Unveiling Salmonella Derby Survival: Stress Responses to Prolonged Hyperosmotic Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Preparation of Hyperosmotic Stress Cells
2.3. Physiological Characterization of S. Derby Under Hyperosmotic Stress
2.3.1. Growth Curves
2.3.2. Viable Cell Count
2.4. Membrane Integrity of S. Derby Under Hyperosmotic Stress
2.4.1. Cell Membrane Integrity Damage
2.4.2. Cell Membrane Permeability
2.5. Cellular Solute Accumulation in S. Derby Under Hyperosmotic Stress
2.5.1. Intracellular Potassium Concentration
2.5.2. Intracellular Trehalose Concentration
2.5.3. Intracellular Betaine Concentration
2.5.4. Intracellular Proline Concentration
2.6. Transcription of Genes in S. Derby Under Hyperosmotic Stress
2.6.1. RNA Extraction and cDNA Synthesis
2.6.2. QPCR Analysis
2.6.3. Quantification of Relative Gene Transcription
2.7. Antibiotic Susceptibility Testing of S. Derby Under Hyperosmotic Stress
2.8. Statistical Analysis
3. Results
3.1. Physiological Characterization
3.2. Cell Membrane Integrity and Permeability
3.3. Intracellular Osmoprotectant Concentration
3.4. Gene Transcription Levels
3.5. Antibiotic Susceptibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
S. Derby | Salmonella Derby |
EU | European Union |
sRNAs | small non-coding RNAs |
DFS | dry-cured fermented sausage |
TSA | Trypticase Soy Agar |
TSB | Trypticase Soy Broth |
PBS | Phosphate-buffered Saline |
PCA | Plate Count Agar |
BCA | Bicinchoninic Acid Assay |
MH | Mueller-Hinton |
CFU | Colony-forming units |
PI | Propidium Iodide |
PCR | Polymerase Chain Reaction |
QPCR | Quantitative Real-time PCR |
CLSI | Clinical and Laboratory Standards Institute |
CTR | Ceftriaxone |
GEN | Gentamicin |
IPM | Imipenem |
MI | Minocycline |
CIP | Ciprofloxacin |
SXT | Trimethoprim-sulfamethoxazole |
C | Chloramphenicol |
Appendix A
References
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2023 Zoonoses Report. EFSA J. 2024, 22, e9106. [Google Scholar] [CrossRef]
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, Food Safety and Food Handling Practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef] [PubMed]
- Wottlin, L.R.; Harvey, R.B.; Norman, K.N.; Droleskey, R.E.; Andrews, K.; Jackson, S.J.; Anderson, R.C.; Poole, T.L. Prevalence and Characterization of Salmonella during Pork Sausage Manufacturing. Microorganisms 2024, 12, 1599. [Google Scholar] [CrossRef]
- Papatzimos, G.; Basdagianni, Z.; Kasapidou, E. Substitution of Animal Fat and Sodium Nitrite with Hemp Seed Oil: Effect on the Nutritional Value, Sensory Characteristics, and Shelf Life of Fermented Salami. Foods 2024, 13, 2584. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.M.H.; Burroughs, S.; Emch, A.W.; Waite-Cusic, J. Enhancing the Reduction of Salmonella and Listeria monocytogenes during Traditional Salami Processing by Adding a Finishing Phase. Food Control 2022, 131, 108432. [Google Scholar] [CrossRef]
