Milk Technological Properties as Affected by Including Artichoke By-Products Silages in the Diet of Dairy Goats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Dietary Treatments
2.2. Milk Sampling
2.3. Chemical Composition
2.4. Technological Characteristics
2.5. Milk Color Determination
2.6. Sensory Analyses
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Technological Characteristics
3.3. Milk Color
3.4. Milk Sensory Analyses
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- FAO. Faostat. Available online: http://www.fao.org/faostat/en/#home (accessed on 27 October 2017).
- MAPAMA. Producciones Agrícolas; Ministerio de Agriculura, Pesca, Alimentación y Medio Ambiente: Madrid, Spain, 2017.
- MMA. Guía de Mejores Técnicas Disponibles en España del Sector de los Transformados Vegetales; Ministerio de Medio Ambiente, Gobierno de España: Madrid, Spain, 2006.
- Chiofalo, B.; Liotta, L.; Zumbo, A.; Chiofalo, V. Administration of olive cake for ewe feeding: Effect on milk yield and composition. Small Rumin. Res. 2004, 55, 169–176. [Google Scholar] [CrossRef]
- Nudda, A.; Battacone, G.; Usai, M.G.; Fancellu, S.; Pulina, G. Supplementation with extruded linseed cake affects concentrations of conjugated linoleic acid and vaccenic acid in goat milk. J. Dairy Sci. 2006, 89, 277–282. [Google Scholar] [CrossRef]
- Mouro, G.F.; Branco, A.F.; de Macedo, F.A.F.; Rigolon, L.P.; Maia, F.J.; Guimarães, K.C.; Damasceno, J.C.; dos Santos, G.T. Substituição do milho pela farinha de mandioca de varredura em dietas de cabras em lactação: Produção e composição do leite e digestibilidade dos nutrientes. Rev. Bras. Zootec. 2002, 31, 475–483. [Google Scholar] [CrossRef]
- Todaro, M.; Alabiso, M.; Scatassa, M.L.; Di Grigoli, A.; Mazza, F.; Maniaci, G.; Bonanno, A. Effect of the inclusion of fresh lemon pulp in the diet of lactating ewes on the properties of milk and cheese. Anim. Feed Sci. Technol. 2017, 225, 213–223. [Google Scholar] [CrossRef]
- Araujo, R.C.; Pires, A.V.; Susin, I.; Mendes, C.Q.; Rodrigues, G.H.; Packer, I.U.; Eastridge, M.L. Milk yield, milk composition, eating behavior, and lamb performance of ewes fed diets containing soybean hulls replacing coastcross (cynodon species) hay12. J. Anim. Sci. 2008, 86, 3511–3521. [Google Scholar] [CrossRef] [PubMed]
- Kholif, A.E.; Morsy, T.A.; Gouda, G.A.; Anele, U.Y.; Galyean, M.L. Effect of feeding diets with processed moringa oleifera meal as protein source in lactating anglo-nubian goats. Anim. Feed Sci. Technol. 2016, 217, 45–55. [Google Scholar] [CrossRef]
- Arco-Pérez, A.; Ramos-Morales, E.; Yáñez-Ruiz, D.R.; Abecia, L.; Martín-García, A.I. Nutritive evaluation and milk quality of including of tomato or olive by-products silages with sunflower oil in the diet of dairy goats. Anim. Feed Sci. Technol. 2017, 232, 57–70. [Google Scholar] [CrossRef]
