Geography of Food Consumption Patterns between South and North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Macronutrient Assessment
2.3. Extraction of Dietary Patterns
2.4. Definition of Disease
2.5. Statistical Analysis
3. Results
3.1. Dietary Patterns
3.2. The Macronutrient Intake between the South and North Regions
3.3. Association between Dietary Patterns and Prevalence of Metabolic Syndrome
3.4. The risk of Metabolic Syndrome Association with Dietary Patterns
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cheng, C.K. The culture of Chinese diet: Regional differentiation and developing trends. Acta Geogr. Sin. 1994, 49, 226–235. [Google Scholar]
- Michael, W. Geographies of food: Agro-food geographies-making reconnections. Prog. Hum. Geogr. 2003, 27, 505–513. [Google Scholar]
- Zhao, R.G. The Generality of Chinese Dietary Culture; Higher Education Publisher: Beijing, China, 2008; pp. 28–32, In Chinese. [Google Scholar]
- Wang, X.T. The History of Chinese Food Culture; Qingnian Publisher: Beijing, China, 2012; pp. 26–30, In Chinese. [Google Scholar]
- Xu, X.H. Introduction to Food Culture; Dongnan University Press: Nanjing, China, 2008; pp. 82–86, In Chinese. [Google Scholar]
- Qiu, P.T. Dietary Report; Shandong Pictorial Publisher: Jinan, China, 2008; pp. 56–60, In Chinese. [Google Scholar]
- Martinez, M.E.; Marshall, J.R.; Sechrest, L. Invited commentary: Factor analysis and the search for objectivity. Am. J. Epidemiol. 1998, 148, 17–19. [Google Scholar] [CrossRef] [PubMed]
- Li, L.T.; Yin, L.J.; Masayoshi, S. Function of traditional foods and food culture in China. JARQ 2004, 38, 213–220. [Google Scholar] [CrossRef]
- Zhang, J.G. Changes in Dietary Patterns and Their Associations with General and Central Obesity among Adults in China (1991~2009). Ph.D. Thesis, Chinese Center for Disease Control and Prevention, Beijing, China, 2013; pp. 114–115. [Google Scholar]
- Liu, A. Chinese Adults Dietary Patterns and Their Relationship with Hypertension among Residents in Nine Provinces (1997~2009). Ph.D. Thesis, Chinese Center for Disease Control and Prevention, Beijing, China, 2011; pp. 42–43. [Google Scholar]
- Shang, X.W.; Li, Y.P.; Liu, A.; Zhang, Q.; Hu, X.Q.; Du, S.M.; Ma, J.; Xu, G.F.; Li, Y.; Guo, H.W.; et al. Dietary pattern and its association with the prevalence of obesity and related cardiometabolic risk factors among Chinese children. PLoS ONE 2012, 7, e43183. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.H.; Yeh, W.T.; Svetkey, L.P.; Chuang, Y.C.; Wang, C.; Pan, H.P. Dietary intakes consistent with the DASH dietary pattern reduce blood pressure increase with age and risk for stroke in a Chinese population. Asia Pac. J. Clin. Nutr. 2013, 22, 482–491. [Google Scholar] [PubMed]
