Nutritional and Antioxidant Enhancement of Pasta Enriched with Parota Flour (Enterolobium cyclocarpum): A Functional Food Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procurement of Parota Flour (PF)
2.2. Pasta Production Process
2.3. Proximate Chemical Composition
2.4. Fiber Content Determination
2.5. Swelling Index and Water Absorption
2.6. Instrumental Color Analysis Determination
2.7. Phenolic Compounds
2.8. Antioxidant Capacity (ABTS Method)
2.9. Reducing Power
2.10. Statistical Analysis
3. Results and Discussion
3.1. Proximte Chemical Composition of Cooked Pastas
3.2. Dietary Fiber Content
3.3. Color Determination
3.4. Cooking Quality
3.5. Phenolic Compounds, Antioxidant Capacity, and Reducing Power
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Brennan, M.A.; Serventi, L.; Brennan, C.S. Impact of functional vegetable ingredients on the technical and nutritional quality of pasta. Crit. Rev. Food Sci. Nutr. 2022, 62, 6069–6080. [Google Scholar] [CrossRef]
- Estrada-León, R.J.; Moo-Huchin, V.M.; Ríos-Soberanis, C.R.; Betancur-Ancona, D.; May-Hernández, L.H.; Carrillo-Sánchez, F.A.; Cervantes-Uc, J.M.; Pérez-Pacheco, E. The effect of isolation method on properties of parota (Enterolobium cyclocarpum) starch. Food Hydrocoll. 2016, 57, 1–9. [Google Scholar] [CrossRef]
- Zavala Álvarez, J.; Martínez Partida, J.A.; Gastélum López, L.d.C. La organización de productores de trigo de Baja California. Polis 2022, 18, 185–214. [Google Scholar]
- Ainsa, A.; Roldan, S.; Marquina, P.L.; Roncalés, P.; Beltrán, J.A.; Calanche Morales, J.B. Quality parameters and technological properties of pasta enriched with a fish by-product: A healthy novel food. J. Food Process. Preserv. 2022, 46, e16261. [Google Scholar] [CrossRef]
- Ekanem, N.; Inyang, U.; Ikwunze, K. Chemical composition, secondary metabolites and nutritive value of elephant-ear tree (Enterolobium cyclocarpum (Jacq.) Griseb): A review. Niger. J. Anim. Prod. 2022, 49, 277–286. [Google Scholar] [CrossRef]
- Canto-Pinto, J.C.; Pérez-Pacheco, E.; Ríos-Soberanis, C.R.; Ortiz-Fernández, A.; Estrada-León, R.J.; Moo-Huchin, V.M.; Pérez-Padilla, Y. Effects of Acetylation on the Morphological, Physicochemical, and Thermal Properties of Enterolobium cyclocarpum Starch. ChemistrySelect 2024, 9, e202402235. [Google Scholar] [CrossRef]
- Pérez-Pacheco, E.; Ortiz-Fernández, A.; Ríos-Soberanis, C.; Estrada-León, R.; Moo-Huchín, V.; Pérez-Padilla, Y.; Canto-Pinto, J.C.; Dzul-Cervantes, M.A. Characterization of Unconventional Sources of Starch: Physicochemical and Thermal Properties. Res. Sq. 2024. preprint. [Google Scholar]
- AOAC 925.10; Moisture in Flour. Official Methods of Analysis of AOAC International. AOAC International: Gaithersburg, MD, USA, 2019.
- AOAC 923.03; Ash in Flour. Official Methods of Analysis of AOAC International. AOAC International: Gaithersburg, MD, USA, 2019.
- AOAC 984.13; Crude Protein in Animal Feed, Forage (Alternative II), Grain and Oilseed Products. Official Methods of Analysis of AOAC International. AOAC International: Gaithersburg, MD, USA, 2019.
- AOAC 920.39; Fat (Crude) in Flour. Official Methods of Analysis of AOAC International. AOAC International: Gaithersburg, MD, USA, 2019.
- AOAC 985.29; Total Dietary Fiber in Foods—Enzymatic-Gravimetric Method. Official Methods of Analysis of AOAC International. AOAC International: Gaithersburg, MD, USA, 2019.
- AOAC 920.87; Protein (Crude) in Flour. Official Methods of Analysis of AOAC International. AOAC International: Gaithersburg, MD, USA, 2019.
