Lignan Content in Cereals, Buckwheat and Derived Foods
Abstract
:1. Introduction
2. Experimental Section
2.1. Evaluation and Selection of Available Lignan Data
2.2. Database Construction
3. Results and Discussion
Foods | Seco | Mat | Lari | Pino | Unit | Origin, composition and/or treatment | Reference |
---|---|---|---|---|---|---|---|
Grains | |||||||
Barley | 30 | 3 | 85 | 72 | μg/100 g wet basis | Local markets; dehulled | Penãlvo et al. [15] |
Barley | 28 | n.d. | 132 | 45 | μg/100 g dry weight | Italian farms; 2 cultivars; dehulled | Durazzo et al. [40] |
Buckwheat | 131 | 1 | 362 | 92 | μg/100 g wet basis | Local markets | Penãlvo et al. [15] |
Durum wheat | n.d. | n.d. | 76 | n.d. | μg/100 g dry weight | Italian farms; 2 cultivars | Durazzo et al. [40] |
Emmer | 29 | n.d. | 104 | n.d. | μg/100 g dry weight | Italian farms; 2 cultivars | Durazzo et al. [40] |
Maize | 12 | n.d. | 11 | 0 | μg/100 g dry weight | Italian farms; 3 cultivars | Durazzo et al. [40] |
Millet | 67 | 3 | 20 | 85 | μg/100 g wet basis | Local markets | Penãlvo et al. [15] |
Oat | 19 | 71 | 183 | 194 | μg/100 g wet basis | Local markets | Penãlvo et al. [15] |
Oat | n.d. | n.d. | 97 | 304 | μg/100 g dry weight | Italian farms; 2 cultivars; dehulled | Durazzo et al. [40] |
Oat | 6–13 | 0–104 | 340–599 | 214–683 | μg/100 g wet basis | Fifty-five spring oat samples of 5 different cultivars | Smeds et al. [14] |
Rice | 15 | n.d. | 128 | 29 | μg/100 g dry weight | Italian farms; 3 cultivars | Durazzo et al. [40] |
Rye | 38 | 27 | 324 | 381 | μg/100 g wet basis | Local markets | Penãlvo et al. [15] |
Rye | 25 | n.d. | 100 | n.d. | μg/100 g dry weight | Italian farms; 2 cultivars | Durazzo et al. [40] |
Rye | 10–29 | 18–45 | 76–177 | 176–313 | μg/100 g wet basis | Twenty-eight winter rye samples of 6 different cultivars | Smeds et al. [14] |
Soft wheat | n.d. | n.d. | 58 | n.d. | μg/100 g dry weight | Italian farms; 2 cultivars | Durazzo et al. [40] |
Soft Wheat | 35 | 3 | 62 | 37 | μg/100 g wet basis | Local markets | Penãlvo et al. [15] |
Soft Wheat | 20–43 | n.d. | 45–95 | 53–83 | μg/100 g wet basis | Seventy-three spring wheat samples of 9 different cultivars | Smeds et al. [14] |
Spelt | 26 | n.d. | 83 | n.d. | μg/100 g dry weight | Italian farms; 2 cultivars | Durazzo et al. [40] |
Triticale | n.d. | n.d. | 58 | n.d. | μg/100 g dry weight | Italian farms; 2 cultivars | Durazzo et al. [40] |
Brans and flours | |||||||
Durum wheat bran | n.d. | n.d. | 220 | 181 | μg/100 g dry weight | Two cultivars | Durazzo et al. [41] |
Soft wheat bran | 370 | n.d. | 459 | 386 | μg/100 g dry weight | One cultivar | Durazzo et al. [41] |
Soft wheat | 31 | 0 | 140 | 38 | μg/100 g wet basis | Supermarkets; wholemeal | Milder et al. [11] |
Soft wheat | 0 | 0 | 18 | 9 | μg/100 g wet basis | Supermarkets; whiteflour | Milder et al. [11] |
Soft wheat | 16 | n.d. | 34 | n.d. | μg/100 g dry weight | Supermarkets; whiteflour | Durazzo et al. [43] |
Bread | |||||||
Currant/raisin | 9 | 7 | 79 | 9 | μg/100 g wet basis | Two supermarkets and a local bakery | Milder et al. [11] |