- Corbellini, L.G.; Costa, E.D.F.; Cardoso, M.; Nauta, M. Quantitative Microbial Risk Assessment of Salmonella in Dry Fermented Sausage (Salami) in Southern Brazil. Microb. Risk Anal. 2017, 6, 31–43. [Google Scholar] [CrossRef]
- Vinitha, K.; Sethupathy, P.; Moses, J.A.; Anandharamakrishnan, C. Conventional and Emerging Approaches for Reducing Dietary Intake of Salt. Food Res. Int. 2022, 152, 110933. [Google Scholar] [CrossRef]
- Silberberg, J.M.; Ketter, S.; Böhm, P.J.N.; Jordan, K.; Wittenberg, M.; Grass, J.; Hänelt, I. KdpD Is a Tandem Serine Histidine Kinase That Controls K+ Pump KdpFABC Transcriptionally and Post-Translationally. Nat. Commun. 2024, 15, 3223. [Google Scholar] [CrossRef]
- Rath, H.; Reder, A.; Hoffmann, T.; Hammer, E.; Seubert, A.; Bremer, E.; Völker, U.; Mäder, U. Management of Osmoprotectant Uptake Hierarchy in Bacillus subtilis via a SigB-Dependent Antisense RNA. Front. Microbiol. 2020, 11, 622. [Google Scholar] [CrossRef]
- Wang, H.; Huang, M.; Zeng, X.; Peng, B.; Xu, X.; Zhou, G. Resistance Profiles of Salmonella Isolates Exposed to Stresses and the Expression of Small Non-Coding RNAs. Front. Microbiol. 2020, 11, 130. [Google Scholar] [CrossRef]
- Ferrer-Bustins, N.; Yvon, C.; Martín, B.; Leclerc, V.; Leblanc, J.-C.; Corominas, L.; Sabaté, S.; Tolosa-Muñoz, E.; Chacón-Villanueva, C.; Bover-Cid, S.; et al. Genomic Insights of Salmonella Isolated from Dry Fermented Sausage Production Chains in Spain and France. Sci. Rep. 2024, 14, 11660. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Huang, J.; Cai, Q.; Wei, Z.; Pen, G.; Li, Z.; Wang, J.; Zhai, L. Analysis of Osmotic Tolerance, Physiological Characteristics, and Gene Expression of Salmonella enterica Subsp. enterica Serotype Derby. ACS Omega 2023, 8, 36088–36099. [Google Scholar] [CrossRef]
- Xia, R.; Xiao, H.; Xu, M.; Hou, L.; Han, Y.; Zhou, Z. Insight into the Inhibitory Activity and Mechanism of Bovine Cathelicidin BMAP 27 against Salmonella Typhimurium. Microb. Pathog. 2024, 187, 106540. [Google Scholar] [CrossRef]
- Zhong, H.; Liu, Y.; Wei, S.; Khan, I.; Sun, Q.; Wang, Z.; Han, Z.; Liu, Y.; Oh, D.-H.; Liu, S. Antibacterial Mechanism of Slightly Acidic Electrolyzed Water against Pseudomonas arsenicoxydans A1 from Greater Amberjack (Seriola dumerili). LWT 2024, 194, 115814. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, X.; Ding, T.; Feng, J. Tolerance Variations and Mechanisms of Salmonella enterica Serovar Newport in Response to Long-Term Hypertonic Stress. Food Qual. Saf. 2024, 8, fyad068. [Google Scholar] [CrossRef]
- Endo, S. Evaluation of Antimicrobial Susceptibility Tests for Acinetobacter and Pseudomonas Species Using Disks Containing a High Dose of Meropenem. Sci. Rep. 2024, 14, 2749. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Kolter, R.; Balaban, N.; Julou, T. Bacteria Grow Swiftly and Live Thriftily. Curr. Biol. 2022, 32, R599–R605. [Google Scholar] [CrossRef] [PubMed]
