Factors Influencing the Flavour of Bovine Milk and Cheese from Grass Based versus Non-Grass Based Milk Production Systems
Abstract
:1. Introduction
2. Impact of Forage on the Fatty Acid Content of Bovine Milk and Cheese
3. Impact of Carotenoids (β-Carotene and Lutein) on the Sensory Perception of Bovine Milk and Milk Products
4. The Potential Impact of Volatile Terpenoid Compounds Derived from Diet on the Sensory Perception of Bovine Milk and Cheese
5. Volatile Compounds from Diet Influencing the Sensory Properties of Bovine Milk and Cheese
5.1. Aldehydes
5.2. Ketones
5.3. Alcohols
5.4. Acids
5.5. Volatile Sulphur Compounds
5.6. Esters
5.7. Lactones
5.8. Toluene
5.9. Phenolic Compound
6. Sensory Perception of Raw Bovine Milk
7. Sensory Perception of Pasteurized Bovine Milk
8. Sensory Perception of Raw and Pasteurized Bovine Milk Cheese
8.1. Soft and Semi-Soft Cheeses
8.2. Semi-Hard Cheeses
8.3. Hard Cheeses
8.4. Stretched Curd Cheeses
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Coulon, J.; Priolo, A. Influence of forage feeding on the composition and organoleptic properties of meat and dairy products: Bases for a “terroir” effect. In Proceedings of the 19th General Meeting of the European Grassland Federation, La Rochelle, France, 27–30 May 2002; Durand, J.L., Emile, J.C., Huyghe, C., Lemaire, G., Eds.; European Grassland Federation: Zurich, Switzerland, 2002. [Google Scholar]
- Martin, B.; Verdier-Metz, I.; Buchin, S.; Hurtaud, C.; Coulon, J.-B. How do the nature of forages and pasture diversity influence the sensory quality of dairy livestock products? Anim. Sci. 2005, 81, 205–212. [Google Scholar] [CrossRef]
- Croissant, A.E.; Washburn, S.; Dean, L.; Drake, M. Chemical properties and consumer perception of fluid milk from conventional and pasture-based production systems. J. Dairy Sci. 2007, 90, 4942–4953. [Google Scholar] [CrossRef] [PubMed]
- Prache, S. Diet authentication in sheep from the composition of animal tissues and products. Revista Brasileira de Zootecnia 2009, 38, 362–370. [Google Scholar] [CrossRef]
- Moloney, A.P.; Monahan, F.; Schmidt, O. Quality and authenticity of grassland products. Future Eur. Grassl. 2014, 7, 509. [Google Scholar]
- Gaspardo, B.; Lavrenčič, A.; Levart, A.; Del Zotto, S.; Stefanon, B. Use of milk fatty acids composition to discriminate area of origin of bulk milk. J. Dairy Sci. 2010, 93, 3417–3426. [Google Scholar] [CrossRef] [PubMed]
- Tornambé, G.; Ferlay, A.; Farruggia, A.; Chilliard, Y.; Loiseau, P.; Pradel, P.; Graulet, B.; Chauveau-Duriot, B.; Martin, B. Influence of the botanical diversity and development stage of mountain pastures on milk fatty acid composition, carotenoids, fat-soluble vitamins and sensory properties. In Grassland in a Changing World, Proceedings of the 23rd General Meeting of the European Grassland Federation, Kiel, Germany, 29 August–2 September 2010; Mecke Druck und Verlag: Duderstadt, Germany, 2010. [Google Scholar]
- Benbrook, C.M.; Butler, G.; Latif, M.A.; Leifert, C.; Davis, D.R. Organic production enhances milk nutritional quality by shifting fatty acid composition: A United States–wide, 18-month study. PLoS ONE 2013, 8, e82429. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.K.; Kidmose, U.; Kristensen, T.; Beaumont, P.; Mortensen, G. Chemical composition and sensory quality of bovine milk as affected by type of forage and proportion of concentrate in the feed ration. J. Sci. Food Agric. 2013, 93, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Capuano, E.; Van der Veer, G.; Boerrigter-Eenling, R.; Elgersma, A.; Rademaker, J.; Sterian, A.; Van Ruth, S.M. Verification of fresh grass feeding, pasture grazing and organic farming by cows farm milk fatty acid profile. Food Chem. 2014, 164, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Hurtaud, C.; Dutreuil, M.; Coppa, M.; Agabriel, C.; Martin, B. Characterization of milk from feeding systems based on herbage or corn silage with or without flaxseed and authentication through fatty acid profile. Dairy Sci. Technol. 2014, 94, 103–123. [Google Scholar] [CrossRef]
- Coppa, M.; Chassaing, C.; Ferlay, A.; Agabriel, C.; Laurent, C.; Borreani, G.; Barcarolo, R.; Baars, T.; Kusche, D.; Harstad, O.M. Potential of milk fatty acid composition to predict diet composition and authenticate feeding systems and altitude origin of European bulk milk. J. Dairy Sci. 2015, 98, 1539–1551. [Google Scholar] [CrossRef] [PubMed]
- Mitani, T.; Kobayashi, K.; Ueda, K.; Kondo, S. Discrimination of “grazing milk” using milk fatty acid profile in the grassland dairy area in Hokkaido. Anim. Sci. J. 2016, 87, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Średnicka-Tober, D.; Barański, M.; Seal, C.J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M. Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: A systematic literature review and meta-and redundancy analyses. Br. J. Nutr. 2016, 115, 1043–1060. [Google Scholar] [CrossRef] [PubMed]
- Spence, C. On the psychological impact of food colour. Flavour 2015, 4, 21. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. 2004, 44, 467–492. [Google Scholar] [CrossRef]
- Coulon, J.-B.; Delacroix-Buchet, A.; Martin, B.; Pirisi, A. Relationships between ruminant management and sensory characteristics of cheeses: A review. Le Lait 2004, 84, 221–241. [Google Scholar] [CrossRef]