- DeVries, J.W.; Rader, J.I. Historical perspective as a guide for identifying and developing applicable methods for dietary fiber. J. AOAC Int. 2005, 88, 1349–1366. [Google Scholar] [CrossRef] [PubMed]
- AOAC 991.42; Insoluble Dietary Fiber in Foods—Enzymatic-Gravimetric Method. Official Methods of Analysis of AOAC International. AOAC International: Gaithersburg, MD, USA, 2019.
- AOAC 991.43; Total, Soluble, and Insoluble Dietary Fiber in Foods—Enzymatic-Gravimetric Method. Official Methods of Analysis of AOAC International. AOAC International: Gaithersburg, MD, USA, 2019.
- Cleary, L.; Brennan, C. The influence of a (1→3)(1→4)-β-d-glucan rich fraction from barley on the physico-chemical properties and in vitro reducing sugars release of durum wheat pasta. Int. J. Food Sci. Technol. 2006, 41, 910–918. [Google Scholar] [CrossRef]
- AACC Method 66-50.01; Pasta and Noodle Cooking Quality—Firmness. Approved Methods of Analysis. American Association of Cereal Chemists International: St. Paul, MN, USA, 2010.
- Moo-Huchin, V.M.; Estrada-Mota, I.; Estrada-León, R.; Cuevas-Glory, L.; Ortiz-Vázquez, E.; Vargas, M.d.L.V.y.; Betancur-Ancona, D.; Sauri-Duch, E. Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico. Food Chem. 2014, 152, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J. A new method for measuring antioxidant activity. Biochem. Soc. Trans. 1993, 21, 95S. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.-C.; Chen, H.-Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Romano, A.; Ferranti, P.; Gallo, V.; Masi, P. New ingredients and alternatives to durum wheat semolina for a high quality dried pasta. Curr. Opin. Food Sci. 2021, 41, 249–259. [Google Scholar] [CrossRef]
- Sissons, M. Development of Novel Pasta Products with Evidence Based Impacts on Health—A Review. Foods 2022, 11, 123. [Google Scholar] [CrossRef]
- Bresciani, A.; Pagani, M.A.; Marti, A. Pasta-Making Process: A Narrative Review on the Relation between Process Variables and Pasta Quality. Foods 2022, 11, 256. [Google Scholar] [CrossRef]
- Serratos Arévalo, J.C.; Carreón Amaya, J.; Castañeda Vázquez, H.; Garzón De la Mora, P.; García Estrada, J. Composición químico-nutricional y de factores antinutricionales en semillas de parota (enterolobium cyclocarpum). Interciencia 2008, 33, 850–854. [Google Scholar]
- Amri, Z.; Bhouri, A.M.; Dhibi, M.; Hammami, M.; Hammami, S.; Mechri, B. Nutritional composition, lipid profile and stability, antioxidant activities and sensory evaluation of pasta enriched by linseed flour and linseed oil. BMC Biotechnol. 2024, 24, 31. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products—Characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 2022, 60, 1388–1416. [Google Scholar] [CrossRef]
- WHO. Healthy Diet: Key Facts. Available online: https://www.who.int/es/news-room/fact-sheets/detail/healthy-diet (accessed on 1 December 2024).