- Cesar, S.; Anjur-Dietrich, M.; Yu, B.; Li, E.; Rojas, E.; Neff, N.; Cooper, T.F.; Huang, K.C. Bacterial Evolution in High-Osmolarity Environments. mBio 2020, 11, e01191-20. [Google Scholar] [CrossRef]
- Hews, C.L.; Cho, T.; Rowley, G.; Raivio, T.L. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front. Cell. Infect. Microbiol. 2019, 9, 313. [Google Scholar] [CrossRef]
- Robertson, J.; McGoverin, C.; White, J.R.; Vanholsbeeck, F.; Swift, S. Rapid Detection of Escherichia coli Antibiotic Susceptibility Using Live/Dead Spectrometry for Lytic Agents. Microorganisms 2021, 9, 924. [Google Scholar] [CrossRef]
- Zhang, P.; Li, S.; Wang, W.; Sun, J.; Chen, Z.; Wang, J.; Ma, Q. Enhanced Photodynamic Inactivation against Escherichia coli O157:H7 Provided by Chitosan/Curcumin Coating and Its Application in Food Contact Surfaces. Carbohydr. Polym. 2024, 337, 122160. [Google Scholar] [CrossRef] [PubMed]
- Mandal, R.K.; Kwon, Y.M. Global Screening of Salmonella enterica Serovar Typhimurium Genes for Desiccation Survival. Front. Microbiol. 2017, 8, 1723. [Google Scholar] [CrossRef] [PubMed]
- Stautz, J.; Hellmich, Y.; Fuss, M.F.; Silberberg, J.M.; Devlin, J.R.; Stockbridge, R.B.; Hänelt, I. Molecular Mechanisms for Bacterial Potassium Homeostasis. J. Mol. Biol. 2021, 433, 166968. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, H.; Mei, F.; Yang, N.; Zhao, D.; Ai, G.; Xiang, H.; Zheng, Y. Identification of the Biosynthetic Pathway of Glycine Betaine That Is Responsible for Salinity Tolerance in Halophilic Thioalkalivibrio Versutus D301. Front. Microbiol. 2022, 13, 875843. [Google Scholar] [CrossRef]
- Deole, R.; Hoff, W.D. A Potassium Chloride to Glycine Betaine Osmoprotectant Switch in the Extreme Halophile Halorhodospira Halophila. Sci. Rep. 2020, 10, 3383. [Google Scholar] [CrossRef]
- Nyyssölä, A.; Kerovuo, J.; Kaukinen, P.; Von Weymarn, N.; Reinikainen, T. Extreme Halophiles Synthesize Betaine from Glycine by Methylation. J. Biol. Chem. 2000, 275, 22196–22201. [Google Scholar] [CrossRef]
- Gunde-Cimerman, N.; Plemenitaš, A.; Oren, A. Strategies of Adaptation of Microorganisms of the Three Domains of Life to High Salt Concentrations. FEMS Microbiol. Rev. 2018, 42, 353–375. [Google Scholar] [CrossRef]
- Ekena, K.; Maloy, S. Regulation of Proline Utilization in Salmonella typhimurium: How Do Cells Avoid a Futile Cycle? Mol. Gen. Genet. MGG 1990, 220, 492–494. [Google Scholar] [CrossRef]
- Frossard, S.M.; Khan, A.A.; Warrick, E.C.; Gately, J.M.; Hanson, A.D.; Oldham, M.L.; Sanders, D.A.; Csonka, L.N. Identification of a Third Osmoprotectant Transport System, the OsmU System, in Salmonella enterica. J. Bacteriol. 2012, 194, 3861–3871. [Google Scholar] [CrossRef]
