Elucidation of Desensitization Mechanisms Induced by Oral Immunotherapy in a Rat Model of Ovalbumin Allergy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Sensitization and OIT Protocol
2.3. Measurement of Plasma Levels of OVA-sIgE and sIgG Subclasses
2.4. Provocation Test
2.5. Determination of Plasma Histamine Levels
2.6. Detection of OVA-sIgE in Plasma Using AlphaCL
2.7. Flow Cytometric Analysis
2.8. Statistical Analysis
3. Results
3.1. Effect of OIT on Systemic Allergic Reactions in Rats Sensitized with OVA
3.2. Effects of OIT on Plasma Levels of OVA-sIgE and -sIgG Subclasses
3.3. Evaluation of the Effect of IgG on IgE Binding to OVA Using AlphaCL
3.4. Proportions of CD4+ Cells and CD4+CD25+FoxP3+ Cells in MLN and Spleen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AlphaCL | amplified luminescence proximity homogeneous assay involving crosslinking |
AU | absorbance unit |
BSA | bovine serum albumin |
CD | cluster of differentiation |
ELISA | enzyme-linked immunosorbent assay |
ESI | electrospray ionization |
FcεRI | high-affinity IgE receptor |
Foxp3 | forkhead box P3 |
HRP | horseradish peroxidase |
IgE | immunoglobulin E |
IgG | immunoglobulin G |
MLN | mesenteric lymph node |
OIT | oral immunotherapy |
OVA | ovalbumin |
PBS | phosphate-buffered saline |
SE | standard error of the mean |
sIgE | specific IgE |
sIgG | specific IgG |
TMB | 3,3′,5,5′-tetramethylbenzidine |
Treg | regulatory T cell |
Th1/Th2 | T-helper cell Type 1/Type 2 |
References
- Wong, G.W. Food allergies around the world. Front. Nutr. 2024, 11, 1373110. [Google Scholar] [CrossRef] [PubMed]
- Warren, C.M.; Sehgal, S.; Sicherer, S.H.; Gupta, R.S. Epidemiology and the Growing Epidemic of Food Allergy in Children and Adults Across the Globe. Curr. Allergy Asthma Rep. 2024, 24, 95–106. [Google Scholar] [CrossRef]
- Ebisawa, M.; Ito, K.; Fujisawa, T. Japanese guidelines for food allergy 2020. Allergol. Int. 2020, 69, 370–386. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, Y.; Yamamoto-Hanada, K.; Ogita, H.; Kiguchi, T.; Inuzuka, Y.; Toyokuni, K.; Nishimura, K.; Irahara, M.; Ishikawa, F.; Sato, M.; et al. Avoidance of Hen’s Egg Based on IgE Levels Should Be Avoided for Children With Hen’s Egg Allergy. Front. Pediatr. 2021, 8, 583224. [Google Scholar] [CrossRef] [PubMed]
- Pajno, G.B.; Fernandez-Rivas, M.; Arasi, S.; Roberts, G.; Akdis, C.A.; Alvaro-Lozano, M.; Beyer, K.; Bindslev-Jensen, C.; Burks, W.; Ebisawa, M.; et al. EAACI guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy 2018, 73, 799–815. [Google Scholar] [CrossRef]
- Scurlock, A.M. Oral and Sublingual Immunotherapy for Treatment of IgE-Mediated Food Allergy. Clin. Rev. Allergy Immunol. 2018, 55, 139–152. [Google Scholar] [CrossRef]
- Miyaji, Y.; Yamamoto-Hanada, K.; Yang, L.; Fukuie, T.; Narita, M.; Ohya, Y. Effectiveness and Safety of Low-Dose Oral Immunotherapy Protocols in Paediatric Milk and Egg Allergy. Clin. Exp. Allergy 2023, 53, 1307–1309. [Google Scholar] [CrossRef]
- Vickery, B.P.; Scurlock, A.M.; Kulis, M.; Steele, P.H.; Kamilaris, J.; Berglund, J.P.; Burk, C.; Hiegel, A.; Carlisle, S.; Christie, L.; et al. Sustained Unresponsiveness to Peanut in Subjects Who Have Completed Peanut Oral Immunotherapy. J. Allergy Clin. Immunol. 2014, 133, 468–475. [Google Scholar] [CrossRef]
- Furuta, T.; Tanaka, K.; Tagami, K.; Matsui, T.; Sugiura, S.; Kando, N.; Kanie, Y.; Naito, M.; Izumi, H.; Tanaka, A.; et al. Exercise-Induced Allergic Reactions on Desensitization to Wheat After Rush Oral Immunotherapy. Allergy 2020, 75, 1414–1422. [Google Scholar] [CrossRef]
- Tsai, M.; Mukai, K.; Chinthrajah, R.S.; Nadeau, K.C.; Galli, S.J. Sustained Successful Peanut Oral Immunotherapy Associated with Low Basophil Activation and Peanut-Specific IgE. J. Allergy Clin. Immunol. 2020, 145, 885–896.e6. [Google Scholar] [CrossRef]