Flaxseed (whole) | 11,845 | 26 | 220 | 383 | μg/100 g wet basis | Two supermarkets and a local bakery | Milder et al. [11] |
Flaxseed | 7208 | 0 | 29 | 2 | μg/100 g wet basis | Dempsters; pre-sliced | Thompson et al. [12] |
Multi-grains | 6163 | 19 | 185 | 377 | μg/100 g wet basis | Two supermarkets and a local bakery | Milder et al. [11] |
Multi-grains | 4770 | 1 | 10 | 4 | μg/100 g wet basis | Dempsters; pre-sliced | Thompson et al. [12] |
Oat | 7 | 0 | 4 | 11 | μg/100 g wet basis | Wheat and oats with honey; pre-sliced | Thompson et al. [12] |
Rye (dark type) | 13 | 14 | 122 | 172 | μg/100 g wet basis | Two supermarkets and a local bakery | Milder et al. [11] |
Rye (light type) | 16 | 12 | 111 | 163 | μg/100 g wet basis | Two supermarkets and a local bakery | Milder et al. [11] |
Rye | 122 | 0 | 11 | 9 | μg/100 g wet basis | Jagdschnitten hunter style, Dimpflmeier; pre-sliced | Thomson et al. [12] |
Rye | 33 | 4 | 47 | 44 | μg/100 g wet basis | Local markets in Tokio; (50% rye) | Penãlvo et al. [16] |
Rye | 7 | 1 | 18 | 16 | μg/100 g wet basis | Local markets in Tokio; (30% rye) | Penãlvo et al. [16] |
Sesame | 3 | 0 | 8 | 42 | μg/100 g wet basis | Dempsters; pre-sliced | Thompson et al. [12] |
Wheat (whole type) | 3 | 0 | 5 | 1 | μg/100 g wet basis | Original 100%, Dempsters; pre-sliced | Thompson et al. [12] |
Wheat (whole type) | 15 | 0 | 73 | 33 | μg/100 g wet basis | Two supermarkets and a local bakery | Milder et al. [11] |
Wheat (refined type) | 17 | 0 | 38 | 28 | μg/100 g wet basis | Two supermarkets and a local bakery | Milder et al. [11] |
Wheat (white type) | 0 | 0 | 11 | 7 | μg/100 g wet basis | Two supermarkets and a local bakery | Milder et al. [11] |
Wheat (white type) | 1 | 0 | 2 | 1 | μg/100 g wet basis | Enriched, Wonder; pre-sliced | Thompson et al. [12] |
Cereals staple foods | |||||||
Couscous (cooked) | 2 | n.d. | 0 | n.d. | μg/100 g wet basis | President’s choice; cooked in water | Thompson et al. [12] |
Macaroni (cooked) | 4 | 0 | 7 | 5 | μg/100 g wet basis | White, boiled | Milder et al. [11] |
Rice (cooked) | 3 | 2 | 28 | 7 | μg/100 g wet basis | Supermarket; whole grain, boiled | Milder et al. [11] |
Rice (cooked) | 0 | 0 | 7 | 0 | μg/100 g wet basis | Supermarket; white, boiled | Milder et al. [11] |
Rice (cooked) | 0 | 0 | 3 | 1 | μg/100 g wet basis | White, converted long grain, Uncle Ben’s; cooked in water | Thompson et al. [12] |
Semolina pasta (raw) | 22 | n.d. | 26 | 27 | μg/100 g dry weight | Market; three different brands | Durazzo et al. [41] |
Breakfast cereals | |||||||
Brand 1 | 7 | n.d. | 79 | 69 | μg/100 g dry weight | Market; cereals 48.4% (whole oat flour 35.8%; maize flour), wheat germ | Durazzo et al. [41] |
Brand 2 | 20 | n.d. | 97 | 131 | μg/100 g dry weight | Market; whole cereals (54%) (flour of whole oat, whole rice, whole wheat), cereal agglomerate (19%), oat bran, barley malt | Durazzo et al. [41] |
Brand 3 | n.d. | n.d. | 99 | 187 | μg/100 g dry weight | Market; cornflakes and bran (31.5%), toasted oatmeal (30%), rice aggregate and bran (25%), sugar-coated barley flakes (9%), almonds (4.5%) | Durazzo et al. [41] |
Cheerios | 9 | 1 | 3 | 0 | μg/100 g wet basis | General Mills | Thompson et al. [12] |