- Lucht, J.M.; Bremer, E. Adaptation of Escherichia coli to High Osmolarity Environments: Osmoregulation of the High-Affinity Glycine Betaine Transport System ProU. FEMS Microbiol. Rev. 1994, 14, 3–20. [Google Scholar] [CrossRef]
- Lehman, M.K.; Sturd, N.A.; Razvi, F.; Wellems, D.L.; Carson, S.D.; Fey, P.D. Proline Transporters ProT and PutP Are Required for Staphylococcus aureus Infection. PLoS Pathog. 2023, 19, e1011098. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Blanco, D.A.; Shell, S.S. Regulation of mRNA Stability During Bacterial Stress Responses. Front. Microbiol. 2020, 11, 2111. [Google Scholar] [CrossRef]
- Heermann, R.; Lippert, M.-L.; Jung, K. Domain Swapping Reveals That the N-Terminal Domain of the Sensor Kinase KdpD in Escherichia coli Is Important for Signaling. BMC Microbiol. 2009, 9, 133. [Google Scholar] [CrossRef]
- Battesti, A.; Majdalani, N.; Gottesman, S. The RpoS-Mediated General Stress Response in Escherichia coli. Annu. Rev. Microbiol. 2011, 65, 189–213. [Google Scholar] [CrossRef] [PubMed]
- Majdalani, N.; Chattopadhyay, M.; Keller, C.; Gottesman, S. Lack of Polyamines Leads to Cotranslational Degradation of the General Stress Factor RpoS in Escherichia coli. J. Biol. Chem. 2023, 299, 104943. [Google Scholar] [CrossRef]
- Krahulcová, M.; Cverenkárová, K.; Olejníková, P.; Micajová, B.; Koreneková, J.; Bírošová, L. Characterization of Antibiotic Resistant Coliform Bacteria and Resistance Genes Isolated from Samples of Smoothie Drinks and Raw Milk. Foods 2022, 11, 1324. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Tay, M.Y.F.; Aung, K.T.; Seow, K.L.G.; Ng, L.C.; Purbojati, R.W.; Drautz-Moses, D.I.; Schuster, S.C.; Schlundt, J. Phenotypic and Genotypic Characterization of Antimicrobial Resistant Escherichia coli Isolated from Ready-to-Eat Food in Singapore Using Disk Diffusion, Broth Microdilution and Whole Genome Sequencing Methods. Food Control 2019, 99, 89–97. [Google Scholar] [CrossRef]
- Lima, L.M.; Silva, B.N.M.D.; Barbosa, G.; Barreiro, E.J. β-Lactam Antibiotics: An Overview from a Medicinal Chemistry Perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef]
- Schaffner, S.H.; Lee, A.V.; Pham, M.T.N.; Kassaye, B.B.; Li, H.; Tallada, S.; Lis, C.; Lang, M.; Liu, Y.; Ahmed, N.; et al. Extreme Acid Modulates Fitness Trade-Offs of Multidrug Efflux Pumps MdtEF-TolC and AcrAB-TolC in Escherichia coli K-12. Appl. Environ. Microbiol. 2021, 87, e00724-21. [Google Scholar] [CrossRef] [PubMed]
- Brauer, A.M.; Shi, H.; Levin, P.A.; Huang, K.C. Physiological and Regulatory Convergence between Osmotic and Nutrient Stress Responses in Microbes. Curr. Opin. Cell Biol. 2023, 81, 102170. [Google Scholar] [CrossRef]