- Batis, C.; Mendez, M.A.; Larsen, P.G.; Alvarez, D.S.; Adair, L.; Popkin, B. Using both principal component analysis and reduced rank regression to study dietary patterns and diabetes in Chinese adults. Public Health Nutr. 2016, 19, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Newby, P.K.; Tucker, K.L. Empirically derived eating patterns using factor or cluster analysis: A review. Nutr. Rev. 2004, 62, 177–203. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.K. Dietary patterns and health outcomes. J. Am. Diet. Assoc. 2004, 104, 615–635. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Yuan, B.J.; Hu, G.; Dai, Y.; Zou, H.; Ottesen, H. Dietary pattern and weight changes in a 5-year follow-up among Chinese adults: Results from the Jiangsu Nutrition study. Br. J. Nutr. 2011, 105, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Batis, C.; Alvarez, D.S.; Larsen, P.G.; Mendez, M.A.; Adair, L.; Popkin, B. Longitudinal analysis of dietary patterns in Chinese adults from 1991 to 2009. Br. J. Nutr. 2014, 111, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Shu, X.O.; Gao, Y.T.; Li, H.; Yang, G.; Zheng, W. A prospective study of dietary patterns and mortality in Chinese women. Epidemiology 2007, 18, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Larsen, P.G.; Adair, L.S.; Meigs, J.B.; Davis, E.M.; Herring, A.; Yan, S.K.; Zhang, B.; Du, S.F.; Barry, M.P. Discordant risk: Overweight and cardiometabolic risk in Chinese adults. Obesity 2013, 21, E166–E174. [Google Scholar] [CrossRef] [PubMed]
- Goodyear, M.D.E.; Krleza-Jeric, K.; Lemmens, T. The Declaration of Helsinki. BMJ 2007, 335, 624–625. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.J. China's Cultural Heritage: The Qing Dynasty, 1644–1912, 2nd ed.; Westview Press: Boulder, CO, America, 1994; ISBN 978-0-8133-1347-4. [Google Scholar]
- Chinese Nutrition Society. Dietary Guidelines Chinese Residents; Xizang People Publisher: Lasa, China, 2011; p. 6, In Chinese. [Google Scholar]
- Li, Y.; He, Y.; Zhai, F.; Yang, X.; Hu, X.; Zhao, W.; Ma, G.S. Comparison of assessment of food intake by using 3 dietary survey methods. Zhonghua Yu Fang Yi Xue Za Zhi 2006, 40, 273–280. [Google Scholar] [PubMed]
- Yang, Y.X.; Wang, G.Y.; Pan, Z.C. China Food Consumption; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Carolina Population Center (2011) China Health and Nutrition Survey. Available online: http://www.cpc.unc.edu/projects/china (accessed on 20 October 2013).
- Lopes, H.F.; Salazar, E.; Gamerman, D. Spatial dynamic factor analysis. Bayesian Anal. 2008, 3, 759–792. [Google Scholar] [CrossRef]
- Xi, B.; Liang, Y.; He, T.; Relilly, K.H.; Wang, Q.; Yan, Y.; Mi, J. Secular trends in the prevalence of general and abdominal obesity among Chinese adults, 1993–2009. Obes. Rev. 2012, 123, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Y.; Beyles, J.E.; Shi, Z.; Hall, J.J. Evaluation of older Chinese people’s macronutrient intake status: Results from the China Health and Nutrition Survey. Br. J. Nutr. 2015, 113, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Dyerberg, J.; Selleck, M.; Stender, S. Nutrition transition and its relationship to the development of obesity and related chronic