçgel, Ü.; Ceylan, D.A.; et al. The Investigation of Bioactive Compounds of Wine, Grape Juice and Boiled Grape Juice Wastes. J. Food Process. Preserv. 2019, 43, e13850. [Google Scholar] [CrossRef]
- Ramli, A.N.M.; Aznan, T.N.T.; Illias, R.M. Bromelain: From Production to Commercialisation. J. Sci. Food Agric. 2017, 97, 1386–1395. [Google Scholar] [CrossRef]
- Martins, B.; Rescolino, R.; Coelho, D.D.F.; Espindola, F.; Zanchetta, B.; Tambourgi, E.B.; Silveira, E. Characterization of Bromelain from Ananas Comosus Agroindustrial Residues Purified by Ethanol Factional Precipitation. Chem. Eng. Trans. 2014, 37, 781–786. [Google Scholar] [CrossRef]
- Pavan, R.; Jain, S.; Shraddha; Kumar, A. Properties and Therapeutic Application of Bromelain: A Review. Biotechnol. Res. Int. 2012, 2012, 976203. [Google Scholar] [CrossRef] [PubMed]
- Travalini, A.P.; Lamsal, B.; Magalhães, W.L.E.; Demiate, I.M. Cassava Starch Films Reinforced with Lignocellulose Nanofibers from Cassava Bagasse. Int. J. Biol. Macromol. 2019, 139, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Yadav, V.; Yadav, A.; Rahman, M.U.; Yuan, W.Z.; Li, Z.; Wang, X. Integrated Biorefinery Approach to Valorize Winery Waste: A Review from Waste to Energy Perspectives. Sci. Total Environ. 2020, 719, 137315. [Google Scholar] [CrossRef]
- Costa, J.M.; Ampese, L.C.; Ziero, H.D.D.; Sganzerla, W.G.; Forster-Carneiro, T. Apple Pomace Biorefinery: Integrated Approaches for the Production of Bioenergy, Biochemicals, and Value-Added Products—An Updated Review. J. Environ. Chem. Eng. 2022, 10, 108358. [Google Scholar] [CrossRef]
- Kehili, M.; Schmidt, L.M.; Reynolds, W.; Zammel, A.; Zetzl, C.; Smirnova, I.; Allouche, N.; Sayadi, S. Biorefinery Cascade Processing for Creating Added Value on Tomato Industrial By-Products from Tunisia. Biotechnol Biofuels 2016, 9, 261. [Google Scholar] [CrossRef]
- Madadian, E.; Rahimi, J.; Mohebbi, M.; Simakov, D.S.A. Grape Pomace as an Energy Source for the Food Industry: A Thermochemical and Kinetic Analysis. Food Bioprod. Process. 2022, 132, 177–187. [Google Scholar] [CrossRef]
- Martinez, G.A.; Rebecchi, S.; Decorti, D.; Domingos, J.M.B.; Natolino, A.; Del Rio, D.; Bertin, L.; Da Porto, C.; Fava, F. Towards Multi-Purpose Biorefinery Platforms for the Valorisation of Red Grape Pomace: Production of Polyphenols, Volatile Fatty Acids, Polyhydroxyalkanoates and Biogas. Green Chem. 2016, 18, 261–270. [Google Scholar] [CrossRef]
- Najari, Z.; Khodaiyan, F.; Yarmand, M.S.; Hosseini, S.S. Almond Hulls Waste Valorization towards Sustainable Agricultural Development: Production of Pectin, Phenolics, Pullulan, and Single Cell Protein. Waste Manag. 2022, 141, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Ramos, M.; Martí-Quijal, F.J.; Huertas-Alonso, A.J.; Sánchez-Verdú, M.P.; Barba, F.J.; Moreno, A. Almond Hull Biomass: Preliminary Characterization and Development of Two Alternative Valorization Routes by Applying Innovative and Sustainable Technologies. Ind. Crops Prod. 2022, 179, 114697. [Google Scholar] [CrossRef]
- Salgado-Ramos, M.; Martí-Quijal, F.J.; Huertas-Alonso, A.J.; Sánchez-Verdú, M.P.; Barba, F.J.; Moreno, A. Microwave Heating for Sustainable Valorization of Almond Hull towards High-Added-Value Chemicals. Ind. Crops Prod. 2022, 189, 115766. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition, Antioxidant Potential and Health Benefits of Citrus Peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef]