- Wiktorczyk-Kapischke, N.; Skowron, K.; Grudlewska-Buda, K.; Wałecka-Zacharska, E.; Korkus, J.; Gospodarek-Komkowska, E. Adaptive Response of Listeria monocytogenes to the Stress Factors in the Food Processing Environment. Front. Microbiol. 2021, 12, 710085. [Google Scholar] [CrossRef]
- Hou, J.; Yin, X.-M.; Li, Y.; Han, D.; Lü, B.; Zhang, J.-Y.; Cui, H.-L. Biochemical Characterization of a Low Salt-Adapted Extracellular Protease from the Extremely Halophilic Archaeon Halococcus Salifodinae. Int. J. Biol. Macromol. 2021, 176, 253–259. [Google Scholar] [CrossRef]
- Ali, M.K.; Li, X.; Tang, Q.; Liu, X.; Chen, F.; Xiao, J.; Ali, M.; Chou, S.-H.; He, J. Regulation of Inducible Potassium Transporter KdpFABC by the KdpD/KdpE Two-Component System in Mycobacterium smegmatis. Front. Microbiol. 2017, 8, 570. [Google Scholar] [CrossRef] [PubMed]
- Rath, H.; Sappa, P.K.; Hoffmann, T.; Gesell Salazar, M.; Reder, A.; Steil, L.; Hecker, M.; Bremer, E.; Mäder, U.; Völker, U. Impact of High Salinity and the Compatible Solute Glycine Betaine on Gene Expression of Bacillus subtilis. Environ. Microbiol. 2020, 22, 3266–3286. [Google Scholar] [CrossRef]
- Abdelhamid, A.G.; Yousef, A.E. Collateral Adaptive Responses Induced by Desiccation Stress in Salmonella enterica. LWT 2020, 133, 110089. [Google Scholar] [CrossRef]
- Aljuwayd, M.; Malli, I.A.; Olson, E.G.; Ricke, S.C.; Rothrock, M.J.; Kwon, Y.M. Disinfectants and One Health Review: The Role of Reactive Oxygen Species in the Bactericidal Activity of Chlorine against Salmonella. One Health 2025, 20, 100989. [Google Scholar] [CrossRef] [PubMed]
- Mutz, Y.D.S.; Rosario, D.K.A.; Paschoalin, V.M.F.; Conte-Junior, C.A. Salmonella enterica: A Hidden Risk for Dry-Cured Meat Consumption? Crit. Rev. Food Sci. Nutr. 2020, 60, 976–990. [Google Scholar] [CrossRef]
- Morasi, R.M.; Da Silva, A.Z.; Nuñez, K.V.M.; Dantas, S.T.A.; Faganello, C.; Juliano, L.C.B.; Tiba-Casas, M.R.; Pantoja, J.C.F.; Amarante, A.F.; Júnior, A.F.; et al. Overview of Antimicrobial Resistance and Virulence Factors in Salmonella spp. Isolated in the Last Two Decades from Chicken in Brazil. Food Res. Int. 2022, 162, 111955. [Google Scholar] [CrossRef]
Gene Function | Gene Name | Primer Sequence (5′→3′) | Amplicon Sizes (bp) | Primer Source |
---|---|---|---|---|
Reference gene | 16S rRNA | F:CTCTTGCCATCAGATGTGCC R:TTCTTCATACACGCGGCATG | 201 | Design of this study |
K+ transport system | ktrB | F:GCGATACCGGACTTAGTTTG R:CCATTTTCGACCTGATTTC | 697 | Design of this study |
kdpC | F:ATGATCGGTTTACGTCCTGC R:CATTTCGCTCTGTGTCCCTG | 584 | Design of this study | |
trkE | F:CCACTACTCTGGTGGGGC R:ACCGCCAAACCATTGCAG | 77 | Design of this study | |
kuP | F:TGGTATTGCCGTCGTTAG R:CAGGAATGCGATGAGGAT | 467 | Design of this study | |
Osmoprotectant transport system | proU | F:TTACGCTCACGCCTACCC R:GGCAATCCTGTCGCCAAT | 241 | Design of this study |