- Kelly, M.; Kolver, E.; Bauman, D.; Van Amburgh, M.; Muller, L. Effect of Intake of Pasture on Concentrations of Conjugated Linoleic Acid in Milk of Lactating Cows. J. Dairy Sci. 1998, 81, 1630–1636. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Glover, K.; Budge, S.; Rose, M.; Rupasinghe, H.; MacLaren, L.; Green-Johnson, J.; Fredeen, A. Effect of feeding fresh forage and marine algae on the fatty acid composition and oxidation of milk and butter. J. Dairy Sci. 2012, 95, 2797–2809. [Google Scholar] [CrossRef] [PubMed]
- Rego, O.A.; Cabrita, A.R.; Rosa, H.J.; Alves, S.P.; Duarte, V.; Fonseca, A.J.; Vouzela, C.F.; Pires, F.R.; Bessa, R.J. Changes in milk production and milk fatty acid composition of cows switched from pasture to a total mixed ration diet and back to pasture. Ital. J. Anim. Sci. 2016, 15, 76–86. [Google Scholar] [CrossRef]
- O’Callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’Donovan, M.; Dillon, P.; Ross, R.P.; Stanton, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 2016, 99, 9424–9440. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.; Hydamaka, A.; Noto, A.; Kotyk, E.; Zahradka, P.; Taylor, C. Grazing period variations in cow milk vaccenic acid (VA) and conjugated linoleic acid (CLA). J. Nutr. Food Sci. 2012, 2, 136. [Google Scholar]
- Schwendel, B.H.; Wester, T.J.; Morel, P.C.; Fong, B.; Tavendale, M.H.; Deadman, C.; Shadbolt, N.M.; Otter, D.E. Pasture feeding conventional cows removes differences between organic and conventionally produced milk. Food Chem. 2017, 229, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, D.; Beaulieu, A.D.; Barbano, D. Feed and animal factors influencing milk fat composition1. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Kilcawley, K.N. Cheese Flavour. In Fundamentals of Cheese Science, 2nd ed.; Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H., Eds.; Springer US: Boston, MA, USA; New York, NY, USA, 2017; pp. 443–474. [Google Scholar]
- Qian, M.; Burbank, H. Hard Italian cheeses: Parmigiano-reggiano and grana-padano. In Improving the Flavour of Cheese; Weimer, B.C., Ed.; Woodhead punlishing: Cambridge, UK, 2007; pp. 421–443. ISBN 978-1-84569-007-6. [Google Scholar]
- Villeneuve, M.-P.; Lebeuf, Y.; Gervais, R.; Tremblay, G.; Vuillemard, J.; Fortin, J.; Chouinard, P. Milk volatile organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage. J. Dairy Sci. 2013, 96, 7181–7194. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, W. Formation of oxidized flavor compounds in concentrated milk and distillate during milk concentration. J. Dairy Sci. 2016, 99, 9647–9651. [Google Scholar] [CrossRef] [PubMed]
- Zardin, E.; Silcock, P.; Siefarth, C.; Bremer, P.J.; Beauchamp, J. Dynamic changes in the volatiles and sensory properties of chilled milk during exposure to light. Int. Dairy J. 2016, 62, 35–38. [Google Scholar] [CrossRef]
- Havemose, M.S.; Weisbjerg, M.R.; Bredie, W.; Poulsen, H.D.; Nielsen, J.H. Oxidative stability of milk influenced by fatty acids, antioxidants, and copper derived from feed. J. Dairy Sci. 2006, 89, 1970–1980. [Google Scholar] [CrossRef]
- Hedegaard, R.; Kristensen, D.; Nielsen, J.H.; Frøst, M.B.; Østdal, H.; Hermansen, J.E.; Kröger-Ohlsen, M.; Skibsted, L.H. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk. J. Dairy Sci. 2006, 89, 495–504. [Google Scholar] [CrossRef]
- Romeu-Nadal, M.; Castellote, A.; López-Sabater, M. Headspace gas chromatographic method for determining volatile compounds in infant formulas. J. Chromatogr. A 2004, 1046, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Bendall, J.G. Aroma compounds of fresh milk from New Zealand cows fed different diets. J. Agric. Food Chem. 2001, 49, 4825–4832. [Google Scholar] [CrossRef] [PubMed]
- Tunick, M.H.; Iandola, S.K.; Van Hekken, D.L. Comparison of SPME methods for determining volatile compounds in milk, cheese, and whey powder. Foods 2013, 2, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Landaverde, P.A.; Velazquez, G.; Torres, J.; Qian, M. Quantitative determination of thermally derived off-flavor compounds in milk using solid-phase microextraction and gas chromatography. J. Dairy Sci. 2005, 88, 3764–3772. [Google Scholar] [CrossRef]
- Coppa, M.; Ferlay, A.; Borreani, G.; Revello-Chion, A.; Tabacco, E.; Tornambé, G.; Pradel, P.; Martin, B. Effect of phenological stage and proportion of fresh herbage in cow diets on milk fatty acid composition. Anim. Feed Sci. Technol. 2015, 208, 66–78. [Google Scholar] [CrossRef]
- Kay, J.K.; Roche, J.R.; Kolver, E.S.; Thomson, N.A.; Baumgard, L.H. A comparison between feeding systems (pasture and TMR) and the effect of vitamin E supplementation on plasma and milk fatty acid profiles in dairy cows. J. Dairy Res. 2005, 72, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Nozière, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for ruminants: From forages to dairy products. Anim. Feed Sci. Technol. 2006, 131, 418–450. [Google Scholar] [CrossRef]
- Kalač, P. The effects of silage feeding on some sensory and health attributes of cow’s milk: A review. Food Chem. 2011, 125, 307–317. [Google Scholar] [CrossRef]
- Faulkner, H.; O’Callaghan, T.F.; McAuliffe, S.; Hennessy, D.; Stanton, C.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Effect of different forage types on the volatile and sensory properties of bovine milk. J. Dairy Sci. 2018, 101, 1034–1047. [Google Scholar] [CrossRef] [PubMed]
- Agabriel, C.; Martin, B.; Sibra, C.; Bonnefoy, J.-C.; Montel, M.-C.; Didienne, R.; Hulin, S. Effect of dairy production systems on the sensory characteristics of Cantal cheeses: A plant-scale study. Anim. Res. 2004, 53, 221–234. [Google Scholar] [CrossRef]