Muesli | 17 | 0 | 250 | 497 | μg/100 g wet basis | Jordans, crunchy | Milder et al. [11] |
Muesli | 13 | 0 | 120 | 210 | μg/100 g wet basis | Albert Heijn, basic | Milder et al. [11] |
Muesli | 17 | 0 | 63 | 129 | μg/100 g wet basis | Edah, crunchy | Milder et al. [11] |
Oatmeal | 1 | 0 | 4 | 2 | μg/100 g wet basis | Dempsters; quick cooking, boiled in water | Thompson et al. [12] |
Raisin Bran | 15 | 0 | 17 | 1 | μg/100 g wet basis | Kellogg’s | Thompson et al. [12] |
Other cereal products | |||||||
Compressed puffed rice | 23 | n.d. | 82 | 22 | μg/100 g dry weight | Market; white rice and dehulled rice | Durazzo et al. [41] |
Puffed barley | 26 | n.d. | 143 | 48 | μg/100 g dry weight | Market; whole barley | Durazzo et al. [41] |
Wholegrain biscuits | 28 | n.d. | 25 | 23 | μg/100 g dry weight | Market; wheat flour (51%), barley flakes (3%), rye flakes (1.8%), rice flour (1.7%), oatmeal (1.3%), maize flour (1.2%), wheat malt | Durazzo et al. [41] |
Granola bar | 3 | 2 | 8 | 14 | μg/100 g wet basis | Nature Valley, with almond | Thompson et al. [12] |
Acknowledgments
Conflicts of Interest
References
- Bertram, H.C.; Bach Knudsen, K.E.; Serena, A.; Malmendal, A.; Nielsen, N.C.; Fretté, X.C.; Andersen, H.J. NMR-based metabonomic studies reveal changes in the biochemical profile of plasma and urine from pigs fed high-fibre rye bread. Br. J. Nutr. 2006, 95, 955–962. [Google Scholar] [CrossRef]
- Adlercreutz, H. Lignans and human health. Crit. Rev. Clin. Lab. Sci. 2007, 44, 483–525. [Google Scholar] [CrossRef]
- Miur, A.D. Flax lignans: New opportunities for functional foods. Food Sci. Technol. Bull. Funct. Foods 2010, 6, 61–79. [Google Scholar] [CrossRef]
- Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutr. Rev. 2010, 68, 571–603. [Google Scholar] [CrossRef]
- Ayres, D.C.; Loike, J.D. Lignans Chemical, Biological and Clinical Properties. In Chemistry & Pharmacology of Natural Products; Phillipson, J.D., Ayres, D.C., Baxter, H., Eds.; Cambridge University Press: Cambridge, UK, 1990; p. 402. [Google Scholar]
- Mazur, W.M.; Adlercreutz, H. Natural and anthropogenic environmental estrogens: The scientific basis for risk assessment; naturally occurring estrogens in food. Pure Appl. Chem. 1998, 70, 1759–1776. [Google Scholar] [CrossRef]
- Imai, T.; Nomura, M.; Fukushima, K. Evidence for involvement of the phenylpropanoid pathway in the biosynthesis of the norlignan agatharesinol. J. Plant Physiol. 2006, 163, 483–487. [Google Scholar] [CrossRef]
- Hemmati, S.; Heimendahl, C.B.; Klaes, M.; Alfermann, A.W.; Schmidt, T.J.; Fuss, E. Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Planta Med. 2010, 76, 928–934. [Google Scholar] [CrossRef]
- Umezawa, T. Diversity in lignan biosynthesis. Phytochem. Rev. 2003, 2, 371–390. [Google Scholar] [CrossRef]
- Saleem, M.; Kim, H.J.; Ali, M.S.; Lee, Y.S. An update on bioactive plant lignans. Nat. Prod. Rep. 2005, 22, 696–716. [Google Scholar] [CrossRef]
- Milder, I.E.; Arts, I.C.; van de Putte, B.; Venema, D.P.; Hollman, P.C. Lignan contents of Dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br. J. Nutr. 2005, 93, 393–402. [Google Scholar] [CrossRef]
- Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans and coumestan. Nutr. Cancer 2006, 54, 184–201. [Google Scholar] [CrossRef]
- Smeds, A.I.; Eklund, P.C.; Sjöholm, R.E.; Willför, S.M.; Nishibe, S.; Deyama, T.; Holmbomet, B.R. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J. Agric. Food Chem. 2007, 55, 1337–1346. [Google Scholar] [CrossRef]
- Smeds, A.I.; Jauhiainen, L.; Tuomola, E.; Peltonen-Sainio, P. Characterization of variation in the lignan content and composition of winter rye, spring wheat and spring oat. J. Agric. Food Chem. 2009, 57, 5837–5842. [Google Scholar] [CrossRef]
- Peñalvo, J.L.; Haajanen, K.M.; Botting, N.; Adlercreutz, H. Quantification of lignans in food using isotope dilution gas chromatography/mass spectrometry. J. Agric. Food Chem. 2005, 53, 9342–9347. [Google Scholar] [CrossRef]
- Peñalvo, J.L.; Adlercreutz, H.; Uehara, M.; Ristimaki, A.; Watanabe, S. Lignan content of selected foods from Japan. J. Agric. Food Chem. 2008, 56, 401–409. [Google Scholar]
- Thompson, L.U.; Robb, P.; Serraino, M.; Cheung, F. Mammalian lignan production from various foods. Nutr. Cancer 1991, 16, 43–52. [Google Scholar] [CrossRef]
- Mazur, W. Phytoestrogen content in foods. Baillieres Clin. Endocrinol. Metab. 1998, 12, 729–742. [Google Scholar] [CrossRef]
- Muir, A.D.; Westcott, N.D. Flaxseed Constituents and Human Health. In Flax: the Genus Linum; Muir, A.D., Westcott, N.D., Eds.; Taylor & Francis: London, UK, 2003; pp. 243–251. [Google Scholar]
- Holmbom, B.; Eckerman, C.; Eklund, P.; Hemming, J.; Nisula, L.; Reunanen, M.; Sjöholm, R.; Sundberg, A.; Sundberg, K.; Willför, S. Knots in trees—A new rich source of lignans. Phytochem. Rev. 2003, 2, 331–340. [Google Scholar] [CrossRef]
- Axelson, M.; Sjövall, J.; Gustafsson, B.E.; Setchell, K.D.R. Origin of lignans in mammals and identification of a precursor from plants. Nature 1982, 298, 659–660. [Google Scholar] [CrossRef]
- Borriello, S.P.; Setchell, K.D.R.; Axelson, M.; Lawson, A.M.J. Production and metabolism of lignans by the human faecal flora. Appl. Bacteriol. 1985, 58, 37–43. [Google Scholar] [CrossRef]
- Setchell, K.D.R.; Adlercreutz, H. Mammalian Lignans and Phytoestrogens: Recent Studies on Their Formation, Metabolism and Biological Role in Health and Disease. In Role of Gut Flora in Toxicity and Cancer; Rowland, I. R., Ed.; Academic Press: San Diego, CA, USA, 1988; pp. 315–345. [Google Scholar]
- Rowland, I.; Wiseman, H.; Sanders, T.; Adlercreutz, H.; Bowey, E. Interindividual variation in metabolism of isoflavonoids and lignans: The role of the gut microflora and habitual diet. Nutr. Cancer 2000, 36, 27–32. [Google Scholar] [CrossRef]
- Heinonen, S.; Nurmi, T.; Liukkonen, K.; Poutanen, K.; Wähälä, K.; Deyama, T.; Nishibe, S.; Adlercreutz, H. In vitro metabolism of plant lignans: New precursors of mammalian lignans enterolactone and enterodiol. J. Agric. Food Chem. 2001, 49, 3178–3186. [Google Scholar] [CrossRef]
- Penãlvo, J.L.; Nurmi, T.; Haajanen, K.; Al-Maharik, N.; Botting, N.; Adlercreutz, H. Determination of lignans in human plasma by liquid chromatography with coulometric electrode array detection. Anal. Biochem. 2004, 332, 384–393. [Google Scholar] [CrossRef]