diseases. Obes. Rev. 2008, 9, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Popkin, B.M.; Kim, S.W. The unique aspect of the nutrition transition in South Korea: The retention of healthful elements in their traditional diet. Public Health Nutr. 2002, 5, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Oddy, W.H.; Herbison, C.E.; Jacoby, P.; Ambrosini, G.L.; O’Sullivan, T.A.; Ayonrinde, O.T.; Olynyk, J.K.; Black, L.J.; Beilin, L.J.; Mori, T.A.; et al. The western dietary pattern is prospectively associated with nonalcoholic fatty liver disease in adolescence. Am. J. Gastroenterol. 2013, 108, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Buys, N.J.; Hills, A.P. Dietary pattern and its association with the prevalence of obesity, hypertension and other cardiovascular risk factors among Chinese older adults. Int. J. Environ. Res. Public Health 2014, 11, 3956–3971. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Qu, M.; Yang, P.R.; Yang, B.; Deng, F. Dietary patterns and cardio-cerebrovascular disease in a Chinese population. Nutr. Res. Pract. 2015, 9, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Hellerstein, M.K. Carbohydrate-induced hypertriglyceridemia: Modifying factors and implications for cardiovascular risk. Curr. Opin. Lipidol. 2002, 13, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Baik, I.; Shin, C. Prospective study of alcohol consumption and metabolic syndrome. Am. J. Clin. Nutr. 2008, 87, 1455–1463. [Google Scholar] [PubMed]
- Fujita, N.; Takei, Y. Alcohol consumption and metabolic syndrome. Hepatol. Res. 2011, 41, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Damiaoa, R.; Castroa, T.G.; Cardosoa, M.A.; Gimenoa, S.G.A.; Ferrei, S.R.G. Dietary intakes associated with metabolic syndrome in a cohort of Japanese ancestry. Br. J. Nutr. 2006, 96, 532–538. [Google Scholar]
- Song, Y.; Jong, H. A traditional korean dietary pattern and metabolic syndrome abnormalities. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Aesun, S.; Lim, S.Y.; Sung, J.H.; Shin, H.R.; Kim, J. Dietary intake, eating habits and metabolic syndrome in Korean men. Am. Diet. Assoc. 2009, 109, 633–640. [Google Scholar]
- Zhang, J.G.; Wang, Z.H.; Wang, H.J.; Du, W.W.; Su, C.; Zhang, J.; Jiang, H.R.; Zhai, F.Y.; Zhang, B. Dietary patterns and their associations with general obesity and abdominal obesity among young Chinese women. Eur. J. Clin. Nutr. 2015, 69, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; He, Y.; Li, Y.P.; Luan, D.C.; Yang, X.G.; Zhai, F.Y.; Ma, G.S. Dietary patterns and hypertension among Chinses adults: A nationally representative cross-sectional study. BMC Public Health 2011, 11, 925. [Google Scholar] [CrossRef] [PubMed]
Food Groups | North (n = 1249) | South (n = 1849) | ||||||
---|---|---|---|---|---|---|---|---|
Carbohydrate-Rich | Wheat Staple | Alcohol & Western | Convenience Food | Traditional Southern | Convenience Food | Carbohydrate-Rich | Alcohol | |
Rice | 0.866 | - | - | - | 0.862 | - | - | - |