- Romero-Huelva, M.; Ramos-Morales, E.; Molina-Alcaide, E. Nutrient utilization, ruminal fermentation, microbial abundances, and milk yield and composition in dairy goats fed diets including tomato and cucumber waste fruits. J. Dairy Sci. 2012, 95, 6015–6026. [Google Scholar] [CrossRef] [PubMed]
- Romero-Huelva, M.; Ramírez-Fenosa, M.A.; Planelles-González, R.; García-Casado, P.; Molina-Alcaide, E. Can by-products replace conventional ingredients in concentrate of dairy goat diet? J. Dairy Sci. 2017, 100, 4500–4512. [Google Scholar] [CrossRef] [PubMed]
- Vasta, V.; Nudda, A.; Cannas, A.; Lanza, M.; Priolo, A. Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Anim. Feed Sci. Technol. 2008, 147, 223–246. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Moumen, A.; Martín-García, A.I. By-products from viticulture and the wine industry: Potential as sources of nutrients for ruminants. J. Sci. Food Agric. 2008, 88, 597–604. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Park, Y.W.; Gaucheron, F.; Bouhallab, S. Heat stability and enzymatic modifications of goat and sheep milk. Small Rumin. Res. 2007, 68, 207–220. [Google Scholar] [CrossRef]
- Morgan, F.; Massouras, T.; Barbosa, M.; Roseiro, L.; Ravasco, F.; Kandarakis, I.; Bonnin, V.; Fistakoris, M.; Anifantakis, E.; Jaubert, G.; et al. Characteristics of goat milk collected from small and medium enterprises in greece, portugal and france. Small Rumin. Res. 2003, 47, 39–49. [Google Scholar] [CrossRef]
- Stone, H. Sensory Evaluation Practices/Herbert Stone, Joel L. Sidel; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Chilliard, Y.; Ferlay, A.; Rouel, J.; Lamberet, G. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J. Dairy Sci. 2003, 86, 1751–1770. [Google Scholar] [CrossRef]
- Jaramillo, D.P.; Buffa, M.N.; Rodríguez, M.; Pérez-Baena, I.; Guamis, B.; Trujillo, A.J. Effect of the inclusion of artichoke silage in the ration of lactating ewes on the properties of milk and cheese characteristics during ripening. J. Dairy Sci. 2010, 93, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Volanis, M.; Zoiopoulos, P.; Panagou, E.; Tzerakis, C. Utilization of an ensiled citrus pulp mixture in the feeding of lactating dairy ewes. Small Rumin. Res. 2006, 64, 190–195. [Google Scholar] [CrossRef]
- Kholif, A.E.; Morsy, T.A.; Abd El Tawab, A.M.; Anele, U.Y.; Galyean, M.L. Effect of supplementing diets of anglo-nubian goats with soybean and flaxseed oils on lactational performance. J. Agric. Food Chem. 2016, 64, 6163–6170. [Google Scholar] [CrossRef] [PubMed]
- Abo-Donia, F.M.; Yang, L.Y.; Hristov, A.N.; Wang, M.; Tang, S.X.; Zhou, C.S.; Han, X.F.; Kang, J.H.; Tan, Z.L.; He, Z.X. Effects of tannins on the fatty acid profiles of rumen fluids and milk from lactating goats fed a total mixed ration containing rapeseed oil. Livest. Sci. 2017, 204, 16–24. [Google Scholar] [CrossRef]