- Webb, A.L.; McCullough, M.L. Dietary lignans: Potential role in cancer prevention. Nutr. Cancer 2005, 51, 117–131. [Google Scholar] [CrossRef]
- Bergman Jungestrom, M.; Thompson, L.U.; Dabrosin, C. Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin. Cancer Res. 2007, 13, 1061–1067. [Google Scholar] [CrossRef]
- Saarinen, N.M.; Warri, A.; Airio, M.; Smeds, A.; Makela, S. Role of dietary lignans in the reduction of breast cancer risk. Mol. Nutr. Food Res. 2007, 51, 857–866. [Google Scholar] [CrossRef]
- Bloedon, L.T.; Balikai, S.; Chittams, J.; Cunnane, S.C.; Berlin, J.A.; Rader, D.J.; Szapary, P.O. Flaxseed and cardiovascular risk factors: Results from a double blind, randomized, controlled clinical trial. J. Am. Coll. Nutr. 2008, 27, 65–74. [Google Scholar]
- Prasad, K. Flaxseed and cardiovascular health. J. Cardiovasc. Pharmacol. 2009, 54, 369–377. [Google Scholar] [CrossRef]
- Velentzis, L.S.; Cantwell, M.M.; Cardwell, C.; Keshtgar, M.R.; Leathem, A.J.; Woodside, J.V. Lignans and breast cancer risk in pre- and post-menopausal women: Meta-analyses of observational srudies. Br. J. Cancer 2009, 100, 1492–1498. [Google Scholar] [CrossRef] [Green Version]
- Adolphe, J.L.; Whiting, S.J.; Juurlink, B.H.; Thorpe, L.U.; Alcorn, J. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br. J. Nutr. 2010, 103, 929–938. [Google Scholar] [CrossRef]
- Saarinen, N.M.; Tuominen, J.; Pylkkänen, L.; Santti, R. Assessment of information to substantiate a health claim on the prevention of prostate cancer by lignans. Nutrients 2010, 2, 99–115. [Google Scholar] [CrossRef]
- Buck, K.; Zaineddin, A.K.; Vrieling, A.; Linseisen, J.; Chang-Claude, J. Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am. J. Clin. Nutr. 2010, 92, 141–153. [Google Scholar] [CrossRef]
- Buck, K.; Vrieling, A.; Zaineddin, A.K.; Becker, S.; Hüsing, A.; Kaaks, R.; Linseisen, J.; Flesch-Janys, D.; Chang-Claude, J. Serum enterolactone and prognosis of postmenopausal breast cancer. J. Clin. Oncol. 2011, 29, 3730–3738. [Google Scholar]
- Ward, H.A.; Kuhnle, G.G.; Mulligan, A.A.; Lentjes, M.A.; Luben, R.N.; Khaw, K.T. Breast, colorectal, and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition-Norfolk in relation to phytoestrogen intake derived from an improved database. Am. J. Clin. Nutr. 2010, 91, 440–448. [Google Scholar] [CrossRef]
- Blitz, C.L.; Murphy, S.P.; Au, D.L.M. Adding lignan values to a food composition database. J. Food Comp. Anal. 2007, 20, 99–105. [Google Scholar] [CrossRef]
- Scalbert, A.; Andres-Lacueva, C.; Arita, M.; Kroon, P.; Manach, C.; Urpi-Sarda, M.; Wishart, D. Databases on food phytochemicals and their health-promoting effects. J. Agric. Food Chem. 2011, 59, 4331–4348. [Google Scholar]
- Durazzo, A.; Raguzzini, A.; Azzini, E.; Foddai, M.S.; Narducci, V.; Maiani, G.; Carcea, M. Bioactive molecules in cereals. Tecnica Molitoria Int. 2009, 60, 150–162. [Google Scholar]
- Durazzo, A.; Azzini, E.; Raguzzini, A.; Maiani, G.; Finocchiaro, F.; Ferrari, B.; Gianinetti, A.; Carcea, M. Influence of processing on the lignans content of cereal based foods. Tecnica Molitoria Int. 2009, 60, 163–173. [Google Scholar]