- Forss, D.A. Mechanisms of formation of aroma compounds in milk and milk products. J. Dairy Res. 1979, 46, 691–706. [Google Scholar] [CrossRef]
- Cornu, A.; Rabiau, N.; Kondjoyan, N.; Verdier-Metz, I.; Pradel, P.; Tournayre, P.; Berdagué, J.; Martin, B. Odour-active compound profiles in Cantal-type cheese: Effect of cow diet, milk pasteurization and cheese ripening. Int. Dairy J. 2009, 19, 588–594. [Google Scholar] [CrossRef]
- Moorby, J.; Lee, M.; Davies, D.; Kim, E.; Nute, G.; Ellis, N.; Scollan, N. Assessment of dietary ratios of red clover and grass silages on milk production and milk quality in dairy cows. J. Dairy Sci. 2009, 92, 1148–1160. [Google Scholar] [CrossRef] [PubMed]
- Agabriel, C.; Cornu, A.; Journal, C.; Sibra, C.; Grolier, P.; Martin, B. Tanker milk variability according to farm feeding practices: Vitamins A and E, carotenoids, color, and terpenoids. J. Dairy Sci. 2007, 90, 4884–4896. [Google Scholar] [CrossRef] [PubMed]
- Prache, S.; Cornu, A.; Berdagué, J.; Priolo, A. Traceability of animal feeding diet in the meat and milk of small ruminants. Small Rumin. Res. 2005, 59, 157–168. [Google Scholar] [CrossRef]
- Verdier-Metz, I.C.; Coulon, J.-B.; Pradel, P.; Viallon, C.; Berdague, J.-L. Effect of forage conservation (hay or silage) and cow breed on the coagulation properties of milks and on the characteristics of ripened cheeses. J. Dairy Res. 1998, 65, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Verdier-Metz, I.; Coulon, J.-B.; Pradel, P.; Viallon, C.; Albouy, H.; Berdagué, J.-L. Effect of the botanical composition of hay and casein genetic variants on the chemical and sensory characteristics of ripened Saint-Nectaire type cheeses. Le Lait 2000, 80, 361–370. [Google Scholar] [CrossRef]
- Romanzin, A.; Corazzin, M.; Piasentier, E.; Bovolenta, S. Effect of rearing system (mountain pasture vs. indoor) of Simmental cows on milk composition and Montasio cheese characteristics. J. Dairy Res. 2013, 80, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Khanal, R.; Dhiman, T.; Ure, A.; Brennand, C.; Boman, R.; McMahon, D.J. Consumer acceptability of conjugated linoleic acid-enriched milk and cheddar cheese from cows grazing on pasture. J. Dairy Sci. 2005, 88, 1837–1847. [Google Scholar] [CrossRef]
- O’Callaghan, T.F.; Mannion, D.T.; Hennessy, D.; McAuliffe, S.; O’Sullivan, M.G.; Leeuwendaal, N.; Beresford, T.P.; Dillon, P.; Kilcawley, K.N.; Sheehan, J.J. Effect of pasture versus indoor feeding systems on quality characteristics, nutritional composition, and sensory and volatile properties of full-fat Cheddar cheese. J. Dairy Sci. 2017, 100, 6053–6073. [Google Scholar] [CrossRef] [PubMed]
- Vialloninsta, C.; Martin, B.; Verdier-Metz, I.; Pradel, P.; Garel, J.-P.; Coulon, J.-B.; Berdagué, J.-L. Transfer of monoterpenes and sesquiterpenes from forages into milk fat. Le Lait 2000, 80, 635–641. [Google Scholar] [CrossRef]
- Bugaud, C.; Buchin, S.; Hauwuy, A.; Coulon, J.-B. Relationships between flavour and chemical composition of Abondance cheese derived from different types of pastures. Le Lait 2001, 81, 757–773. [Google Scholar] [CrossRef]
- Moio, L.; Rillo, L.; Ledda, A.; Addeo, F. Odorous constituents of ovine milk in relationship to diet. J. Dairy Sci. 1996, 79, 1322–1331. [Google Scholar] [CrossRef]
- De Feo, V.; Quaranta, E.; Fedele, V.; Claps, S.; Rubino, R.; Pizza, C. Flavonoids and terpenoids in goat milk in relation to forage intake. Ital. J. Anim. Sci. 2006, 18, 85–92. [Google Scholar]
- Coppa, M.; Martin, B.; Pradel, P.; Leotta, B.; Priolo, A.; Vasta, V. Effect of a hay-based diet or different upland grazing systems on milk volatile compounds. J. Agric. Food Chem. 2011, 59, 4947–4954. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.; Astier, C.; Rock, E.; Coulon, J.B.; Berdagué, J.L. Characterization of milk by analysis of its terpene fractions. Int. J. Food Sci. Technol. 2003, 38, 445–451. [Google Scholar] [CrossRef]
- Lejonklev, J.; Løkke, M.M.; Larsen, M.K.; Mortensen, G.; Petersen, M.A.; Weisbjerg, M.R. Transfer of terpenes from essential oils into cow milk. J. Dairy Sci. 2013, 96, 4235–4241. [Google Scholar] [CrossRef] [PubMed]
- Tornambé, G.; Cornu, A.; Pradel, P.; Kondjoyan, N.; Carnat, A.; Petit, M.; Martin, B. Changes in terpene content in milk from pasture-fed cows. J. Dairy Sci. 2006, 89, 2309–2319. [Google Scholar] [CrossRef]
- Engel, E.; Ferlay, A.; Cornu, A.; Chilliard, Y.; Agabriel, C.; Bielicki, G.; Martin, B. Relevance of isotopic and molecular biomarkers for the authentication of milk according to production zone and type of feeding of the cow. J. Agric. Food Chem. 2007, 55, 9099–9108. [Google Scholar] [CrossRef] [PubMed]
- Viallon, C.V.-M.; Verdier-Metz, I.; Denoyer, C.; Pradel, P.; Coulon, J.-B.; Berdague, J.-L. Desorbed terpenes and sesquiterpenes from forages and cheeses. J. Dairy Res. 1999, 66, 319–326. [Google Scholar] [CrossRef]
- Carpino, S.; Mallia, S.; La Terra, S.; Melilli, C.; Licitra, G.; Acree, T.; Barbano, D.; Van Soest, P. Composition and aroma compounds of Ragusano cheese: Native pasture and total mixed rations. J. Dairy Sci. 2004, 87, 816–830. [Google Scholar] [CrossRef]
- De Noni, I.; Battelli, G. Terpenes and fatty acid profiles of milk fat and “Bitto” cheese as affected by transhumance of cows on different mountain pastures. Food Chem. 2008, 109, 299–309. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, T.F.; Faulkner, H.; McAuliffe, S.; O’Sullivan, M.G.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; Stanton, C.; Ross, R.P. Quality characteristics, chemical composition, and sensory properties of butter from cows on pasture versus indoor feeding systems. J. Dairy Sci. 2016, 99, 9441–9460. [Google Scholar] [CrossRef] [PubMed]