Wheat | - | 0.793 | - | - | - | - | 0.777 | - |
Tubers, starches | 0.751 | - | - | - | - | - | 0.608 | - |
Legume | - | - | 0.43 | - | - | - | 0.633 | - |
Vegetables | - | 0.646 | - | - | 0.779 | - | - | - |
Fungi | - | - | 0.57 | - | - | 0.488 | - | - |
Fruits | 0.40 | - | - | - | - | 0.638 | - | - |
Nuts | - | - | - | - | - | - | - | 0.545 |
Meats | - | - | 0.54 | - | 0.638 | - | - | - |
Poultry | - | - | 0.594 | - | - | - | - | - |
Dietary products | - | - | - | 0.729 | - | 0.677 | - | - |
Egg | - | 0.59 | - | - | - | - | - | - |
Fish | - | - | - | - | - | - | - | 0.567 |
Fast food | - | - | - | 0.813 | - | 0.468 | - | - |
Beverage | - | - | - | - | - | - | - | - |
Liquor | - | - | 0.627 | - | - | - | - | 0.764 |
Eigenvalue | 2.83 | 1.71 | 1.64 | 1.63 | 2.99 | 1.86 | 1.81 | 1.55 |
Proportion (%) | 21.75 | 12.32 | 11.74 | 8.76 | 18.67 | 10.81 | 9.12 | 7.72 |
Cumulative (%) | 21.75 | 34.07 | 45.81 | 54.57 | 18.67 | 29.49 | 38.6 | 45.87 |
(1) Factor loadings over 0.40 are shown for simplicity; | (1) Factor loadings over 0.40 are shown for simplicity; | |||||||
(2) KMO (Kaiser-Meyer-Olkin Measure of sampling Adequacy) = 0.639; | (2) KMO (Kaiser-Meyer-Olkin Measure of sampling Adequacy) = 0.709; | |||||||
(3) Bartlett’s Test of Sphericity Chi-square = 4165.79 (df = 91, sig. = 0.000). | (3) Bartlett’s Test of Sphericity Chi-square = 6401.70 (df = 105, sig. = 0.000). |
% of Energy | Macronutrient Intake | |||||||
---|---|---|---|---|---|---|---|---|
Carbohydrate (%) | Protein (%) | Fat (%) | Energy (kcal) | Carbohydrate (g) | Protein (g) | Fat (g) | ||
North (n = 1249) | ||||||||
Carbohydrate-rich | T1 | 58.16 ± 0.47 a | 13.61 ± 0.13 a | 28.22 ± 0.48 b | 2131.46 ± 26.66 NS | 305.01 ± 3.02 a | 71.48 ± 0.77 a | 69.18 ± 1.40 NS |
T2 | 55.93 ± 0.42 b | 13.40 ± 0.12 a | 30.66 ± 0.40 a | 2168.22 ± 22.65 NS | 291.93 ± 2.45 b | 70.36 ± 0.58 a | 73.18 ± 0.97 NS | |
T3 | 57.24 ± 0.47 ab | 12.69 ± 0.12 b | 30.07 ± 0.45 a | 2149.5 ± 23.97 NS | 301.38 ± 2.52 a | 66.66 ± 0.57 b | 71.82 ± 1.01 NS | |
p-value | 0.0012 | <0.0001 | 0.0003 | 0.5798 | 0.0017 | <0.0001 | 0.0716 | |
Wheat staple | T1 | 56.44 ± 0.43 NS | 13.19 ± 0.12 NS | 30.37 ± 0.43 NS | 2031.9 ± 23.42 c | 294.77 ± 2.39 | 69.37 ± 0.63 | 73.05 ± 1.00 a |
T2 | 57.22 ± 0.45 NS | 13.38 ± 0.12 NS | 29.40 ± 0.44 NS | 2175.88 ± 23.51 b | 301.58 ± 2.60 | 68.80 ± 0.62 | 69.60 ± 1.03 b | |
T3 | 57.68 ± 0.46 NS | 13.13 ± 0.12 NS | 29.19 ± 0.46 NS | 2259.61 ± 25.42 a | 301.96 ± 2.85 | 69.33 ± 0.65 | 71.53 ± 1.24 ab | |
p-value | 0.1201 | 0.2501 | 0.1055 | <0.0001 | 0.0562 | 0.8431 | 0.05 | |
Alcohol & Western | T1 | 60.58 ± 0.46 a | 12.34 ± 0.11 c | 26.79 ± 0.49 | 2077.81 ± 25.65 c | 319.40 ± 3.03 a | 66.52 ± 0.66 b | 66.12 ± 1.49 c |
T2 | 56.77 ± 0.41 b | 13.33 ± 0.13 b | 29.90 ± 0.40 | 2101.14 ± 22.85 bc | 300.65 ± 2.24 b | 70.43 ± 0.65 a | 71.82 ± 0.92 b | |