- Demir, B.; Bilgiçli, N. Utilization of quinoa flour (Chenopodium quinoa Willd.) in gluten-free pasta formulation: Effects on nutritional and sensory properties. Food Sci. Technol. Int. 2021, 27, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Messia, M.C.; Cuomo, F.; Falasca, L.; Trivisonno, M.C.; De Arcangelis, E.; Marconi, E. Nutritional and Technological Quality of High Protein Pasta. Foods 2021, 10, 589. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, M.; Hartmann, C. Consumer acceptance of novel food technologies. Nat. Food 2020, 1, 343–350. [Google Scholar] [CrossRef]
- Demir, B.; Bilgiçli, N. Changes in chemical and anti-nutritional properties of pasta enriched with raw and germinated quinoa (Chenopodium quinoa Willd.) flours. J. Food Sci. Technol. 2020, 57, 3884–3892. [Google Scholar] [CrossRef] [PubMed]
- Gazza, L.; Nocente, F. Innovative Pasta with High Nutritional and Health Potential. Foods 2022, 11, 2448. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Ferrari, L.; Panaite, S.-A.; Bertazzo, A.; Visioli, F. Animal- and Plant-Based Protein Sources: A Scoping Review of Human Health Outcomes and Environmental Impact. Nutrients 2022, 14, 5115. [Google Scholar] [CrossRef]
- Detzel, A.; Krüger, M.; Busch, M.; Blanco-Gutiérrez, I.; Varela, C.; Manners, R.; Bez, J.; Zannini, E. Life cycle assessment of animal-based foods and plant-based protein-rich alternatives: An environmental perspective. J. Sci. Food Agric. 2022, 102, 5098–5110. [Google Scholar] [CrossRef]
- Bouasla, A.; Wójtowicz, A.; Zidoune, M.N. Gluten-free precooked rice pasta enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. LWT 2017, 75, 569–577. [Google Scholar] [CrossRef]
- Hassan, O.M.S.; Di Folco, U.; Nardone, M.R.; Tubili, F.; Tubili, C. Fiber enrichment of pasta: Metabolic effects and diet adherence in obese subjects. Mediterr. J. Nutr. Metab. 2020, 13, 53–62. [Google Scholar] [CrossRef]
- Ortolan, F.; Steel, C.J. Protein Characteristics that Affect the Quality of Vital Wheat Gluten to be Used in Baking: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Cimini, A.; Cibelli, M.; Taddei, A.R.; Moresi, M. Effect of cooking temperature on cooked pasta quality and sustainability. J. Sci. Food Agric. 2021, 101, 4946–4958. [Google Scholar] [CrossRef] [PubMed]
- Ainsa, A.; Honrado, A.; Marquina, P.L.; Roncalés, P.; Beltrán, J.A.; Calanche, M.J.B. Innovative Development of Pasta with the Addition of Fish By-Products from Two Species. Foods 2021, 10, 1889. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Wang, T.; Luo, Y. A review on plant-based proteins from soybean: Health benefits and soy product development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Schmidt, H.d.O.; Oliveira, V.R.d. Overview of the Incorporation of Legumes into New Food Options: An Approach on Versatility, Nutritional, Technological, and Sensory Quality. Foods 2023, 12, 2586. [Google Scholar] [CrossRef]
- la Gatta, B.; Rutigliano, M.; Liberatore, M.T.; Dilucia, F.; Spadaccino, G.; Quinto, M.; Di Luccia, A. Preservation of bioactive compounds occurring in fresh pasta fortified with artichoke bracts and tomato powders obtained with a novel pre-treatment. LWT 2023, 187, 115298. [Google Scholar] [CrossRef]
Sample | Moisture (%) | Ashes (%) | Fat (%) | Protein (%) |
---|---|---|---|---|
PS0 | 5.24 ± 0.01 a | 0.76 ± 0.01 b | 0.44 ± 0.01 a | 13.41 ± 0.18 a |