- Chion, A.R.; Tabacco, E.; Giaccone, D.; Peiretti, P.G.; Battelli, G.; Borreani, G. Variation of fatty acid and terpene profiles in mountain milk and “Toma piemontese” cheese as affected by diet composition in different seasons. Food Chem. 2010, 121, 393–399. [Google Scholar] [CrossRef]
- Toso, B.; Procida, G.; Stefanon, B. Determination of volatile compounds in cows’ milk using headspace GC-MS. J. Dairy Res. 2002, 69, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, R.; Rodrigues, A.I.; do Céu Costa, M. Volatile composition of red clover (Trifolium pratense L.) forages in Portugal: The influence of ripening stage and ensilage. Food Chem. 2007, 104, 1445–1453. [Google Scholar] [CrossRef]
- Boltar, I.; Majhenič, A.Č.; Jarni, K.; Jug, T.; Kralj, M.B. Volatile compounds in Nanos cheese: Their formation during ripening and sesonal variation. J. Food Sci. Technol. 2015, 52, 608–623. [Google Scholar] [CrossRef]
- Bovolenta, S.; Romanzin, A.; Corazzin, M.; Spanghero, M.; Aprea, E.; Gasperi, F.; Piasentier, E. Volatile compounds and sensory properties of Montasio cheese made from the milk of Simmental cows grazing on alpine pastures. J. Dairy Sci. 2014, 97, 7373–7385. [Google Scholar] [CrossRef] [PubMed]
- Buchin, S.; Martin, B.; Dupont, D.; Bornard, A.; Achilleos, C. Influence of the composition of Alpine highland pasture on the chemical, rheological and sensory properties of cheese. J. Dairy Res. 1999, 66, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Poulopoulou, I.; Zoidis, E.; Massouras, T.; Hadjigeorgiou, I. Terpenes transfer to milk and cheese after oral administration to sheep fed indoors. J. Anim. Physiol. Anim. Nutr. 2012, 96, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Schlichtherle-Cerny, H.; Imhof, M.; Fernández García, E.; Bosset, J. Changes in terpene composition from pasture to cheese. Mitteilungen aus Lebensmitteluntersuchung und Hygiene 2004, 95, 681–688. [Google Scholar]
- Belviso, S.; Giordano, M.; Dolci, P.; Zeppa, G. Degradation and biosynthesis of terpenoids by lactic acid bacteria isolated from cheese: First evidence. Dairy Sci. Technol. 2011, 91, 227. [Google Scholar] [CrossRef]
- Stefanon, B.; Procida, G. Effects of including silage in the diet on volatile compound profiles in Montasio cheese and their modification during ripening. J. Dairy Res. 2004, 71, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Bendall, J.G.; Olney, S.D. Hept-cis-4-enal: Analysis and flavour contribution to fresh milk. Int. Dairy J. 2001, 11, 855–864. [Google Scholar] [CrossRef]
- Mounchili, A.; Wichtel, J.; Bosset, J.; Dohoo, I.R.; Imhof, M.; Altieri, D.; Mallia, S.; Stryhn, H. HS-SPME gas chromatographic characterization of volatile compounds in milk tainted with off-flavour. Int. Dairy J. 2005, 15, 1203–1215. [Google Scholar] [CrossRef]
- Falchero, L.; Lombardi, G.; Gorlier, A.; Lonati, M.; Odoardi, M.; Cavallero, A. Variation in fatty acid composition of milk and cheese from cows grazed on two alpine pastures. Dairy Sci. Technol. 2010, 90, 657–672. [Google Scholar] [CrossRef]
- Urbach, G. The flavour of milk and dairy products: II. Cheese: Contribution of volatile compounds. Int. J. Dairy Technol. 1997, 50, 79–89. [Google Scholar] [CrossRef]
- Aprea, E.; Romanzin, A.; Corazzin, M.; Favotto, S.; Betta, E.; Gasperi, F.; Bovolenta, S. Effects of grazing cow diet on volatile compounds as well as physicochemical and sensory characteristics of 12-month-ripened Montasio cheese. J. Dairy Sci. 2016, 99, 6180–6190. [Google Scholar] [CrossRef] [PubMed]
- Kilic, M.; Lindsay, R. Distribution of conjugates of alkylphenols in milk from different ruminant species. J. Dairy Sci. 2005, 88, 7–12. [Google Scholar] [CrossRef]
- Lopez, V.; Lindsay, R.C. Metabolic conjugates as precursors for characterizing flavor compounds in ruminant milks. J. Agric. Food Chem. 1993, 41, 446–454. [Google Scholar] [CrossRef]
- Guichard, G.; Leconte, D.; Picoche, B.; Simon, J.-C. Influence de la composition floristique des prairies permanentes normandes sur les caractéristiques des laits crus dérivés. Fourrages 2006, 188, 457–475. (In French) [Google Scholar]
- Dubroeucq, H.; Martin, B.; Ferlay, A.; Pradel, P.; Verdier-Metz, I.; Chilliard, Y.; Agabriel, J.; Coulon, J. Cow’s feeding may modify sensory properties of milk. Rencontres Rech. Rumin. 2002, 9, 351–354. [Google Scholar]
- Verdier-Metz, I.; Martin, B.; Pradel, P.; Albouy, H.; Hulin, S.; Montel, M.-C.; Coulon, J.-B. Effect of grass-silage vs. hay diet on the characteristics of cheese: Interactions with the cheese model. Le Lait 2005, 85, 469–480. [Google Scholar] [CrossRef]
- Tornambé, G.; Cornu, A.; Verdier-Metz, I.; Pradel, P.; Kondjoyan, N.; Figueredo, G.; Hulin, S.; Martin, B. Addition of pasture plant essential oil in milk: Influence on chemical and sensory properties of milk and cheese. J. Dairy Sci. 2008, 91, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Lerch, S.; Ferlay, A.; Graulet, B.; Cirié, C.; Verdier-Metz, I.; Montel, M.; Chilliard, Y.; Martin, B. Extruded linseeds, vitamin E and plant extracts in corn silage-based diets of dairy cows: Effects on sensory properties of raw milk and uncooked pressed cheese. Int. Dairy J. 2015, 51, 65–74. [Google Scholar] [CrossRef]
- Bovolenta, S.; Corazzin, M.; Saccà, E.; Gasperi, F.; Biasioli, F.; Ventura, W. Performance and cheese quality of Brown cows grazing on mountain pasture fed two different levels of supplementation. Livest. Sci. 2009, 124, 58–65. [Google Scholar] [CrossRef]