T3 | 53.98 ± 0.43 c | 13.75 ± 0.12 a | 32.27 ± 0.42 | 2270.30 ± 24.06 a | 278.22 ± 2.54 c | 71.55 ± 0.65 a | 76.24 ± 1.02 a | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Convenience food | T1 | 59.46 ± 0.49 a | 13.13 ± 0.11 b | 27.41 ± 0.49 b | 2183.36 ± 26.48 a | 309.53 ± 3.20 a | 68.81 ± 0.68 b | 66.69 ± 1.40 b |
T2 | 56.84 ± 0.42 b | 13.03 ± 0.13 b | 30.13 ± 0.41 a | 2076.69 ± 23.97 b | 297.36 ± 2.37 b | 68.16 ± 0.64 b | 72.28 ± 0.97 a | |
T3 | 55.03 ± 0.44 c | 13.55 ± 0.13 a | 31.42 ± 0.43 a | 2189.35 ± 23.22 a | 291.41 ± 2.38 b | 71.54 ± 0.65 a | 75.21 ± 1.00 a | |
p-value | <0.0001 | 0.0045 | <0.0001 | 0.0009 | <0.0001 | 0.0005 | <0.0001 | |
South (n = 1849) | ||||||||
Traditional southern | T1 | 53.02 ± 0.37 b | 12.94 ± 0.20 b | 34.04 ± 0.36 a | 2101.45 ± 19.51 c | 292.08 ± 2.08 b | 70.18 ± 0.55 b | 82.85 ± 0.88 a |
T2 | 53.18 ± 0.35 b | 13.25 ± 0.20 ab | 33.57 ± 0.35 a | 2231.03 ± 20.40 b | 290.13 ± 2.01 b | 70.81 ± 0.50 b | 81.54 ± 0.87 a | |
T3 | 55.00 ± 0.38 a | 13.45 ± 0.21 a | 31.55 ± 0.37 b | 2323.73 ± 20.83 a | 303.01 ± 2.17 a | 73.00 ± 0.54 a | 76.88 ± 0.91 b | |
p-value | 0.0001 | 0.0014 | <0.0001 | <0.0001 | <0.0001 | 0.0011 | <0.0001 | |
Convenience food | T1 | 56.56 ± 0.38 a | 12.30 ± 0.20 c | 31.14 ± 0.37 b | 2210.80 ± 23.19 | 310.42 ± 2.22 a | 65.82 ± 0.50 c | 74.45 ± 0.94 b |
T2 | 52.25 ± 0.36 b | 13.34 ± 0.20 b | 34.41 ± 0.36 a | 2191.64 ± 18.95 | 287.61 ± 2.02 b | 72.12 ± 0.48 b | 84.01 ± 0.88 a | |
T3 | 52.39 ± 0.36 b | 14.00 ± 0.21 a | 33.61 ± 0.35 a | 2253.45 ± 19.49 | 287.14 ± 2.01 b | 76.02 ± 0.57 a | 82.83 ± 0.84 a | |
p-value | <0.0001 | <0.0001 | <0.0001 | 0.0681 | <0.0001 | <0.0001 | <0.0001 | |
Carbohydrate-rich | T1 | 52.68 ± 0.39 b | 12.94 ± 0.19 b | 34.38 ± 0.38 a | 2070.01 ± 17.95 c | 288.99 ± 2.21 b | 69.62 ± 0.51 b | 83.76 ± 0.91 a |
T2 | 53.29 ± 0.34 b | 13.19 ± 0.20 b | 33.52 ± 0.33 a | 2174.97 ± 18.25 b | 292.90 ± 1.90 b | 71.52 ± 0.49 a | 81.83 ± 0.81 a | |
T3 | 55.23 ± 0.38 a | 13.50 ± 0.23 a | 31.26 ± 0.37 b | 2410.82 ± 23.13 a | 303.30 ± 2.17 a | 72.84 ± 0.56 a | 75.70 ± 0.92 b | |
p-value | <0.0001 | 0.0005 | <0.0001 | <0.0001 | <0.0001 | 0.0001 | <0.0001 | |
Alcohol | T1 | 53.96 ± 0.37 a | 12.56 ± 0.19 c | 33.49 ± 0.37 a | 2080.56 ± 19.62 c | 297.85 ± 2.01 a | 68.18 ± 0.55 c | 82.03 ± 0.94 a |
T2 | 54.97 ± 0.35 a | 12.96 ± 0.19 b | 32.06 ± 0.34 b | 2189.71 ± 19.17 b | 303.68 ± 1.90 a | 70.26 ± 0.45 b | 78.52 ± 0.83 b | |
T3 | 52.27 ± 0.38 b | 14.11 ± 0.22 a | 33.61 ± 0.38 a | 2385.71 ± 21.33 a | 283.69 ± 2.21 b | 75.55 ± 0.56 a | 80.73 ± 0.91 ab | |
p-value | <0.0001 | <0.0001 | 0.0016 | <0.0001 | <0.0001 | <0.0001 | 0.013 |
Chronic Diseases | North (n = 1249) | South (n = 1849) | |||||||
---|---|---|---|---|---|---|---|---|---|
Carbohydrate-Rich | Wheat Staple | Alcohol & Western | Convenience Food | Traditional Southern | Convenience Food | Carbohydrate-Rich | Alcohol | ||
Abdominal obesity (waist circumstances ≥ 90 cm in men, ≥80 cm in women) | T1 | 16.01 | 13.56 | 14.64 | 14.93 | 9.16 | 9.20 | 8.91 | 9.27 |
T2 | 14.3 | 13.85 | 14.47 | 14.47 | 10.31 | 9.99 | 9.27 | 9.24 | |