PP10 | 5.97 ± 0.01 a | 0.40 ± 0.01 a | 0.57 ± 0.03 a | 17.01 ± 0.01 b |
PP30 | 5.41 ± 0.01 a | 0.81 ± 0.01 b | 0.91± 0.05 b | 19.38 ± 0.61 c |
PP50 | 5.75 ± 0.03 a | 1.25 ± 0.06 c | 1.34 ± 0.08 c | 22.06 ± 0.28 d |
Sample | Total Dietary Fiber (g/100 g) | Soluble Fiber (g/100 g) | Insoluble Fiber (g/100 g) |
---|---|---|---|
PS0 | 9.5 ± 0.1 a | 1.12 ± 0.1 a | 8.42 ± 0.1 a |
PP10 | 15.8 ± 0.1 b | 4.04 ± 0.1 d | 11.84 ± 0.1 b |
PP30 | 19.4 ± 0.1 c | 2.14 ± 0.1 c | 17.26 ± 0.1 c |
PP50 | 22.1 ± 0.1 d | 1.94 ± 0.1 b | 20.18 ± 0.1 d |
Sample | L* | a* | b* | Tone (°hue) | Chromaticity (C*) |
---|---|---|---|---|---|
PS0 | 80.42 ± 0.31 a | 0.79 ± 0.04 a | 25.62 ± 0.23 a | 88.22 ± 0.09 b | 25.63 ± 0.23 a |
PP10 | 80.36 ± 0.11 a | 1.17 ± 0.05 b | 30.40 ± 0.52 b | 87.79 ± 0.06 a | 30.42 ± 0.52 b |
PP30 | 80.30 ± 0.08 a | 0.75 ± 0.04 a | 30.30 ± 0.31 b | 88.58 ± 0.07 c | 30.31 ± 0.31 b |
PP50 | 79.61 ± 0.39 a | 1.26 ± 0.01 b | 31.28 ± 0.15 b | 87.68 ± 0.02 a | 31.31± 0.15 b |
Fettuccine Pasta | Cooking Time (min) | Cooking Loss (%) | Pasta Weight Cooked (g/100 g) | Weight Increase (g/g) | Water Absorption (%) |
---|---|---|---|---|---|
PS0 | 11 ± 0.1 b | 5 ± 0.1 a | 26 ± 0.1 d | 1.92 ± 0.1 d | 160 ± 0.3 d |
PP10 | 8 ± 0.1 a | 5 ± 0.2 a | 24.3 ± 0.1 c | 1.89 ± 0.1 c | 143 ± 0.5 c |
PP30 | 8 ± 0.1 a | 6 ± 0.1 b | 23 ± 0.1 b | 1.61 ± 0.1 a | 130 ± 0.4 b |
PP50 | 8 ± 0.1 a | 6 ± 0.1 b | 21.3± 0.1 a | 1.63 ± 0.1 b | 113 ± 0.3 a |
Equivalent to Gallic Acid (mg/100 g) | Equivalent to Trolox (µM/100 g) ABTS | Equivalent to Vitamin C (mg/100 g) | |
---|---|---|---|
Sample | Phenolic Compounds | Reducing Power | |
PS0 | Not detected | Not detected | 5.81 ± 0.13 a |
PP10 | 1.58 ± 0.01 a | 16.54 ± 4.24 a | 17.93 ± 0.23 b |
PP30 | 7.31 ± 1.87 b | 51.59 ± 1.43 b | 25.61. ± 1.15 c |
PP50 | 23.35 ± 1.24 c | 61.78 ± 1.43 c | 40.19 ± 2.08 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moo-Huchin, V.M.; Canto-Pinto, J.C.; Ku-Canul, C.Y.; Estrada-León, R.J.; Ortiz-Fernández, A.; Ríos-Soberanis, C.R.; Sauri-Duch, E.; Aguilar-Vázquez, F.J.; Pérez-Pacheco, E. Nutritional and Antioxidant Enhancement of Pasta Enriched with Parota Flour (Enterolobium cyclocarpum): A Functional Food Approach. Foods 2025, 14, 1521. https://doi.org/10.3390/foods14091521
Moo-Huchin VM, Canto-Pinto JC, Ku-Canul CY, Estrada-León RJ, Ortiz-Fernández A, Ríos-Soberanis CR, Sauri-Duch E, Aguilar-Vázquez FJ, Pérez-Pacheco E. Nutritional and Antioxidant Enhancement of Pasta Enriched with Parota Flour (Enterolobium cyclocarpum): A Functional Food Approach. Foods. 2025; 14(9):1521. https://doi.org/10.3390/foods14091521
Chicago/Turabian StyleMoo-Huchin, Víctor Manuel, Jorge Carlos Canto-Pinto, Cindialy Yuliet Ku-Canul, Raciel Javier Estrada-León, Alejandro Ortiz-Fernández, Carlos Rolando Ríos-Soberanis, Enrique Sauri-Duch, Félix José Aguilar-Vázquez, and Emilio Pérez-Pacheco. 2025. "Nutritional and Antioxidant Enhancement of Pasta Enriched with Parota Flour (Enterolobium cyclocarpum): A Functional Food Approach" Foods 14, no. 9: 1521. https://doi.org/10.3390/foods14091521
APA StyleMoo-Huchin, V. M., Canto-Pinto, J. C., Ku-Canul, C. Y., Estrada-León, R. J., Ortiz-Fernández, A., Ríos-Soberanis, C. R., Sauri-Duch, E., Aguilar-Vázquez, F. J., & Pérez-Pacheco, E. (2025). Nutritional and Antioxidant Enhancement of Pasta Enriched with Parota Flour (Enterolobium cyclocarpum): A Functional Food Approach. Foods, 14(9), 1521. https://doi.org/10.3390/foods14091521