- Bertilsson, J.; Murphy, M. Effects of feeding clover silages on feed intake, milk production and digestion in dairy cows. Grass Forage Sci. 2003, 58, 309–322. [Google Scholar] [CrossRef]
- Hougaard, A.B.; Vestergaard, J.S.; Varming, C.; Bredie, W.L.; Ipsen, R.H. Composition of volatile compounds in bovine milk heat treated by instant infusion pasteurisation and their correlation to sensory analysis. Int. J. Dairy Technol. 2011, 64, 34–44. [Google Scholar] [CrossRef]
- Contarini, G.; Povolo, M.; Leardi, R.; Toppino, P.M. Influence of heat treatment on the volatile compounds of milk. J. Agric. Food Chem. 1997, 45, 3171–3177. [Google Scholar] [CrossRef]
- Zepka, L.Q.; Garruti, D.S.; Sampaio, K.L.; Mercadante, A.Z.; Da Silva, M.A.A. Aroma compounds derived from the thermal degradation of carotenoids in a cashew apple juice model. Food Res. Int. 2014, 56, 108–114. [Google Scholar] [CrossRef]
- Calvo, M.M.; de la Hoz, L. Flavour of heated milks. A review. Int. Dairy J. 1992, 2, 69–81. [Google Scholar] [CrossRef]
- Mogensen, L.; Vestergaard, J.S.; Fretté, X.; Lund, P.; Weisbjerg, M.R.; Kristensen, T. Effect of toasting field beans and of grass-clover: Maize silage ratio on milk production, milk composition and sensory quality of milk. Livest. Sci. 2010, 128, 123–132. [Google Scholar] [CrossRef]
- Lejonklev, J.; Kidmose, U.; Jensen, S.; Petersen, M.A.; Helwing, A.; Mortensen, G.; Weisbjerg, M.R.; Larsen, M.K. Effect of oregano and caraway essential oils on the production and flavor of cow milk. J. Dairy Sci. 2016, 99, 7898–7903. [Google Scholar] [CrossRef] [PubMed]
- Shingfield, K.J.; Salo-Väänänen, P.; Pahkala, E.; Toivonen, V.; Jaakkola, S.; Piironen, V.; Huhtanen, P. Effect of forage conservation method, concentrate level and propylene glycol on the fatty acid composition and vitamin content of cows’ milk. J. Dairy Res. 2005, 72, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, C.; Sørensen, M.T.; Vestergaard, M.; Weisbjerg, M.R.; Basar, A.; Larsen, M.K.; Martinussen, H.; Kidmose, U.; Sehested, J. Effect of substituting soybean meal and canola cake with dried distillers grains with solubles at 2 dietary crude protein levels on feed intake, milk production, and milk quality in dairy cows. J. Dairy Sci. 2017, 100, 8928–8938. [Google Scholar] [CrossRef] [PubMed]
- Yayota, M.; Tsukamoto, M.; Yamada, Y.; Ohtani, S. Milk composition and flavor under different feeding systems: A survey of dairy farms. J. Dairy Sci. 2013, 96, 5174–5183. [Google Scholar] [CrossRef] [PubMed]
- Carpino, S.; Horne, J.; Melilli, C.; Licitra, G.; Barbano, D.; Van Soest, P. Contribution of native pasture to the sensory properties of Ragusano cheese. J. Dairy Sci. 2004, 87, 308–315. [Google Scholar] [CrossRef]
- Bonanno, A.; Tornambè, G.; Bellina, V.; De Pasquale, C.; Mazza, F.; Maniaci, G.; Di Grigoli, A. Effect of farming system and cheesemaking technology on the physicochemical characteristics, fatty acid profile, and sensory properties of Caciocavallo Palermitano cheese. J. Dairy Sci. 2013, 96, 710–724. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Masucci, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Di Francia, A. Fatty acid and sensory profiles of Caciocavallo cheese as affected by management system. J. Dairy Sci. 2014, 97, 1918–1928. [Google Scholar] [CrossRef] [PubMed]
Volatiles | Chemical Class | Potential Factor(s) | Odour Description |
---|---|---|---|
Hexanal | Aldehyde | Lipid Oxidation (Oleic and Linoleic acid) | Cardboard like, metallic off flavour, green |
Propanal | Aldehyde | Lipid Oxidation (Linolenic and Docosahexaenoic acid) | Solvent-like, acrid |
Pentanal | Aldehyde | Lipid Oxidation (Arachidonic and linoleic acid) | Cardboard like, metallic off flavour, green |
(Z)-4-Heptenal | Aldehyde | Lipid Oxidation (Linolenic acid) | Oily, fatty, green, milky, creamy, dairy |
Benzaldehyde | Aldehyde | Amino acid metabolism (Phenylalanine) | Bitter almond, sweet cherry |
Phenylacetaldehyde | Aldehyde | Lignin metabolism, amino acid metabolism (Phenylalanine) | Honey-like, rosy, violet-like, hyacinth, green |
2-Methyl propanal | Aldehyde | Amino acid metabolism (Leucine) | Banana, malty, chocolate-like, cocoa |
2-Methyl butanal | Aldehyde | Amino acid metabolism (Isoleucine) | Malty, dark chocolate, almond, cocoa, coffee |
3-Methyl butanal | Aldehyde | Amino acid metabolism (Leucine) | Malty, cheese, green, dark chocolate, cocoa |
Ethanol | Alcohol | Carbohydrate metabolism, plant diet | Dry alcohol |
1-Hexanol | Alcohol | Lipid Oxidation (hexanal) | Green, floral |
1-Pentanol | Alcohol | Lipid Oxidation (pentanal) | Fruity, alcoholic, green, balsamic, woody |
2-Methyl propanol | Alcohol | Amino acid metabolism (2-Methyl propionic acid) | Alcohol, wine-like, plastic |
2-Methyl butanol | Alcohol | Amino acid metabolism (2-Methyl butanoic acid) | Malty |
3-Methyl butanol | Alcohol | Amino acid metabolism (3-Methyl butanoic acid) | Fresh cheese, breath-taking, alcoholic, fruity, solvent-like, floral, malty |
3-Octen-2-one | Ketone | Lipid Oxidation (Arachidonic and Linoleic acid) | Mushroom-like |
3,5-Octadien-2-one | Ketone | Lipid Oxidation (Arachidonic and Linoleic acid) | Mushroom-like |
2,3-Octanedione | Ketone | Lipid Oxidation (Linoleic and Linolenic acid) | Dill, cooked broccoli, buttery |
1-Octen-3-one | Ketone | Lipid Oxidation (Linoleic and 1-Octen-3-ol) | Metallic, mushroom-like |
3-hydroxy-2-butanone (acetoin) | Ketone | Carbohydrate metabolism, Amino acid metabolism (Aspartic acid) | Buttery, sour milk, caramel |