- Tordesillas, L.; Berin, M.C. Mechanisms of Oral Tolerance. Clin. Rev. Allergy Immunol. 2018, 55, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Varshney, P.; Jones, S.M.; Scurlock, A.M.; Perry, T.T.; Kemper, A.; Steele, P.; Hiegel, A.; Kamilaris, J.; Carlisle, S.; Yue, X.; et al. A Randomized Controlled Study of Peanut Oral Immunotherapy: Clinical Desensitization and Modulation of the Allergic Response. J. Allergy Clin. Immunol. 2011, 127, 654–660. [Google Scholar] [CrossRef]
- Mori, Y.; Ugajin, T.; Okada, K.; Handa, Y.; Umemoto, N.; Iijima, H.; Igawa, K.; Yokozeki, H. Epicutaneously sensitized food-induced anaphylaxis is ameliorated with “oral tolerance” to antigen. Exp. Dermatol. 2021, 30, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Yokooji, T.; Kunimoto, K.; Inoguchi, K.; Ogino, R.; Taogoshi, T.; Morita, E.; Matsuo, H. Hypoallergenic Wheat Line (1BS-18H) Lacking ω5-Gliadin Induces Oral Tolerance to Wheat Gluten Proteins in a Rat Model of Wheat Allergy. Foods 2022, 11, 2181. [Google Scholar] [CrossRef]
- Yamada, A.; Hasegawa, T.; Fujieda, M.; Morita, H.; Matsumoto, K. Protease-digested egg-white products induce oral tolerance in mice but elicit little IgE production upon epicutaneous exposure. Allergol. Int. 2022, 71, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.A.; Martos, G.; Wang, W.; Nowak-Węgrzyn, A.; Berin, M.C. Oral immunotherapy induces local protective mechanisms in the gastrointestinal mucosa. J. Allergy Clin. Immunol. 2012, 129, 1579–1587.e1. [Google Scholar] [CrossRef]
- Tordesillas, L.; Mondoulet, L.; Blazquez, A.B.; Benhamou, P.H.; Sampson, H.A.; Berin, M.C. Epicutaneous immunotherapy induces gastrointestinal LAP+ regulatory T cells and prevents food-induced anaphylaxis. J. Allergy Clin. Immunol. 2017, 139, 189–201.e4. [Google Scholar] [CrossRef]
- Knippels, L.M.; Penninks, A.H.; van Meeteren, M.; Houben, G.F. Humoral and cellular immune responses in different rat strains on oral exposure to ovalbumin. Food Chem. Toxicol. 1999, 37, 881–888. [Google Scholar] [CrossRef]
- Pilegaard, K.; Madsen, C. An oral Brown Norway rat model for food allergy: Comparison of age, sex, dosing volume, and allergen preparation. Toxicology 2004, 196, 247–257. [Google Scholar] [CrossRef]
- Burton, O.T.; Noval Rivas, M.; Zhou, J.S.; Logsdon, S.L.; Darling, A.R.; Koleoglou, K.J.; Roers, A.; Houshyar, H.; Crackower, M.A.; Chatila, T.A.; et al. Immunoglobulin E signal inhibition during allergen ingestion leads to reversal of established food allergy and induction of regulatory T cells. Immunity 2014, 41, 141–151. [Google Scholar] [CrossRef]
- Jiménez-Saiz, R.; Rupa, P.; Mine, Y. Immunomodulatory effects of heated ovomucoid-depleted egg white in a BALB/c mouse model of egg allergy. J. Agric. Food Chem. 2011, 59, 13195–13202. [Google Scholar] [CrossRef]
- Ishii, S.; Koga, Y.; Yokooji, T.; Kakino, M.; Ogino, R.; Taogoshi, T.; Matsuo, H. Evaluation of a Novel Detection Method for Allergen-Specific IgE Antibodies with IgE Receptor Crosslinking Using Rat Food Allergy Model. Foods 2024, 13, 2713. [Google Scholar] [CrossRef]
- Koga, Y.; Yokooji, T.; Ogino, R.; Taogoshi, T.; Takahagi, S.; Ishii, K.; Chinuki, Y.; Morita, E.; Hide, M.; Matsuo, H. A novel detection method for cross-linking of IgE-receptors by autoantibodies in chronic spontaneous urticaria. Allergol. Int. 2022, 71, 94–102. [Google Scholar] [CrossRef]
- Peng, Z.; Becker, A.B.; Simons, F.E. Binding properties of protein A and protein G for human IgE. Int. Arch. Allergy Immunol. 1994, 104, 204–206. [Google Scholar] [CrossRef]