Stress response regulator | rpoS | F:GGAACCCAGTGATAACGAC R:CAGTCCACGATTGCCATAA | 244 | Design of this study |
Antibiotic Categories | Antibiotic Name | Circle of Inhibition Judgement Standard (mm) | ||
---|---|---|---|---|
R | I | S | ||
β-lactam | ceftriaxone (CTR) imipenem (IPM) | ≤19 | 20–22 | ≥23 |
Aminoglycoside | gentamicin (GEN) | ≤12 | 13–14 | ≥15 |
Tetracycline | minocycline (MI) | ≤14 | 15–18 | ≥19 |
Quinolone | ciprofloxacin (CIP) | ≤20 | 21–30 | ≥31 |
Sulphonamide | trimethoprim-sulfamethoxazole (SXT) | ≤10 | 11–15 | ≥16 |
Chloramphenicol | chloramphenicol (C) | ≤12 | 13–17 | ≥18 |
Sample | Circle of Inhibition (mm) | ||||||
---|---|---|---|---|---|---|---|
CTR | GEN | IPM | MI | CIP | SXT | C | |
0d-4%NaCl S. D-WT | 20.73 (I) | 7.80 (R) | 21.97 (I) | 15.29 (I) | 9.92 (R) | 5.98 (R) | 6.04 (R) |
8d-4%NaCl S. D-WT | 29.05 (S) | 8.01 (R) | 26.3 (S) | 8.22 (R) | 14.65 (R) | 5.61 (R) | 5.60 (R) |
16d-4%NaCl S. D-WT | 31.75 (S) | 8.84 (R) | 28.31 (S) | 12.76 (R) | 17.94 (R) | 5.19 (R) | 6.30 (R) |
0d-16%NaCl S. D-WT | 23.58 (S) | 6.63 (R) | 20.91 (I) | 17.4 (I) | 13.65 (R) | 5.92 (R) | 5.89 (R) |
8d-16%NaCl S. D-WT | 31.04 (S) | 6.73 (R) | 28.75 (S) | 11.90 (R) | 14.92 (R) | 5.60 (R) | 5.53 (R) |
16d-16%NaCl S. D-WT | 31.54 (S) | 11.37 (R) | 32.49 (S) | 13.28 (R) | 15.28 (R) | 6.13 (R) | 7.56 (R) |
0d-4%NaCl S. D-OT | 28.80 (S) | 13.77 (I) | 23.21 (S) | 19.74 (S) | 31.30 (S) | 21.64 (S) | 29.31 (S) |
8d-4%NaCl S. D-OT | 30.62 (S) | 24.23 (S) | 26.82 (S) | 15.07 (I) | 34.86 (S) | 23.92 (S) | 25.47 (S) |
16d-4%NaCl S. D-OT | 41.61 (S) | 36.59 (S) | 25.16 (S) | 19.19 (S) | 41.38 (S) | 19.50 (S) | 31.75 (S) |
0d-16%NaCl S. D-OT | 23.13 (S) | 13.83 (I) | 21.04 (I) | 16.69 (I) | 27.78 (I) | 22.29 (S) | 21.51 (S) |
8d-16%NaCl S. D-OT | 32.51 (S) | 28.31 (S) | 27.21 (S) | 12.68 (R) | 38.73 (S) | 26.55 (S) | 30.39 (S) |
16d-16%NaCl S. D-OT | 39.19 (S) | 33.21 (S) | 23.61 (S) | 15.82 (I) | 42.17 (S) | 26.58 (S) | 30.90 (S) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Li, X.; Wang, J.; Zhao, Y.; Meng, J.; Zhai, L. Unveiling Salmonella Derby Survival: Stress Responses to Prolonged Hyperosmotic Stress. Foods 2025, 14, 1440. https://doi.org/10.3390/foods14091440
Gong Y, Li X, Wang J, Zhao Y, Meng J, Zhai L. Unveiling Salmonella Derby Survival: Stress Responses to Prolonged Hyperosmotic Stress. Foods. 2025; 14(9):1440. https://doi.org/10.3390/foods14091440
Chicago/Turabian StyleGong, Yingting, Xiaoxuan Li, Junying Wang, Yanyan Zhao, Jingnan Meng, and Ligong Zhai. 2025. "Unveiling Salmonella Derby Survival: Stress Responses to Prolonged Hyperosmotic Stress" Foods 14, no. 9: 1440. https://doi.org/10.3390/foods14091440
APA StyleGong, Y., Li, X., Wang, J., Zhao, Y., Meng, J., & Zhai, L. (2025). Unveiling Salmonella Derby Survival: Stress Responses to Prolonged Hyperosmotic Stress. Foods, 14(9), 1440. https://doi.org/10.3390/foods14091440