2-Butanone | Ketone | Carbohydrate metabolism, plant diet | Buttery, sour milk |
Acetic acid | Acid | Carbohydrate metabolism, amino acid metabolism (Aspartic acid or methionine), plant diet | Vinegar, peppers, green, fruity floral, sour |
Butanoic acid | Acid | De-novo synthesis and lipolysis | Sweaty, butter, cheese, strong, acid, faecal, rancid, dirty sock |
Hexanoic (Caproic acid) | Acid | De novo synthesis and lipolysis | Sweaty, cheesy, sharp, goaty, bad breath, |
2-Methyl butanoic acid | Acid | Amino acid metabolism (2-Methyl butanal) | Fruity, waxy, sweaty-fatty acid |
2-Methyl propionic acid | Acid | Amino acid metabolism (2-Methyl propanal) | Fruity |
3-Methyl butanoic acid | Acid | Amino acid metabolism (2-Methyl butanal) | Cheesy, sweaty, rancid, faecal, rotten fruit, goat |
4-Methylpentanoic acid (isocaproic acid) | Acid | Plant diet, amino acid metabolism (leucine) | Pungent, cheesy |
Limonene | Terpene | Plant diet | Citrus |
β-pinene | Terpene | Plant diet | Herbaceous |
α-Pinene | Terpene | Plant diet | Pine, green |
p-Cymene | Terpene | Plant diet | Citrus, woody, spicy |
δ-3-Carene | Terpene | Plant diet | Sweet, citrus |
Sabinene | Terpene | Plant diet | Woody, citrus, pine, spicy |
Camphene | Terpene | Plant diet | Woody |
β-Caryophyllene | Sesquiterpene | Plant diet | Sweet, woody, spicy, clove, dry |
β-Phellandrene | Sesquiterpene | Plant diet | Mint, peppery, slightly citrus |
α-Phellandrene | Sesquiterpene | Plant diet | Terpenic |
γ-Cadinene | Sesquiterpene | Plant diet | Herbal, woody |
Geranyl acetate | Ester | Oxidation of plant diet and oxidation of dimethyl sulphide | Sweet, fruity, citrus |
Ethyl hexanoate (ethyl caproate) | Ester | Ethanol and hexanoic acid, plant diet | Fruity, malty, young cheese, mouldy |
Ethyl butanoate | Ester | Ethanol and butanoic acid, plant diet | Buttery, ripe fruit, sweet |
Dimethyl disulphide | Sulphur | Photo oxidation, plant diet, amino acid metabolism (Methionine) | Cabbage-like, garlic, green, sour, onion |
Dimethyl sulfone | Sulphur | Oxidation of dimethyl sulphide, plant diet | Sulphurous, hot milk, burnt |
Toluene | Hydrocarbon | Carotenoid metabolism (β-carotene), plant diet | Nutty, bitter, almond, plastic (high odour threshold) |
p-Cresol | Phenol | Carotenoid metabolism (β-carotene, isoflavone), amino acid metabolism (Tryptophan and Tyrosine), plant diet | Barny, cowy, medicinal |
γ-12:2 lactone | Lactone | Lipid oxidation (Linolenic acid), heat-treatment | Muesli with honey, baby powder |
γ-Butyrolactone | Lactone | Lipid oxidation, heat treatment | Creamy, oily, fatty nuances |
Sensory Test Details | Diets | Significant Difference | Reference |
---|---|---|---|
Descriptive | |||
23 Attributes 15 Trained assessors | Primarily monoculture of ryegrass (G1) | (G1) Sugar flavour (p < 0.05) | [83] |
Pasture will little diversity but with mainly grasses (G2) | (G2) Animal odour (p < 0.01) | ||
(G2) Hay odour (p < 0.05) | |||
(G2) Animal flavour (p < 0.05) | |||
Pasture will little diversity but with undesirable plants (G3) | (G3) Overall odour intensity (p < 0.05) | ||
(G3) Butter odour (p < 0.05) | |||
(G3) Cream odour (p < 0.05) | |||
(G3) White colour (p < 0.05) | |||
(G3) Butter aroma (p < 0.05) | |||
Diverse pasture with many aromatic plants (G4) | (G4) White colour (p < 0.05) | ||
(G4) Sugar flavour (p < 0.05) | |||
Diverse pasture with lots of legumes (G5) | (G5) Cream odour (p < 0.01) | ||
(G5) Animal odour (p < 0.01) | |||
(G5) Animal flavour (p < 0.01) | |||
(G5) Overall aroma intensity (p < 0.05) | |||
(G5) Fresh milk odour (p < 0.05) | |||
(G5) Hay odour (p < 0.05) | |||
Temperature 22 °C 19 Attributes 10 Trained assessors | Maize silage | No significant differences (p < 0.10) | [87] |
Maize silage + linseed oil | |||
Maize silage + linseed oil + vitamin E | |||
Discriminate Testing | Diets | Significant Difference | Reference |
Temperature 4 °C 12 Untrained assessors Triangle test | Pasture (natural pasture) Hay (meadow hay) Grass silage (ryegrass) Maize Silage Concentrate (high and low) (barley and soybean) Hay plus aromatic plants | Pasture vs. hay—(p < 0.001) | [84] |
Pasture vs. concentrate—(p < 0.001) | |||
Grass silage vs. hay—(p < 0.01) | |||
Grass silage vs. maize silage—(p < 0.05) | |||
Hay vs. maize silage—Not different | |||
Hay vs. concentrate—Not different | |||
Hay vs. hay enriched with aromatic plants—not different | |||
Temperature 16 °C 16 Untrained assessors Triangle test | Maize Silage with added essential oil (distilled from mountain grassland pasture) at two levels | No significant difference at low dose of essential oil Significant difference at high dose of essential oil (p < 0.001) | [86] |
Temperature chilled 2 Trained assessors | Silage Perennial Ryegrass Silage Red clover Silage White clover | 15% of PR milk deviated from normal 42% of RC milk deviated from normal 36% of WC milk deviated from normal | [89] |
Room temperature | Barley concentrate | All milk samples from cows feed barley concentrate were good quality | [77] |
5 Trained assessors | Mixed grass (timothy) clover silage Mountain grassland Temporary grassland Permanent grassland Species rich permanent grassland | 78% of milk samples taken from cows 30 min after consuming silage were deemed as having an off-flavour No significant difference | [7] |
