Fractionation of Glycomacropeptide from Whey Using Positively Charged Ultrafiltration Membranes
Abstract
:1. Introduction
2. Experimental
2.1. Membrane Modification Using Polyhexamethylene Biguanide (PHMB)
2.2. Measurement of Protein Sieving Coefficients
2.3. Staging Experiments
2.4. Analysis of Protein Concentrations
2.5. Phenylalanine Analysis
3. Results
3.1. Sieving Coefficients Measured Using Different Charged and Uncharged Membranes
3.2. Effect of Salt Using the 1000 kDa PHMB Membrane
3.3. Effect of Staging Configuration
4. Discussion and Conclusions
4.1. Sieving Coefficients as a Function of Membrane MWCO and Charge
4.2. Variation of Sieving Coefficients with Ionic Strength for the 1000 kDa PHMB Membrane
4.3. Ultrafiltration Cascades for GMP Fractionation from Whey
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ney, D.M.; Blank, R.D.; Hansen, K.E. Advances in nutritional and pharmacological management of phenylketonuria. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 61–68. [Google Scholar] [CrossRef] [PubMed]
- LaClair, C.E.; Ney, D.M.; MacLeod, E.L.; Etzel, M.R. Purification and use of glycomacropeptide for nutritional management of phenylketonuria. J. Food. Sci. 2009, 74, E199–E206. [Google Scholar] [CrossRef] [PubMed]
- Doultani, S.; Turhan, K.N.; Etzel, M.R. Whey protein isolate and glycomacropeptide recovery from whey using ion-exchange chromatography. J. Food Sci. 2003, 68, 1389–1395. [Google Scholar] [CrossRef]
- Tek, H.N.; Turhan, K.N.; Etzel, M.R. Effect of conductivity, pH and elution buffer salinity on glycomacropeptide recovery from whey using anion-exchange chromatography. J. Food Sci. 2005, 70, E295–E300. [Google Scholar] [CrossRef]
- LaClair, C.E. Purification and Use of Whey Proteins for Improved Health. PhD Thesis, University of Wisconsin-Madison, Madison, WI, USA, December 2008. [Google Scholar]
- Abd El-Salam, M.H. Separation of casein glycomacropeptide from whey: Methods of potential industrial application. Int. J. Dairy Sci. 2010, 5, 234–240. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Kawakami, H.; Tanimoto, M.; Dosako, S.; Tomizawa, A.; Kotake, M.; Nakajima, I. pH-Dependent molecular weight changes of casein glycomacropeptide and its preparation by ultrafiltration. Milchwissenschaft 1993, 48, 191–196. [Google Scholar]
- Martin-Diana, A.B.; Fraga, M.; Fontecha, J. Isolation and characterization of caseinomacropeptide from bovine, ovine and caprine cheese whey. Eur. Food Res. Technol. 2002, 214, 282–286. [Google Scholar] [CrossRef]
- Tolkach, A.; Kulozik, U. Fractionation of whey proteins and caseinomacropeptide by means of enzymatic crosslinking and membrane separation techniques. J. Food Eng. 2005, 67, 13–20. [Google Scholar] [CrossRef]
- Gottschalk, U. Bioseparation in antibody manufacturing: The good, bad and the ugly. Biotechnol. Prog. 2008, 24, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Van Reis, R.; Goodrich, E.M.; Yson, C.L.; Frautschy, L.N.; Dzengeleski, S.; Lutz, H. Linear scale ultrafiltration. Biotechnol. Bioeng. 1997, 55, 737–746. [Google Scholar] [CrossRef]
- Bhushan, S.; Etzel, M.R. Charged ultrafiltration membranes increase the selectivity of whey protein separations. J. Food Sci. 2009, 74, E131–E139. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, B.; Brown, A.; van Reis, R. Application of high-performance tangential flow filtration (HPTFF) to the purification of a human pharmaceutical antibody expressed in Escherichia coli. Biotechnol. Bioeng. 2008, 100, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Zydney, A.L. Permeability-selectivity analysis for ultrafiltration membranes. J. Membr. Sci. 2010, 349, 405–410. [Google Scholar] [CrossRef]
- Rohani, M.M.; Zydney, A.L. Role of electrostatic interactions during protein ultrafiltration. J. Colloid Interface Sci. 2010, 160, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.B.; Zydney, A.L. Contributions to electrostatic interactions on protein transport in membrane systems. AIChE J. 2001, 47, 1101–1114. [Google Scholar] [CrossRef]