- Boutoial, K.; Ferrandini, E.; Rovira, S.; García, V.; López, M.B. Effect of feeding goats with rosemary (rosmarinus officinalis spp.) by-product on milk and cheese properties. Small Rumin. Res. 2013, 112, 147–153. [Google Scholar] [CrossRef]
- Jõudu, I.; Henno, M.; Kaart, T.; Püssa, T.; Kärt, O. The effect of milk protein contents on the rennet coagulation properties of milk from individual dairy cows. Int. Dairy J. 2008, 18, 964–967. [Google Scholar] [CrossRef]
- Ketto, I.A.; Knutsen, T.M.; Øyaas, J.; Heringstad, B.; Ådnøy, T.; Devold, T.G.; Skeie, S.B. Effects of milk protein polymorphism and composition, casein micelle size and salt distribution on the milk coagulation properties in norwegian red cattle. Int. Dairy J. 2017, 70, 55–64. [Google Scholar] [CrossRef]
- Inglingstad, R.A.; Steinshamn, H.; Dagnachew, B.S.; Valenti, B.; Criscione, A.; Rukke, E.O.; Devold, T.G.; Skeie, S.B.; Vegarud, G.E. Grazing season and forage type influence goat milk composition and rennet coagulation properties. J. Dairy Sci. 2014, 97, 3800–3814. [Google Scholar] [CrossRef] [PubMed]
- Barłowska, J.; Szwajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Solah, V.A.; Staines, V.; Honda, S.; Limley, H.A. Measurement of milk color and composition: Effect of dietary intervention on western australian holstein-friesian cow’s milk quality. J. Food Sci. 2007, 72, S560–S566. [Google Scholar] [CrossRef] [PubMed]
- Nozière, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for ruminants: From forages to dairy products. Anim. Feed Sci. Technol. 2006, 131, 418–450. [Google Scholar] [CrossRef]
- Rincón, A.A.; García-Fraga, J.M.; Álvarez, S.; Pino, V.; Fresno, M.R.; Ayala, J.H.; Afonso, A.M. Effect of the inclusion of banana silage in the diet of goats on physicochemical and sensory characteristics of cheeses at different ripening times. Small Rumin. Res. 2017, 149, 52–61. [Google Scholar] [CrossRef]
- Morais, J.S.; Bezerra, L.R.; Silva, A.M.A.; Araújo, M.J.; Oliveira, R.L.; Edvan, R.L.; Torreão, J.N.C.; Lanna, D.P.D. Production, composition, fatty acid profile and sensory analysis of goat milk in goats fed buriti oil. J. Anim. Sci. 2017, 95, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Catunda, K.L.M.; de Aguiar, E.M.; de Góes Neto, P.E.; da Silva, J.G.M.; Moreira, J.A.; do Nascimento Rangel, A.H.; de Lima Júnior, D.M. Gross composition, fatty acid profile and sensory characteristics of saanen goat milk fed with cacti varieties. Trop. Anim. Health Prod. 2016, 48, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Experiment 1 | Experiment 2 |
Diets | ||||||
---|---|---|---|---|---|---|
Experiment 1 | Experiment 2 | |||||
Items (% in Dry Material) | CD-1 | ABD-1 | APD-1 | CD-2 | ABD-2 | APD-2 |
Dry matter | 89.36 | 59.96 | 70.64 | 89.36 | 45.18 | 59.22 |
Crude protein | 16.01 | 16.02 | 16.02 | 16.01 | 16.01 | 16.00 |
Crude Fibre | 19.62 | 19.15 | 18.67 | 19.62 | 19.22 | 17.83 |
Neutral detergent fibre | 37.83 | 38.52 | 38.07 | 37.83 | 39.81 | 38.32 |