Milk heated to 45 °C Temperature 20 °C 10–11 Assessors Triangle test | Initially all cows on maize silage plus concentrate Ryegrass silage (formic acid + concentrate, mins and vitamins as required) Mountain grassland hay (concentrate, minerals and vitamins as required) | 45% correctly identified milk from cows feed Ryegrass silage and Mountain grassland hay (p < 0.05) 23% identified based on texture and 51% based on taste Milk from Ryegrass silage was stronger | [85] |
Temperature 16 °C 17 Trained assessors Triangle Test | Mountain pasture with supplements Pasture + Low level of Concentrates (maize, sugar beet pulp, wheat bran, brewer’s yeast, dried alfalfa, barley, soybean flakes, sunflower meal, minerals and Vitamins) low level Pasture + High level of Concentrates (as above) | No significant difference | [88] |
Sensory Test Details | Diets | Significant Difference | Reference |
---|---|---|---|
Descriptive | |||
Temperature 22 °C 20 Attributes 8 Trained assessors | Pasture (alfalfa) Pasture (alfalfa) + grain mix with soybeans, beet pulp, corn and molasses or soybean, beet, corn and molasses Concentrate (alfalfa hay, maize silage, corn, grain mix, lilted cottonseed, soymeal, sugar beet pulp, yeast mix, molasses and fat) | Pasture: Barny (p < 0.05) Pasture (alfalfa) + grain mix: Barny (p < 0.05) No significant differences in overall quality or colour between diets | [51] |
Temperature 15 °C 4 Attributes 6 Assessors | Hay (timothy + meadow fescue) Silage (timothy + meadow fescue) Silage plus enzymes (timothy + meadow fescue) Silage plus formic acid mix (timothy + meadow fescue) | No significant differences | [96] |
Temperature 15 °C 10 Attributes 10 Trained assessors | Pasture supplemented with corn and cottonseed Concentrate (maize silage, alfalfa haylage, grain concentrate, whole cottonseed, soybean hulls, pelleted corn gluten, vitamins and minerals) | Pasture + Supplement, Mothball, Grassy, Salty (p < 0.05) Concentrate; Sweet (p < 0.05) aromatic, sweet, sweet, feed, malty (p < 0.05) | [3] |
Temperature 15 Attributes | Grass silage (ryegrass) Red clover silage at different ratio’s 66% Grass, 33% Red clover silage 33% Grass, 66% Red clover silage | Grass Silage; Whiteness (p < 0.01) Texture more viscous and creamier (p < 0.001) Red Clover Silage increased boiled milk flavour (p < 0.01), No significant differences in preference (aroma, aftertaste or overall liking) | [45] |
Temperature 16 °C 14 Attributes 8 Trained assessors | Concentrate (oats, grass clover silage) + two (high and low) levels of maize silage + treated or untreated field beans | Concentrate with high maize silage + toasted field beans: Intense sour feed odour (p < 0.05) Concentrate + high maize silage + untreated field beans: Intense maize odour (p < 0.05) No effect of toasting on overall sensory quality Maize % in the concentrate positively correlated with maize odour | [94] |
Temperature 7 °C 12 Attributes 30 Untrained assessors | Pasture (timothy) Hay (timothy) Silage (timothy) | Pasture Total flavour (p < 0.05) Grassy flavour (p < 0.05) Hay Sweet flavour (p < 0.05) | [28] |
Temperature 16–18 °C 15 Attributes 10 Trained assessors | Maize:Lucerne silage (5:1) Maize:Lucerne silage (2:1) | Maize:Lucerne silage (5:1) Higher stale aroma (p < 0.05) Higher creamy flavour (p < 0.05) Higher stale flavour (p < 0.05) | [9] |
Temperature 7–10 °C 5 Attributes 23 Untrained assessors | Concentrate (hay, beet pulp, alfalfa hay and formula) with Grass silage (canary grass) Concentrate (as above) with maize silage Concentrate (as above) with by product (soybean curd or brewers grain) | No significant differences (sweetness, body, texture, aftertaste or palatability) | [98] |
Temperature 16–18 °C 15 Attributes 8–10 Trained assessors | Concentrate (barley, soybean, rapeseed, grass/clover silage, maize silage and minerals) Concentrate (as above) + high or low doses of caraway oil Concentrate (as above) + high or low doses of oregano oil | Concentrate with high dose of oregano oil: Lower fresh aroma (p < 0.05), Higher corn aroma (p < 0.05), Higher stored aroma (p < 0.05) | [95] |
Temperature 21 °C 18 Attributes 25 Untrained Assessors | Pasture (ryegrass) Pasture (ryegrass) + white clover Concentrate (grass silage, maize silage, maize, beet pulp, soybean meal, salt, rapeseed meal, megalac) | Pasture: Colour (p < 0.05), Increased viscosity (p < 0.05) Pasture + white clover: Colour (p < 0.05) and Barnyard aroma (p < 0.05) | [41] |
Temperature 4 °C 15 Attributes 9 Trained Assessors | A high and low protein mix with soybean-canola, beet pulp, A high and low protein mix with dried distillers grain with soluble | No significant differences | [97] |
Discriminate Testing | Diets | Significant Difference | Reference |
Temperature 4 °C 50 Untrained assessors Triangle test | Pasture supplemented with corn and cottonseed Concentrate (maize silage, alfalfa haylage, grain concentrate, whole cottonseed, soybean hulls, pelleted corn gluten, vitamins and minerals | No significant difference | [3] |
Temperature 7 °C Triangle test 30 Untrained assessors | Pasture (timothy) Hay (timothy) Silage (timothy) | Silage vs. Hay—No significant difference Pasture vs. Hay—(p < 0.01) | [28] |
Consumer Testing | Diets | Significant Difference | Reference |
Temperature 22 °C Consumer acceptability 62–92 Untrained assessors | Pasture (alfalfa) Pasture (alfalfa) + grain mix with soybeans, beet pulp, corn and molasses or soybean, beet, corn and molasses Concentrate (alfalfa hay, maize silage, corn, grain mix, lilted cottonseed, soymeal, sugar beet pulp, yeast mix, molasses and fat) | No significant difference | [51] |