- Chourasia, V.R.; Pandey, A.; Pant, K.K.; Henry, R.J. Improving Enzymatic Digestibility of Sugarcane Bagasse from Different Varieties of Sugarcane Using Deep Eutectic Solvent Pretreatment. Bioresour. Technol. 2021, 337, 125480. [Google Scholar] [CrossRef]
- Kaur, M.; Kumar, M.; Sachdeva, S.; Puri, S.K. An Efficient Multiphase Bioprocess for Enhancing the Renewable Energy Production from Almond Shells. Energy Convers. Manag. 2020, 203, 112235. [Google Scholar] [CrossRef]
- Morales, A.; Hernández-Ramos, F.; Sillero, L.; Fernández-Marín, R.; Dávila, I.; Gullón, P.; Erdocia, X.; Labidi, J. Multiproduct Biorefinery Based on Almond Shells: Impact of the Delignification Stage on the Manufacture of Valuable Products. Bioresour. Technol. 2020, 315, 123896. [Google Scholar] [CrossRef] [PubMed]
- Coppola, D.; Lauritano, C.; Palma Esposito, F.; Riccio, G.; Rizzo, C.; de Pascale, D. Fish Waste: From Problem to Valuable Resource. Mar. Drugs 2021, 19, 116. [Google Scholar] [CrossRef]
- Das, M.; Ghosh, S. Comparative Study of Whey Utilization in India, New Zealand and Australia- Identifying Untapped Potential and Means of Utilization. J. Solid Waste Technol. Manag. 2016, 42, 592–603. [Google Scholar]
- Hamawand, I.; da Silva, W.; Seneweera, S.; Bundschuh, J. Value Proposition of Different Methods for Utilisation of Sugarcane Wastes. Energies 2021, 14, 5483. [Google Scholar] [CrossRef]
- Mello, L.R.P.F.; Mali, S. Use of Malt Bagasse to Produce Biodegradable Baked Foams Made from Cassava Starch. Ind. Crops Prod. 2014, 55, 187–193. [Google Scholar] [CrossRef]
- Franciski, M.A.; Peres, E.C.; Godinho, M.; Perondi, D.; Foletto, E.L.; Collazzo, G.C.; Dotto, G.L. Development of CO2 Activated Biochar from Solid Wastes of a Beer Industry and Its Application for Methylene Blue Adsorption. Waste Manag. 2018, 78, 630–638. [Google Scholar] [CrossRef]
- Martínez, M.L.; Eliche, D.; Cruz, N.; Corpas, F.A. Utilization of Bagasse from the Beer Industry in Clay Brick Production for Building. Mater. Construcción 2012, 62, 199–212. [Google Scholar] [CrossRef]
- Tyapkova, O.; Osen, R.; Wagenstaller, M.; Baier, B.; Specht, F.; Zacherl, C. Replacing Fishmeal with Oilseed Cakes in Fish Feed—A Study on the Influence of Processing Parameters on the Extrusion Behavior and Quality Properties of the Feed Pellets. J. Food Eng. 2016, 191, 28–36. [Google Scholar] [CrossRef]
- Ancuța, P.; Sonia, A. Oil Press-Cakes and Meals Valorization through Circular Economy Approaches: A Review. Appl. Sci. 2020, 10, 7432. [Google Scholar] [CrossRef]
- Castrica, M.; Rebucci, R.; Giromini, C.; Tretola, M.; Cattaneo, D.; Baldi, A. Total Phenolic Content and Antioxidant Capacity of Agri-Food Waste and by-Products. Ital. J. Anim. Sci. 2019, 18, 336–341. [Google Scholar] [CrossRef]
- Gupta, S.; Pawar, S.B. An Integrated Approach for Microalgae Cultivation Using Raw and Anaerobic Digested Wastewaters from Food Processing Industry. Bioresour. Technol. 2018, 269, 571–576. [Google Scholar] [CrossRef]
- Salihoglu, G.; Salihoglu, N.K.; Ucaroglu, S.; Banar, M. Food Loss and Waste Management in Turkey. Bioresour. Technol. 2018, 248, 88–99. [Google Scholar] [CrossRef]