- Chen, Y.; Inobe, J.; Marks, R.; Gonnella, P.; Kuchroo, V.K.; Weiner, H.L. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 1995, 376, 177–180. [Google Scholar] [CrossRef]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.; Lee, H.Y.; Ahn, D.U. Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents—A review. Poult. Sci. 2013, 92, 3292–3299. [Google Scholar] [CrossRef]
- Fuentes-Aparicio, V.; Alvarez-Perea, A.; Infante, S.; Zapatero, L.; D’Oleo, A.; Alonso-Lebrero, E. Specific oral tolerance induction in paediatric patients with persistent egg allergy. Allergol. Immunopathol. 2013, 41, 143–150. [Google Scholar] [CrossRef]
- Burks, A.W.; Jones, S.M.; Wood, R.A.; Fleischer, D.M.; Sicherer, S.H.; Lindblad, R.W.; Stablein, D.; Henning, A.K.; Vickery, B.P.; Liu, A.H.; et al. Consortium of Food Allergy Research (CoFAR). Oral immunotherapy for treatment of egg allergy in children. N. Engl. J. Med. 2012, 367, 233–243. [Google Scholar] [CrossRef]
- Barshow, S.M.; Kulis, M.D.; Burks, A.W.; Kim, E.H. Mechanisms of oral immunotherapy. Clin. Exp. Allergy 2021, 51, 527–535. [Google Scholar] [CrossRef]
- Gorelik, M.; Narisety, S.D.; Guerrerio, A.L.; Chichester, K.L.; Keet, C.A.; Bieneman, A.P.; Hamilton, R.G.; Wood, R.A.; Schroeder, J.T.; Frischmeyer-Guerrerio, P.A. Suppression of the immunologic response to peanut during immunotherapy is often transient. J. Allergy Clin. Immunol. 2015, 135, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- PALISADE Group of Clinical Investigators; Vickery, B.P.; Vereda, A.; Casale, T.B.; Beyer, K.; du Toit, G.; Hourihane, J.O.; Jones, S.M.; Shreffler, W.G.; Marcantonio, A.; et al. AR101 Oral Immunotherapy for Peanut Allergy. N. Engl. J. Med. 2018, 379, 1991–2001. [Google Scholar] [PubMed]
- Philips, J.R.; Brouwer, W.; Edwards, M.; Mahler, S.; Ruhno, J.; Collins, A.M. The effectiveness of different rat IgG subclasses as IgE-blocking antibodies in the rat basophil leukaemia cell model. Immunol. Cell Biol. 1999, 77, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Abril-Gil, M.; Garcia-Just, A.; Pérez-Cano, F.J.; Franch, À.; Castell, M. Development and characterization of an effective food allergy model in Brown Norway rats. PLoS ONE 2015, 10, e0125314. [Google Scholar] [CrossRef]
- Schiavi, E.; Smolinska, S.; O’Mahony, L. Intestinal dendritic cells. Curr. Opin. Gastroenterol. 2015, 31, 98–103. [Google Scholar] [CrossRef]
- Bertolini, T.B.; Biswas, M.; Terhorst, C.; Daniell, H.; Herzog, R.W.; Piñeros, A.R. Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell Immunol. 2021, 359, 104251. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takizawa, D.; Yokooji, T.; Miyamoto, C.; Koga, Y.; Oda, K.; Ogino, R.; Taogoshi, T.; Matsuo, H. Elucidation of Desensitization Mechanisms Induced by Oral Immunotherapy in a Rat Model of Ovalbumin Allergy. Foods 2025, 14, 1424. https://doi.org/10.3390/foods14081424
Takizawa D, Yokooji T, Miyamoto C, Koga Y, Oda K, Ogino R, Taogoshi T, Matsuo H. Elucidation of Desensitization Mechanisms Induced by Oral Immunotherapy in a Rat Model of Ovalbumin Allergy. Foods. 2025; 14(8):1424. https://doi.org/10.3390/foods14081424
Chicago/Turabian StyleTakizawa, Daigo, Tomoharu Yokooji, Chika Miyamoto, Yuki Koga, Keisuke Oda, Ryohei Ogino, Takanori Taogoshi, and Hiroaki Matsuo. 2025. "Elucidation of Desensitization Mechanisms Induced by Oral Immunotherapy in a Rat Model of Ovalbumin Allergy" Foods 14, no. 8: 1424. https://doi.org/10.3390/foods14081424
APA StyleTakizawa, D., Yokooji, T., Miyamoto, C., Koga, Y., Oda, K., Ogino, R., Taogoshi, T., & Matsuo, H. (2025). Elucidation of Desensitization Mechanisms Induced by Oral Immunotherapy in a Rat Model of Ovalbumin Allergy. Foods, 14(8), 1424. https://doi.org/10.3390/foods14081424