- Arunkumar, A.; Etzel, M.R. Fractionation of α-lactalbumin and β-lactoglobulin from bovine milk serum using staged, positively charged, tangential flow ultrafiltration membranes. J. Membr. Sci. 2014, 454, 488–495. [Google Scholar] [CrossRef]
- Arunkumar, A.; Etzel, M.R. Fractionation of α-lactalbumin from β-lactoglobulin using positively charged tangential flow ultrafiltration membranes. Sep. Purif. Technol. 2013, 105, 121–128. [Google Scholar] [CrossRef]
- Pujar, N.S.; Zydney, A.L. Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. J. Chromatogr. A 1998, 796, 229–238. [Google Scholar] [CrossRef]
- Metsämuuronen, S.; Nyström, M. Enrichment of α-lactalbumin from diluted whey with polymeric ultrafiltration membranes. J. Membr. Sci. 2009, 337, 248–256. [Google Scholar] [CrossRef]
- Kumar, M.; Ulbricht, M. Novel antifouling positively charged hybrid ultrafiltration membranes for protein separation based on blends of carboxylated carbon nanotubes and aminated poly (arylene ether sulfone). J. Membr. Sci. 2013, 448, 62–73. [Google Scholar] [CrossRef]
- Kumar, M.; Lawler, J. Preparation and characterization of negatively charged organic–inorganic hybrid ultrafiltration membranes for protein separation. Sep. Purif. Technol. 2014, 130, 112–123. [Google Scholar] [CrossRef]
- Riordan, W.; Heilmann, S.; Brorson, K.; Seshadri, K.; He, Y.; Etzel, M. Design of salt-tolerant membrane adsorbers for viral clearance. Biotechnol. Bioeng. 2009, 103, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, A.; Etzel, M.R. Negatively charged tangential flow ultrafiltration membranes for whey protein concentration. J. Membr. Sci. 2005, 475, 340–348. [Google Scholar] [CrossRef]
- Van Reis, R.D. Charged Filtration Membranes and Uses Therefor. U.S. Patent 7,001,550, 21 February 2006. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists, International: Gaithersburg, MD, USA, 2015. [Google Scholar]
Membrane | LMH | So GMP | So OWP | |
---|---|---|---|---|
10 kDa unmodified | 12 | 0.039 ± 0.02 | 0.016 ± 0.007 | 2.3 ± 0.1 |
100 kDa unmodified (n = 5, pH 6.8) | 24 | 0.75 ± 0.06 | 0.34 ± 0.06 | 2.2 ± 0.3 |
1000 kDa unmodified | 27 | 1.03 ± 0.03 | 0.67 ± 0.02 | 1.54 ± 0.08 |
300 kDa Q (pH = 3) | 12 | 0.919 ± 0.007 | 0.31 ± 0.09 | 3.1 ± 0.9 |
33 | 0.71 ± 0.03 | 0.126 ± 0.008 | 5.7 ± 0.2 | |
1000 kDa PHMB | 30 | 0.61 ± 0.10 | 0.029 ± 0.000 | 21 ± 3 |
Added NaCl (mM) | Conductivity (mS cm−1) | So GMP | So ALA | So OWP | |
---|---|---|---|---|---|
whey = 0 | 10 | 0.6 ± 0.1 | __ | 0.029 ± 0.000 | 21 ± 2 |
50 | 16 | 0.8 ± 0.1 | 0.022 ± 0.001 | 0.036 ± 0.003 | 21 ± 1 |
500 | 67 | 0.4 ± 0.2 | 0.16 ± 0.008 | 0.05 ± 0.01 | 8 ± 5 |
1000 | 124 | 0.26 ± 0.04 | 0.18 ± 0.01 | 0.072 ± 0.007 | 3.6 ± 0.5 |
Stream | GMP (g) | OWP (g) | Purity (%) |
---|---|---|---|
Feed Solution (FS) | 12.9 ± 0.1 | 87.1 ± 0.1 | 12.9 ± 0.1 |
Permeate (P1) | 10.0 ± 0.5 | 1.1 ± 0.2 | 90 ± 2 |
Retentate (R1) | 5 ± 1 | 83 ± 6 | 5 ± 2 |
(P1 + R1)/FS | 114 ± 6% | 96 ± 6% |
Stream | GMP (g) | OWP (g) | Purity (%) |
---|---|---|---|
Feed Solution (FS) | 18.9 ± 0.4 | 81.1 ± 0.4 | 18.9 ± 0.4 |
Permeate (P1) | 7.6 ± 0.6 | 3 ± 2 | 72 ± 9 |
Retentate (R1) | 9 ± 2 | 65 ± 17 | 11.9 ± 0.6 |
Permeate (P2) | 5 ± 1 | 1.9 ± 0.3 | 73 ± 8 |
Retentate (R2) | 4 ± 1 | 6 ± 7 | 43 ± 39 |
Permeate (P3) | 4.4 ± 0.7 | 0.1 ± 0.2 | 97 ± 3 |
Retentate (R3) | 1.5 ± 0.3 | 2 ± 2 | 51 ± 33 |
Retentate mix (Rmix) | 13 ± 3 | 77 ± 1 | 15 ± 3 |
(P3 + Rmix)/FS | 94 ± 9% | 95.0 ± 0.9% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arunkumar, A.; Etzel, M.R. Fractionation of Glycomacropeptide from Whey Using Positively Charged Ultrafiltration Membranes. Foods 2018, 7, 166. https://doi.org/10.3390/foods7100166
Arunkumar A, Etzel MR. Fractionation of Glycomacropeptide from Whey Using Positively Charged Ultrafiltration Membranes. Foods. 2018; 7(10):166. https://doi.org/10.3390/foods7100166
Chicago/Turabian StyleArunkumar, Abhiram, and Mark R. Etzel. 2018. "Fractionation of Glycomacropeptide from Whey Using Positively Charged Ultrafiltration Membranes" Foods 7, no. 10: 166. https://doi.org/10.3390/foods7100166
APA StyleArunkumar, A., & Etzel, M. R. (2018). Fractionation of Glycomacropeptide from Whey Using Positively Charged Ultrafiltration Membranes. Foods, 7(10), 166. https://doi.org/10.3390/foods7100166