- Scherhaufer, S.; Moates, G.; Hartikainen, H.; Waldron, K.; Obersteiner, G. Environmental Impacts of Food Waste in Europe. Waste Manag. 2018, 77, 98–113. [Google Scholar] [CrossRef]
- Ramírez-García, R.; Gohil, N.; Singh, V. Chapter 21—Recent Advances, Challenges, and Opportunities in Bioremediation of Hazardous Materials. In Phytomanagement of Polluted Sites; Pandey, V.C., Bauddh, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 517–568. ISBN 978-0-12-813912-7. [Google Scholar]
- Ong, K.L.; Kaur, G.; Pensupa, N.; Uisan, K.; Lin, C.S.K. Trends in Food Waste Valorization for the Production of Chemicals, Materials and Fuels: Case Study South and Southeast Asia. Bioresour. Technol. 2018, 248, 100–112. [Google Scholar] [CrossRef]
- Matharu, A.S.; de Melo, E.M.; Houghton, J.A. Opportunity for High Value-Added Chemicals from Food Supply Chain Wastes. Bioresour. Technol. 2016, 215, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of Byproducts and Waste Materials from Meat, Poultry and Fish Processing Industries: A Review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef]
- Bharathiraja, S.; Suriya, J.; Krishnan, M.; Manivasagan, P.; Kim, S.-K. Chapter Six—Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications. In Advances in Food and Nutrition Research; Kim, S.-K., Toldrá, F., Eds.; Marine Enzymes Biotechnology: Production and Industrial Applications, Part III—Application of Marine Enzymes; Academic Press: Cambridge, MA, USA, 2017; Volume 80, pp. 125–148. [Google Scholar]
- Mostafalou, S.; Abdollahi, M. Pesticides and Human Chronic Diseases: Evidences, Mechanisms, and Perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157–177. [Google Scholar] [CrossRef] [PubMed]
- Arah, I.K.; Kumah, E.K.; Anku, E.K.; Amaglo, H. An Overview of Post-Harvest Losses in Tomato Production in Africa: Causes and Possible Prevention Strategies. J. Biol. Agric. Healthc. 2015, 5, 78. [Google Scholar]
- Beddington, S.J.; Asaduzzaman, M.; Clark, M.; Fernández, A.; Guillou, G.; Jahn, M.; Erda, L.; Mamo, T.; Van Bo, N.; Nobre, C.A.; et al. Achieving Food Security in the Face of Climate Change; University of Copenhagen: Copenhagen, Denmark, 2012. [Google Scholar]
- Kitinoja, L.; AlHassan, H.Y. Identification of Appropriate Postharvest Technologies for Small Scale Horticultural Farmers and Marketers in Sub-Saharan Africa and South Asia—Part 1. Postharvest Losses and Quality Assessments. Acta Hortic. 2012, 934, 31–40. [Google Scholar] [CrossRef]
- Lemma, D.; Megersa, H.; Banjaw, D. Assessment of Papya Postharvest Loss at Wholesaler and Retailer Levels in Jimma Town, South Western Ethiopia. Int. J. Plant Breed. Crop Sci. 2020, 7, 900–908. [Google Scholar]
- Kitinoja, L.; Odeyemi, O.; Dubey, N.; Musanase, S.; Gill, G.S. Commodity System Assessment Studies on the Postharvest Handling and Marketing of Tomatoes in Nigeria, Rwanda and Maharashtra, India. J. Hortic. Postharvest Res. 2019, 2, 1–14. [Google Scholar] [CrossRef]
- Blimpo, M.P.; Cosgrove-Davis, M. Electricity Access in Sub-Saharan Africa: Uptake, Reliability, and Complementary Factors for Economic Impact; AFD—Agence Française De Devélopment/The World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Saran, S.; Roy, S.K.; Kitinoja, L. Appropriate Postharvest Technologies for Small Scale Horticultural Farmers and Marketers in Sub-Saharan Africa and South Asia—Part 2. Field Trial Results and Identification of Research Needs for Selected Crops. Acta Hortic. 2012, 934, 41–52. [Google Scholar] [CrossRef]