T3 | 12.14 | 15.04 | 13.33 | 13.05 | 9.81 | 10.10 | 11.11 | 10.79 | |
x2 | 8.63 *** | 1.3 | 1.25 | 2.37 | 1.29 | 1.02 | 6.20 * | 3.08 * | |
Elevated triglycerides (serum TG ≥ 150 mg/dL) | T1 | 7.36 | 8.99 | 8.83 | 8.77 | 8.86 | 7.94 | 9.11 | 8.58 |
T2 | 11.13 | 9.11 | 8.43 | 9.16 | 8.26 | 9.25 | 8.33 | 8.72 | |
T3 | 9.67 | 10.06 | 10.91 | 10.23 | 9.46 | 9.39 | 9.15 | 9.29 | |
x2 | 9.44 *** | 0.95 | 4.65 ** | 1.56 | 1.68 | 2.82 | 0.88 | 0.60 | |
Low HDL-cholesterol (HDL < 40 mg/dL in men, <50 mg/dL in women) | T1 | 7.87 | 10.23 | 8.88 | 6.58 | 8.72 | 6.06 | 8.40 | 8.33 |
T2 | 8.88 | 8.38 | 8.99 | 9.27 | 8.01 | 8.54 | 8.61 | 8.44 | |
T3 | 8.99 | 7.14 | 7.87 | 9.89 | 6.84 | 8.97 | 6.65 | 6.81 | |
x2 | 0.34 | 6.72 ** | 1.08 | 8.71 *** | 4.11 * | 11.64 *** | 6.06 * | 3.95 * | |
Elevated fasting blood (plasma glucose ≥ 100 mg/dL) | T1 | 6.91 | 6.75 | 6.75 | 7.59 | 6.45 | 7.02 | 6.06 | 5.99 |
T2 | 9.50 | 8.15 | 7.25 | 8.15 | 7.27 | 7.55 | 7.05 | 7.41 | |
T3 | 6.18 | 7.70 | 8.60 | 6.86 | 8.12 | 7.27 | 8.72 | 8.44 | |
x2 | 9.13 *** | 1.55 | 2.82 * | 1.23 | 3.54 * | 0.36 | 8.93 *** | 7.48 *** | |
Elevated blood pressure (SBP ≥ 130 mmHg or DBP ≥ 85 mmHg) | T1 | 7.03 | 7.03 | 6.29 | 7.64 | 3.79 | 6.33 | 3.69 | 4.09 |
T2 | 8.11 | 6.22 | 7.44 | 8.25 | 6.15 | 5.28 | 6.11 | 5.45 | |
T3 | 6.49 | 8.38 | 7.91 | 5.75 | 7.18 | 5.27 | 7.33 | 7.58 | |
x2 | 3.75 * | 1.54 | 3.91 * | 3.27 * | 18.43 *** | 1.19 | 21.33 *** | 19.74 *** | |
Metabolic syndrome | T1 | 6.17 | 6.58 | 5.89 | 6.24 | 4.53 | 3.39 | 4.23 | 4.34 |
T2 | 8.16 | 6.03 | 6.51 | 7.33 | 4.60 | 4.97 | 4.38 | 4.76 | |
T3 | 5.21 | 6.92 | 7.13 | 5.96 | 5.24 | 5.50 | 5.76 | 5.35 | |
x2 | 6.59 ** | 1.18 | 2.67 * | 3.10 * | 1.24 | 5.39 * | 5.63 * | 2.24 |
Chronic Diseases | Carbohydrate-Rich | Wheat Staple | Alcohol & Western | Convenience Food | |||||
---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | Model 1 | Model 2 | Model 1 | Model 2 | ||
Abdominal obesity (waist circumstances ≥ 90 cm in men, ≥80 cm in women) | |||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
T2 | 0.69 (0.54–0.88) | 0.44 (0.22–0.86) | 0.92 (0.72–1.17) | 1.82 (0.95–3.50) | 1.12 (0.88–1.42) | 0.96 (0.49–1.87) | 0.62 (0.48–0.80) | 1.11 (0.65–1.88) | |
T3 | 0.54 (0.42–0.69) | 0.62 (0.32–1.19) | 1.01 (0.79–1.30) | 1.35 (0.70–2.59) | 1.31 (1.01–1.68) | 1.01 (0.55–1.86) | 0.82 (0.48–0.80) | 1.05 (0.64–1.73) | |
p for trend | <0.0001 | 0.1941 | 0.9148 | 0.5106 | 0.0449 | 0.4418 | 0.0094 | 0.6256 | |
Hypertriglyceridemia (serum TG ≥ 150 mg/dL) | |||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
T2 | 1.21 (1.01–1.72) | 1.66 (1.01–2.27) | 0.94 (0.73–1.23) | 0.80 (0.48–1.32) | 0.95 (0.73–1.23) | 1.00 (0.59–1.68) | 0.95 (0.73–1.23) | 1.26 (0.79–2.02) | |
T3 | 1.66 (1.27–2.13) | 1.82 (1.12–2.95) | 1.05 (0.80–1.37) | 1.03 (0.62–1.70) | 1.35 (1.05–1.74) | 1.51 (0.94–2.44) | 1.35 (1.05–1.74) | 1.63 (1.01–2.64) | |
p for trend | <0.0001 | 0.0418 | 0.7223 | 0.7978 | 0.0242 | 0.0702 | 0.0229 | 0.0462 | |