Acid detergent fibre | 24.32 | 24.84 | 24.26 | 24.32 | 25.97 | 24.22 |
Acid detergent lignine | 5.65 | 4.32 | 4.24 | 5.65 | 3.30 | 2.93 |
Ash | 7.24 | 7.08 | 7.70 | 7.24 | 7.38 | 8.42 |
Ether extract | 4.65 | 4.85 | 5.05 | 4.65 | 4.89 | 5.32 |
MFU (MFU/kg DM) | 0.92 | 0.94 | 0.92 | 0.92 | 0.95 | 0.91 |
Experiment 1 (12.5% Inclusion) | ||||
Diet | ||||
Compound | CD-1 | ABD-1 | APD-1 | Effect (p) |
Fat | 5.78 ± 0.60 | 5.90 ± 0.53 | 5.85 ± 0.57 | NS |
Crude protein | 3.98 ± 0.24 | 3.83 ± 0.21 | 3.90 ± 0.22 | NS |
Casein | 3.45 ± 0.21 | 3.34 ± 0.80 | 3.39 ± 0.19 | NS |
Whey protein | 0.53 ± 0.04 | 0.49 ± 0.03 | 0.51 ± 0.04 | NS |
Lactose | 4.21 ± 0.04 | 4.24 ± 0.05 | 4.20 ± 0.04 | NS |
Total solid | 14.77 ± 0.87 | 14.72 ± 0.74 | 14.75 ± 0.79 | NS |
Ash | 0.46 ± 0.07 | 0.42 ± 0.07 | 0.46 ± 0.07 | NS |
Experiment 2 (25% Inclusion) | ||||
Diet | ||||
Compound | CD-2 | ABD-2 | APD-2 | Effect (p) |
Fat | 5.61 ± 0.55 | 5.81 ± 0.61 | 5.43 ± 0.59 | NS |
Crude protein | 4.01 ± 0.06 b | 3.79 ± 0.06 a | 3.91 ± 0.05 a,b | ** |
Casein | 3.50 ± 0.06 b | 3.33 ± 0.06 a | 3.39 ± 0.05 a,b | ** |
Whey protein | 0.52 ± 0.02 | 0.47 ± 0.04 | 0.51 ± 0.03 | NS |
Lactose | 4.31 ± 0.06 | 4.33 ± 0.04 | 4.29 ± 0.06 | NS |
Total solid | 14.76 ± 0.47 | 14.69 ± 0.59 | 14.40 ± 0.55 | NS |
Ash | 0.47 ± 0.01 b | 0.44 ± 0.01 a | 0.44 ± 0.02 a | * |
Experiment 1 (12.5% Inclusion) | |||||
Diets | |||||
CD-1 | ABD-1 | APD-1 | Effect (p) | ||
A0h | pH | 6.77 ± 0.15 | 6.78 ± 0.15 | 6.81 ± 0.14 | NS |
°D | 14.88 ± 1.03 | 14.81 ± 0.65 | 14.31 ± 1.36 | NS | |
A5h | pH | 5.85 ± 0.40 | 5.82 ± 0.37 | 5.65 ± 0.39 | NS |
°D | 39.50 ± 10.26 | 39.06 ± 9.15 | 38.25 ± 8.53 | NS | |
A24h | pH | 4.17 ± 0.12 | 4.19 ± 0.13 | 4.19 ± 0.14 | NS |
°D | 97.88 ± 4.33 | 100.44 ± 3.32 | 99.69 ± 3.51 | NS | |
ALCOHOL TEST | 47.13 ± 1.53 | 47.63 ± 0.88 | 48.00 ± 1.69 | NS | |
Experiment 2 (25% Inclusion) | |||||
Diets | |||||
CD-2 | ABD-2 | APD-2 | Effect (p) | ||
A0h | pH | 6.83 ± 0.11 | 6.70 ± 0.31 | 6.67 ± 0.29 | NS |
°D | 15.75 ± 0.61 | 15.67 ± 0.41 | 15.17 ± 0.93 | NS | |
A5h | pH | 5.51 ± 0.78 | 5.47 ± 0.94 | 5.48 ± 0.80 | NS |
°D | 36.72 ± 13.32 | 36.82 ± 13.38 | 37.72 ± 12.22 | NS | |
A24h | pH | 4.21 ± 0.06 | 4.18 ± 0.04 | 4.19 ± 0.05 | NS |
°D | 91.75 ± 7.17 | 96.17 ± 2.11 | 98.08 ± 2.44 | NS | |
ALCOHOL TEST | 46.33 ± 1.03 | 46.67 ± 1.37 | 47.00 ± 1.79 | NS |
Experiment 1 (12.5% Inclusion) | ||||
Diets | ||||
CD-1 | ABD-1 | APD-1 | Effect (p) | |
Whey drainage ability (%) | 64.51 ± 3.23 | 65.23 ± 4.41 | 65.69 ± 2.92 | NS |
Fat (g/100 mL) | 0.56 ± 0.14 | 0.56 ± 0.16 | 0.63 ± 0.20 | NS |
Crude protein (g/100 mL) | 1.00 ± 0.06 | 1.02 ± 0.05 | 1.08 ± 0.05 | NS |
Total solid (g/100 mL) | 8.27 ± 0.31 | 8.31 ± 0.42 | 8.41 ± 0.29 | NS |
Experiment 2 (25% Inclusion) | ||||
Diets | ||||
CD-2 | ABD-2 | APD-2 | Effect (p) | |
Whey drainage ability (%) | 63.69± 5.97 | 65.29 ± 7.27 | 68.29±3.14 | NS |