- Babarinsa, F.A.; Ogundele, R.B.; Babarinsa, O.A.; Omodara, M.A. Evaluation of Plastic Crate as Replacement for Raffia Basket to Prevent In-Transit Damage of Packaged Tomatoes. J. Postharvest Technol. 2018, 6, 70–79. [Google Scholar]
- Mibulo, T.; Banadda, N.; Kiggundu, N. A Review of Packaging Options for Tomato Smallholder Farmers in Sub-Saharan Africa. Open J. Org. Polym. Mater. 2020, 10, 35–48. [Google Scholar] [CrossRef]
- Khairuzzaman, M.D.; Chowdhury, F.M.; Zaman, S.; Al Mamun, A.; Bari, M.L. Food Safety Challenges towards Safe, Healthy, and Nutritious Street Foods in Bangladesh. Int. J. Food Sci. 2014, 2014, 483519. [Google Scholar] [CrossRef] [PubMed]
- Usall, J.; Ippolito, A.; Sisquella, M.; Neri, F. Physical Treatments to Control Postharvest Diseases of Fresh Fruits and Vegetables. Postharvest Biol. Technol. 2016, 122, 30–40. [Google Scholar] [CrossRef]
- Barrett, D.M.; Lloyd, B. Advanced Preservation Methods and Nutrient Retention in Fruits and Vegetables. J. Sci. Food Agric. 2012, 92, 7–22. [Google Scholar] [CrossRef]
- Nahman, A.; de Lange, W. Costs of Food Waste along the Value Chain: Evidence from South Africa. Waste Manag. 2013, 33, 2493–2500. [Google Scholar] [CrossRef]
- Devkota, A.R.; Dhakal, D.D.; Gautam, D.M.; Dutta, J.P. Assessment of Fruit and Vegetable Losses at Major Wholesale Markets in Nepal. Int. J. Appl. Sci. Biotechnol. 2014, 2, 559–562. [Google Scholar] [CrossRef]
- Kasso, M.; Bekele, A. Post-Harvest Loss and Quality Deterioration of Horticultural Crops in Dire Dawa Region, Ethiopia. J. Saudi Soc. Agric. Sci. 2018, 17, 88–96. [Google Scholar] [CrossRef]
- Kikulwe, E.M.; Okurut, S.; Ajambo, S.; Nowakunda, K.; Stoian, D.; Naziri, D. Postharvest Losses and Their Determinants: A Challenge to Creating a Sustainable Cooking Banana Value Chain in Uganda. Sustainability 2018, 10, 2381. [Google Scholar] [CrossRef]
- Lebersorger, S.; Schneider, F. Food Loss Rates at the Food Retail, Influencing Factors and Reasons as a Basis for Waste Prevention Measures. Waste Manag. 2014, 34, 1911–1919. [Google Scholar] [CrossRef]
- Priefer, C.; Jörissen, J.; Bräutigam, K.-R. Food Waste Prevention in Europe—A Cause-Driven Approach to Identify the Most Relevant Leverage Points for Action. Resour. Conserv. Recycl. 2016, 109, 155–165. [Google Scholar] [CrossRef]
- Alexander, C.; Smaje, C. Surplus Retail Food Redistribution: An Analysis of a Third Sector Model. Resour. Conserv. Recycl. 2008, 52, 1290–1298. [Google Scholar] [CrossRef]
- Porat, R.; Lichter, A.; Terry, L.A.; Harker, R.; Buzby, J. Postharvest Losses of Fruit and Vegetables during Retail and in Consumers’ Homes: Quantifications, Causes, and Means of Prevention. Postharvest Biol. Technol. 2018, 139, 135–149. [Google Scholar] [CrossRef]
- Eriksson, M.; Spångberg, J. Carbon Footprint and Energy Use of Food Waste Management Options for Fresh Fruit and Vegetables from Supermarkets. Waste Manag. 2017, 60, 786–799. [Google Scholar] [CrossRef]
- Thyberg, K.L.; Tonjes, D.J. Drivers of Food Waste and Their Implications for Sustainable Policy Development. Resour. Conserv. Recycl. 2016, 106, 110–123. [Google Scholar] [CrossRef]