Low HDL-cholesterol (HDL < 40 mg/dL in men, <50 mg/dL in women) | |||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
T2 | 1.20 (0.91–1.59) | 1.04 (0.51–2.13) | 0.82 (0.63–1.07) | 0.96 (0.51–1.79) | 1.05 (0.80–1.37) | 0.74 (0.35–1.54) | 1.33 (1.01–1.77) | 1.24 (0.67–2.31) | |
T3 | 1.33 (1.01–1.76) | 2.34 (1.22–4.49) | 0.72 (0.54–0.95) | 0.83 (0.44–1.56) | 1.04 (0.78–1.38) | 1.23 (0.65–2.33) | 1.46 (1.09–1.96) | 1.32 (0.69–2.55) | |
p for trend | 0.0474 | 0.0086 | 0.0206 | 0.5454 | 0.8095 | 0.4707 | 0.0118 | 0.3798 | |
High fasting blood (plasma glucose ≥ 100 mg/dL) | |||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
T2 | 1.36 (1.03–1.81) | 1.81 (1.08–3.03) | 1.13 (0.85–1.49) | 1.36 (0.80–2.30) | 1.10 (0.83–1.46) | 1.85 (1.06–3.23) | 1.17 (0.88–1.55) | 2.15 (1.33–3.47) | |
T3 | 0.74 (0.55–1.00) | 0.90 (0.52–1.55) | 0.98 (0.73–1.32) | 0.69 (0.39–1.22) | 1.37 (1.05–1.80) | 1.46 (0.85–2.54) | 0.90 (0.67–1.21) | 1.36 (0.79–2.33) | |
p for trend | 0.3046 | 0.5880 | 0.8623 | 0.1090 | 0.0284 | 0.2368 | 0.4820 | 0.1376 | |
Hypertension (SBP ≥ 130 mmHg or DBP ≥ 85 mmHg) | |||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
T2 | 1.10 (0.79–1.54) | 1.71 (0.97–3.04) | 0.70 (0.49–0.98) | 0.90 (0.50–1.62) | 0.95 (0.73–1.23) | 1.00 (0.59–1.68) | 1.54 (1.11–2.14) | 1.42 (0.84–2.43) | |
T3 | 1.03 (0.72–1.46) | 1.38 (0.75–2.52) | 0.79 (0.57–1.10) | 1.08 (0.60–1.93) | 1.35 (1.05–1.74) | 1.51 (0.94–2.44) | 1.00 (0.70–1.45) | 0.94 (0.52–1.69) | |
p for trend | 0.8648 | 0.3064 | 0.2095 | 0.7196 | 0.9004 | 0.9690 | 0.8536 | 0.9969 | |
Metabolic syndrome | |||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
T2 | 1.46 (1.06–2.02) | 1.85 (0.95–3.61) | 0.81 (0.57–1.13) | 0.53 (0.24–1.15) | 1.15 (0.83–1.59) | 0.89 (0.41–1.93) | 1.50 (1.08–2.08) | 1.45 (0.76–2.78) | |
T3 | 1.02 (0.72–1.45) | 1.25 (0.60–2.59) | 0.80 (0.57–1.12) | 0.86 (0.42–1.78) | 1.45 (1.05–1.99) | 1.09 (0.57–2.08) | 1.24 (0.88–1.75) | 1.21 (0.62–2.37) | |
p for trend | 0.8374 | 0.5174 | 0.1979 | 0.9920 | 0.0338 | 0.7553 | 0.1873 | 0.4914 |
Chronic Diseases | Traditional Southern | Convenience Food | Carbohydrate-Rich | Alcohol | |||||
---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | Model 1 | Model 2 | Model 1 | Model 2 | ||
Abdominal obesity (waist circumstances ≥ 90 cm in men, ≥80 cm in women) | |||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
T2 | 0.92 (0.74–1.36) | 1.09 (0.62–1.91) | 1.07 (0.87–1.33) | 1.15 (0.67–1.99) | 0.91 (0.74–1.13) | 0.91 (0.52–1.58) | 0.82 (0.67–1.02) | 0.58 (0.33–1.03) | |
T3 | 0.83 (0.67–1.03) | 0.60 (0.34–1.05) | 0.90 (0.73–1.12) | 0.53 (0.30–0.92) | 1.07 (0.86–1.32) | 0.73 (0.41–1.30) | 0.93 (0.75–1.15) | 0.69 (0.39–1.23) | |
p for trend | 0.0937 | 0.0558 | 0.3477 | 0.0403 | 0.5549 | 0.2664 | 0.5153 | 0.2650 | |
Hypertriglyceridemia (serum TG ≥ 150 mg/dL) | |||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
T2 | 0.88 (0.72–1.09) | 0.86 (0.57–1.30) | 1.31 (1.06–1.61) | 1.20 (0.82–1.76) | 0.86 (0.70–1.06) | 0.97 (0.65–1.45) | 1.00 (0.81–1.23) | 0.82 (0.53–1.27) | |