Fat (g/100 mL) | 0.52 ± 0.21 | 0.50 ± 0.20 | 0.50 ± 0.20 | NS |
Crude protein (g/100 mL) | 1.19 ± 0.46 | 1.28 ± 0.49 | 1.22 ± 0.32 | NS |
Total solid (g/100 mL) | 8.64 ± 0.49 | 8.67 ± 0.42 | 8.52 ± 0.31 | NS |
Experiment 1 (12.5% Inclusion) | ||||
Diets | ||||
CD-1 | ABD-1 | APD-1 | Effect (p) | |
Whey drainage ability (%) | 64.32 ± 6.15 | 58.64 ± 6.17 | 59.86 ± 7.98 | NS |
Fat (g/100 mL) | 0.19 ± 0.07 | 0.15 ± 0.06 | 0.18 ± 0.07 | NS |
Crude protein (g/100 mL) | 0.91 ± 0.01 | 0.99 ± 0.04 | 0.99 ± 0.02 | NS |
Total solid (g/100 mL) | 7.25 ± 0.08 | 7.22 ± 0.02 | 7.25 ± 0.10 | NS |
Experiment 2 (25% Inclusion) | ||||
Diets | ||||
CD-1 | ABD-2 | APD-2 | Effect (p) | |
Whey drainage ability (%) | 57.96 ± 5.66 | 55.48 ± 9.80 | 60.52 ± 4.28 | NS |
Fat (g/100 mL) | 0.14 ± 0.01 | 0.29 ± 0.14 | 0.23 ± 0.02 | NS |
Crude protein (g/100 mL) | 0.95 ± 0.06 | 0.98 ± 0.06 | 1.02 ± 0.07 | NS |
Total solid (g/100 mL) | 7.26 ± 0.09 | 7.43 ± 0.17 | 7.34 ± 0.08 | NS |
Experiment 1 (12.5% Inclusion) | ||||
Diets | ||||
CD-1 | ABD-1 | APD-1 | Effect (p) | |
L* | 87.90 ± 0.49 | 87.56 ± 0.89 | 87.57 ± 0.81 | NS |
a* | −1.04 ± 0.14 | −1.05 ± 0.14 | −1.04 ± 0.16 | NS |
b* | 4.89 ± 0.48 | 4.79 ± 0.72 | 4.91 ± 0.57 | NS |
C* | 5.00 ± 0.50 | 4.91 ± 0.72 | 5.03 ± 0.58 | NS |
H* | 102.04 ± 1.16 | 102.50 ± 1.29 | 101.95 ± 1.34 | NS |
Experiment 2 (25% Inclusion) | ||||
Diets | ||||
CD-2 | ABD-2 | APD-2 | Effect (p) | |
L* | 85.68 ± 1.09 a | 87.32 ± 1.00 b | 87.20 ± 1.08 b | * |
a* | −1.40 ± 0.12 | −1.18 ± 0.10 | −1.17 ± 0.17 | NS |
b* | 6.10 ± 0.14 b | 5.63 ± 0.29 a | 5.68 ± 0.26 a | * |
C* | 6.25 ± 0.53 b | 5.75 ± 0.29 a | 5.80 ± 0.25 a | * |
H* | 102.90 ± 1.3 | 101.8 ± 0.81 | 101.7 ± 1.83 | NS |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muelas, R.; Monllor, P.; Romero, G.; Sayas-Barberá, E.; Navarro, C.; Díaz, J.R.; Sendra, E. Milk Technological Properties as Affected by Including Artichoke By-Products Silages in the Diet of Dairy Goats. Foods 2017, 6, 112. https://doi.org/10.3390/foods6120112
Muelas R, Monllor P, Romero G, Sayas-Barberá E, Navarro C, Díaz JR, Sendra E. Milk Technological Properties as Affected by Including Artichoke By-Products Silages in the Diet of Dairy Goats. Foods. 2017; 6(12):112. https://doi.org/10.3390/foods6120112
Chicago/Turabian StyleMuelas, Raquel, Paula Monllor, Gema Romero, Estrella Sayas-Barberá, Casilda Navarro, José Ramón Díaz, and Esther Sendra. 2017. "Milk Technological Properties as Affected by Including Artichoke By-Products Silages in the Diet of Dairy Goats" Foods 6, no. 12: 112. https://doi.org/10.3390/foods6120112
APA StyleMuelas, R., Monllor, P., Romero, G., Sayas-Barberá, E., Navarro, C., Díaz, J. R., & Sendra, E. (2017). Milk Technological Properties as Affected by Including Artichoke By-Products Silages in the Diet of Dairy Goats. Foods, 6(12), 112. https://doi.org/10.3390/foods6120112