- Engström, R.; Carlsson-Kanyama, A. Food Losses in Food Service Institutions Examples from Sweden. Food Policy 2004, 29, 203–213. [Google Scholar] [CrossRef]
- Sakaguchi, L.; Pak, N.; Potts, M.D. Tackling the Issue of Food Waste in Restaurants: Options for Measurement Method, Reduction and Behavioral Change. J. Clean. Prod. 2018, 180, 430–436. [Google Scholar] [CrossRef]
- Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; Ujang, Z. bin The Food Waste Hierarchy as a Framework for the Management of Food Surplus and Food Waste. J. Clean. Prod. 2014, 76, 106–115. [Google Scholar] [CrossRef]
- Ananda, J.; Karunasena, G.G.; Mitsis, A.; Kansal, M.; Pearson, D. Analysing Behavioural and Socio-Demographic Factors and Practices Influencing Australian Household Food Waste. J. Clean. Prod. 2021, 306, 127280. [Google Scholar] [CrossRef]
- Liu, J.; Lundqvist, J.; Weinberg, J.; Gustafsson, J. Food Losses and Waste in China and Their Implication for Water and Land. Environ. Sci. Technol. 2013, 47, 10137–10144. [Google Scholar] [CrossRef]
- Reynolds, C.J.; Mavrakis, V.; Davison, S.; Høj, S.B.; Vlaholias, E.; Sharp, A.; Thompson, K.; Ward, P.; Coveney, J.; Piantadosi, J.; et al. Estimating Informal Household Food Waste in Developed Countries: The Case of Australia. Waste Manag. Res. 2014, 32, 1254–1258. [Google Scholar] [CrossRef]
- Evans, D. Blaming the Consumer—Once Again: The Social and Material Contexts of Everyday Food Waste Practices in Some English Households. Crit. Public Health 2011, 21, 429–440. [Google Scholar] [CrossRef]
- Geffen, L.; Herpen, E.; Trijp, H. Household Food Waste—How to Avoid It? An Integrative Review. In Food Waste Management: Solving the Wicked Problem; Närvänen, E., Mesiranta, N., Mattila, M., Heikkinen, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 27–55. ISBN 978-3-030-20561-4. [Google Scholar]
- Principato, L. Food Waste at Consumer Level; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Balan, I.M.; Gherman, E.D.; Brad, I.; Gherman, R.; Horablaga, A.; Trasca, T.I. Metabolic Food Waste as Food Insecurity Factor—Causes and Preventions. Foods 2022, 11, 2179. [Google Scholar] [CrossRef] [PubMed]
- Geffen, L.; Herpen, E.; Sijtsema, S.; van Trijp, H. Food Waste as the Consequence of Competing Motivations, Lack of Opportunities, and Insufficient Abilities. Resour. Conserv. Recycl. X 2020, 5, 100026. [Google Scholar] [CrossRef]
- Graham-Rowe, E.; Jessop, D.C.; Sparks, P. Identifying Motivations and Barriers to Minimising Household Food Waste. Resour. Conserv. Recycl. 2014, 84, 15–23. [Google Scholar] [CrossRef]
- Terpstra, M.J.; Steenbekkers, L.P.A.; de Maertelaere, N.C.M.; Nijhuis, S. Food Storage and Disposal: Consumer Practices and Knowledge. Br. Food J. 2005, 107, 526–533. [Google Scholar] [CrossRef]
- Wilson, N.L.W.; Rickard, B.J.; Saputo, R.; Ho, S.-T. Food Waste: The Role of Date Labels, Package Size, and Product Category. Food Qual. Prefer. 2017, 55, 35–44. [Google Scholar] [CrossRef]
- Koivupuro, H.-K.; Hartikainen, H.; Silvennoinen, K.; Katajajuuri, J.-M.; Heikintalo, N.; Reinikainen, A.; Jalkanen, L. Influence of Socio-Demographical, Behavioural and Attitudinal Factors on the Amount of Avoidable Food Waste Generated in Finnish Households. Int. J. Consum. Stud. 2012, 36, 183–191. [Google Scholar] [CrossRef]