T3 | 1.01 (0.82–1.24) | 1.13 (0.78–1.65) | 1.41 (1.13–1.75) | 1.53 (1.03–2.26) | 0.92 (0.74–1.14) | 1.06 (0.72–1.56) | 1.04 (0.84–1.29) | 1.18 (0.80–1.74) | |
p for trend | 0.9350 | 0.4468 | 0.0022 | 0.0366 | 0.4342 | 0.7583 | 0.6907 | 0.3287 | |
Low HDL-cholesterol (HDL < 40 mg/dL in men, <50 mg/dL in women) | |||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
T2 | 0.84 (0.67–1.05) | 0.90 (0.51–1.58) | 1.33 (1.06–1.68) | 1.27 (0.73–2.20) | 1.06 (0.85–1.32) | 1.43 (0.82–2.47) | 1.04 (0.83–1.30) | 0.94 (0.51–1.71) | |
T3 | 0.89 (0.70–1.12) | 0.89 (0.53–1.52) | 1.61 (0.91–1.48) | 1.96 (1.12–3.43) | 0.87 (0.68–1.12) | 1.01 (0.56–1.83) | 0.87 (0.69–1.11) | 1.16 (0.66–2.05) | |
p for trend | 0.3038 | 0.6842 | 0.2539 | 0.0201 | 0.2868 | 0.9649 | 0.2800 | 0.5726 | |
High fasting blood (plasma glucose ≥ 100 mg/dL) | |||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
T2 | 1.08 (0.85–1.36) | 1.18 (0.73–1.89) | 1.15 (0.92–1.44) | 1.32 (0.87–2.00) | 1.14 (0.90–1.43) | 1.26 (0.78–2.02) | 1.23 (0.98–1.55) | 1.60 (0.96–2.65) | |
T3 | 1.18 (0.94–1.48) | 1.41 (0.90–2.19) | 1.12 (0.89–1.42) | 1.19 (0.76–1.84) | 1.40 (1.11–1.77) | 1.42 (0.90–2.24) | 1.42 (1.11–1.77) | 1.83 (1.13–2.97) | |
p for trend | 0.1595 | 0.1248 | 0.3350 | 0.3901 | 0.0046 | 0.1378 | 0.0053 | 0.0158 | |
Hypertension (SBP ≥ 130 mmHg or DBP ≥ 85 mmHg) | |||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
T2 | 1.20 (O0.89–1.04) | 0.95 (0.53–1.72) | 1.00 (0.76–1.31) | 0.71 (0.45–1.12) | 1.38 (1.02–1.63) | 1.25 (0.78–2.01) | 1.03 (0.77–1.39) | 0.83 (0.47–1.44) | |
T3 | 0.90 (0.69–1.18) | 1.11 (0.64–1.92) | 0.88 (0.66–1.68) | 0.82 (0.51–1.33) | 1.21 (0.89–1.63) | 0.99 (0.61–1.60) | 1.24 (0.93–1.65) | 1.32 (0.82–2.13) | |
p for trend | 0.2299 | 0.8476 | 0.3694 | 0.3837 | 0.3065 | 0.8389 | 0.1247 | 0.1519 | |
Metabolic syndrome | |||||||||
T1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
T2 | 0.78 (0.59–1.04) | 0.95 (0.53–1.72) | 1.36 (1.02–1.80) | 1.27 (0.74–2.18) | 0.90 (0.68–1.20) | 1.47 (0.82–2.64) | 0.91 (0.69–1.20) | 1.01 (0.53–1.92) | |
T3 | 0.90 (0.69–1.18) | 1.11 (0.64–1.92) | 1.37 (1.02–1.83) | 1.79 (1.03–3.11) | 1.11 (0.84–1.46) | 1.22 (0.68–2.18) | 0.97 (0.74–1.28) | 1.30 (0.75–2.26) | |
p for trend | 0.5096 | 0.6652 | 0.0396 | 0.0398 | 0.4345 | 0.6235 | 0.8744 | 0.3063 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, F.; Cho, M.S. Geography of Food Consumption Patterns between South and North China. Foods 2017, 6, 34. https://doi.org/10.3390/foods6050034
Song F, Cho MS. Geography of Food Consumption Patterns between South and North China. Foods. 2017; 6(5):34. https://doi.org/10.3390/foods6050034
Chicago/Turabian StyleSong, Fangfang, and Mi Sook Cho. 2017. "Geography of Food Consumption Patterns between South and North China" Foods 6, no. 5: 34. https://doi.org/10.3390/foods6050034
APA StyleSong, F., & Cho, M. S. (2017). Geography of Food Consumption Patterns between South and North China. Foods, 6(5), 34. https://doi.org/10.3390/foods6050034