- Moreno-Franco, B.; Garcia-Gonzalez, A.; Montero-Bravo, A.M.; Iglesias-Gitierrez, E.; Ubeda, N.; Maroto-Nunez, L.; Adlercreutz, H.; Penãlvo, J. Dietary alkylresorcinols and lignans in the spanish diet: Development of the Alignia database. J. Agric. Food Chem. 2011, 59, 9827–9834. [Google Scholar]
- Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G. Carcea M. Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food Chem. 2012, in press. [Google Scholar]
- Mazur, W.; Fotsis, T.; Wahala, K.; Ojala, S.; Salakka, A.; Adlercreutz, H. Isotope diluition gas chromatographic-mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples. Anal. Biochem. 1996, 233, 169–180. [Google Scholar] [CrossRef]
- Horn-Ross, P.L.; Barnes, S.; Lee, M.; Coward, L.; Mandel, J.E., Koo; John, E.M.; Smith, M. Assessing phytoestrogen exposure in epidemiologic studies: Development of a database (United States). Cancer Causes Control 2000, 11, 289–298. [Google Scholar]
- Amarowicz, R.; Carle, R.; Dongowski, G.; Durazzo, A.; Galena, R.; Kammerer, D.; Maiani, G.; Piskula, M.K. Influence of postharvest processing and storage influences on phenolic acids and flavonoid in foods. Mol. Nutr. Food Res. 2009, 53, S151–S183. [Google Scholar] [CrossRef]
- Adlercreutz, H.; Mazur, W. Phyto-oestrogens and Western diseases. Ann. Med. 1997, 29, 95–120. [Google Scholar]
- Esposito, F.; Arlotti, G.; Bonifati, A.M.; Napolitano, A.; Vitale, D.; Fogliano, V. Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res. Int. 2005, 38, 1167–1173. [Google Scholar] [CrossRef]
- Muir, A.D.; Westcott, N.D. Quantitation of the lignan secoisolariciresinol diglucoside in baked goods containing flax seed or flax meal. J. Agric. Food Chem. 2000, 48, 4048–4052. [Google Scholar] [CrossRef]
- Simbalista, R.L.; Frota, K.; Soares, R.A.M.; Arêas, J.A.G. Effect of storage and processing of Brazilian flaxseed on lipid and lignan contents. Ciênc. Tecnol. Aliment. 2012, 32, 374–380. [Google Scholar] [Green Version]
- Krishnan, M.; Prabhasankar, P. Health based pasta: Redefining the concept of the next generation convenience food. Crit. Rev. Food Sci. Nutr. 2012, 52, 9–20. [Google Scholar] [CrossRef]
- AIDEPI. Available online: www.aidepi.it (accessed on 31 January 2013).
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Durazzo, A.; Zaccaria, M.; Polito, A.; Maiani, G.; Carcea, M. Lignan Content in Cereals, Buckwheat and Derived Foods. Foods 2013, 2, 53-63. https://doi.org/10.3390/foods2010053
Durazzo A, Zaccaria M, Polito A, Maiani G, Carcea M. Lignan Content in Cereals, Buckwheat and Derived Foods. Foods. 2013; 2(1):53-63. https://doi.org/10.3390/foods2010053
Chicago/Turabian StyleDurazzo, Alessandra, Maria Zaccaria, Angela Polito, Giuseppe Maiani, and Marina Carcea. 2013. "Lignan Content in Cereals, Buckwheat and Derived Foods" Foods 2, no. 1: 53-63. https://doi.org/10.3390/foods2010053
APA StyleDurazzo, A., Zaccaria, M., Polito, A., Maiani, G., & Carcea, M. (2013). Lignan Content in Cereals, Buckwheat and Derived Foods. Foods, 2(1), 53-63. https://doi.org/10.3390/foods2010053