- Stefan, V.; van Herpen, E.; Tudoran, A.A.; Lähteenmäki, L. Avoiding Food Waste by Romanian Consumers: The Importance of Planning and Shopping Routines. Food Qual. Prefer. 2013, 28, 375–381. [Google Scholar] [CrossRef]
- Roodhuyzen, D.M.A.; Luning, P.A.; Fogliano, V.; Steenbekkers, L.P.A. Putting Together the Puzzle of Consumer Food Waste: Towards an Integral Perspective. Trends Food Sci. Technol. 2017, 68, 37–50. [Google Scholar] [CrossRef]
- Savelli, E.; Francioni, B.; Curina, I. Healthy Lifestyle and Food Waste Behavior. J. Consum. Mark. 2020, 37, 148–159. [Google Scholar] [CrossRef]
- Stöckli, S.; Niklaus, E.; Dorn, M. Call for Testing Interventions to Prevent Consumer Food Waste. Resour. Conserv. Recycl. 2018, 136, 445–462. [Google Scholar] [CrossRef]
- Steg, L.; Bolderdijk, J.W.; Keizer, K.; Perlaviciute, G. An Integrated Framework for Encouraging Pro-Environmental Behaviour: The Role of Values, Situational Factors and Goals. J. Environ. Psychol. 2014, 38, 104–115. [Google Scholar] [CrossRef]
Compounds | Waste | References |
---|---|---|
Phenolics | Wine grape pomace (2–6.5%), Wine grape seeds (4–6%), Citrus peels (5–8%), Apple pomace (0.001–0.29%), Potato peels (0.25–1.2%), Tomato skin (4–15%), Almond hull (2.5–5%) | [69,70,75,76,91,92,93,94,95,96,97,98,99] |
Cellulose | Wine grape pomace (27–37%), Wine grape seeds (7%), Citrus peels (9.2–37%), Apple pomace (14–39%), Potato peels (7–40%), Tomato skin (20%), Tomato seeds (16%), Sugarcane bagasse (35–45%), Almond shell (16–41%), Almond hull (9–35%) | [69,70,75,76,91,92,93,94,95,96,97,98,99,100,101,102] |
Hemicellulose | Wine grape pomace (26%), Wine grape seeds (24%), Citrus peels (4.2–31.1%), Apple pomace (10–29%), Potato peels (4–14%), Tomato skin (50%), Tomato seeds (11%), Sugarcane bagasse (26–35%), Almond shell (31–36%), Almond hull (7–15%) | [69,70,75,76,91,92,93,94,95,96,97,98,99,100,101,102] |
Lignin | Wine grape pomace (16.8–24.2%), Wine grape seeds (49%), Citrus peels (0.54–8.6%), Apple pomace (14–25%), Potato peels (12–32%), Tomato skin (15–25%), Tomato seeds (38%), Sugarcane bagasse (11–25%), Almond shell (29–31%), Almond hull (8–16%) | [69,70,75,76,91,92,93,94,95,96,97,98,99,100,101,102] |
Protein | Wine grape seeds (25–40%), Apple pomace (3–7%), Potato peels (10–25%), Tomato seeds (14–40%) | [70,75,76,91,92,93,94,95,103,104] |
Limonene | Citrus peels (0.5–4%) | [69,99] |
Pectin | Citrus peels (13–42.5%), Apple pomace (8–19%) | [69,70,92,99] |
Lycopene | Tomato skin (0.12–0.29%) | [76,93] |
Sucrose | Sugarcane molasses (43–45%) | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, J.; Anjos, O.; Guiné, R.P.F. A Revisit of Plant Food Waste Along Food Supply Chains: Impacts and Perspectives. Foods 2025, 14, 1364. https://doi.org/10.3390/foods14081364
Gonçalves J, Anjos O, Guiné RPF. A Revisit of Plant Food Waste Along Food Supply Chains: Impacts and Perspectives. Foods. 2025; 14(8):1364. https://doi.org/10.3390/foods14081364
Chicago/Turabian StyleGonçalves, Joana, Ofélia Anjos, and Raquel P. F. Guiné. 2025. "A Revisit of Plant Food Waste Along Food Supply Chains: Impacts and Perspectives" Foods 14, no. 8: 1364. https://doi.org/10.3390/foods14081364
APA StyleGonçalves, J., Anjos, O., & Guiné, R. P. F. (2025). A Revisit of Plant Food Waste Along Food Supply Chains: Impacts and Perspectives. Foods, 14(8), 1364. https://doi.org/10.3390/foods14081364