Temperature 4 °C 75 Untrained assessors Hedonic Assessment | Pasture supplemented with corn and cottonseed Concentrate (maize silage, alfalfa haylage, grain concentrate, whole cottonseed, soybean hulls, pelleted corn gluten, vitamins and minerals) | No significant difference | [3] |
Cheese and Age | Analysis | Diet | Result | Reference |
---|---|---|---|---|
Raw milk Cantal-Type 6, 13 and 23 weeks | 12 Trained assessors 69 Attributes | Pasture (minimal concentrate addition) and hay in winter | More elastic (p < 0.001) | [42] |
Pasture (temporary meadows), with preserved forage and haylage in winter with concentrates | More salty taste (p < 0.05) More bitter taste (p < 0.05) More pungent taste (p < 0.05) More odour intensity (p < 0.001) More butter odour (p < 0.001) | |||
Raw milk Cantal 3 months | 10 Trained assessors 43 Attributes | Mountain grassland hay + concentrate (soybean meal and barley) | Curd Appreciation (p < 0.01) Curd Flavour (p < 0.01) Melting texture (p < 0.001) Mellow texture (p < 0.01) Butter colour (p < 0.05) Grass odour (p < 0.05) Citrus fruit aroma (p < 0.05) Persistent flavour (p < 0.05) | [85] |
Ryegrass silage (with formic acid) + concentrate (soybean meal and barley) | Alcohol aroma (p < 0.001) Chemical aroma (p < 0.05) | |||
Raw milk Cantal 5 months | 12 Trained assessors 38 Attributes | Maize silage + low dose (0.1 μL/L) essential oil | Highest butter odour (p < 0.001) Highest fresh cream odour (p < 0.001) Highest cooked cheese odour (p < 0.001) Highest vanilla odour (p < 0.001) Lowest mint odour (p < 0.001) Highest lactic acid aroma (p < 0.001) Highest garlic aroma (p < 0.05) Highest stubble aroma (p < 0.01) Highest meat aroma (p < 0.001) Lowest thyme/oregano aroma (p < 0.001) Highest salt taste (p < 0.01) Lowest astringent taste (p < 0.001) Lowest persistent taste (p < 0.001) | [86] |
Maize silage + high dose (1.0 μL/L) essential oil | Highest odour intensity (p < 0.001) Lowest butter odour (p < 0.001) Lowest fresh cream odour (p < 0.001) Lowest acidified cream odour (p < 0.001) Lowest cooked cheese odour (p < 0.001) Lowest vanilla odour (p < 0.001) Lowest brioche odour (p < 0.001) Lowest meat odour (p < 0.01) Highest mint odour (p < 0.001) Highest aroma intensity (p < 0.001) Lowest butter aroma (p < 0.001) Lowest cooked cheese aroma (p < 0.001) Lowest lactic acid aroma (p < 0.001) Lowest garlic aroma (p < 0.05) Lowest grilled onion aroma (p < 0.001) Lowest stubble aroma (p < 0.01) Lowest meat aroma (p < 0.001) Lowest cheese mites’ aroma (p < 0.001) Highest mint/chlorophyll aroma (p < 0.001) Highest thyme/oregano aroma (p < 0.001) Lowest salt taste (p < 0.01) Highest astringent taste (p < 0.001) Highest persistent taste (p < 0.001) | |||
Maize silage control | Highest acidified cream odour (p < 0001) Highest cooked cheese odour (p < 0.001) Highest brioche odour (p < 0.001) Highest meat odour (p < 0.01) Lowest mint odour (p < 0.001) Highest aroma intensity (p < 0.001) Highest butter aroma (p < 0.001) Highest cooked cheese aroma (p < 0.001) Highest garlic aroma (p < 0.05) Highest grilled onion aroma (p < 0.001) Highest cheese mites’ aroma (p < 0.001) Lowest mint/chlorophyll aroma (p < 0.001) Lowest thyme/oregano aroma (p < 0.001) Lowest persistent taste (p < 0.001) | |||
Raw Milk St-Nectaire 8 weeks | 10 Trained assessors 15 attributes | Silage (mountain grass including cocksfoot) + concentrate (soybean meal and barley) | Curd colour (more yellow) (p < 0.01) | [48] |
Hay (mountain grass including cocksfoot) + concentrate (soybean meal and barley) | More openings (p < 0.01) | |||
Raw Milk St-Nectaire 8 weeks | 10 Trained assessors 18 Attributes | Cocksfoot hay + concentrate (cereal and soybean) | More opening regularity (p < 0.05) | [49] |
Rye-grass rich hay + concentrate (cereal and soybean) | No Significant Differences | |||
Native mountain grassland hay + concentrate (cereal and soybean) | No Significant Differences | |||
Raw Milk St-Nectaire 7 weeks | 10 Trained assessors 33 Attributes | Ryegrass silage (with formic acid) + concentrate (soybean meal and barley) | Gritty texture (p < 0.05) | [85] |
Mountain grassland hay + concentrate (soybean meal and barley) | No Significant Differences | |||
Raw Milk Abondance 5 months | 13 Trained assessors 58 Attributes | South facing pasture + concentrate (rolled cereal mix) (15–21 June) | Less persistent taste (p < 0.05) More firm texture (p < 0.001) More grainy microstructure (p < 0.01) More smooth microstructure (p < 0.001) | [71] |
North facing pasture + concentrate (rolled cereal mix) (22–29 June) | Less firm (p < 0.001) More adhesive texture (p < 0.05) Thinner microstructure (p < 0.01) Less grainy microstructure (p < 0.01) Higher salty taste (p < 0.001) More bitter taste (p < 0.01) More persistent taste (p < 0.05) | |||
South facing pasture + concentrate (rolled cereal mix) (30 June–6 July) | More firm texture (p < 0.001) More grainy microstructure (p < 0.01) Less persistent taste (p < 0.05) | |||
Raw Milk Abondance 24 weeks | 14 Trained assessors 9 Attributes | Mountain pasture | Higher fruity aroma (p < 0.05) Higher hazelnut aroma (p < 0.01) Higher boiled milk odour (p < 0.01) Higher fresh cream odour (p < 0.05) Higher bread crust aroma (p < 0.05) Higher animal aroma (p < 0.001) | [54] |
Hay | Higher fruity aroma (p < 0.05) Higher pungent taste (p < 0.01) | |||
Valley pastures | Higher bread crust aroma (p < 0.05) Higher pungent taste (p < 0.001) Higher propionic acid aroma (p < 0.05) | |||
Pasteurized Milk Cheddar 40 days | Temperature 21 °C 7 Trained assessors 16 Attributes | Alfalfa hay + corn silage + concentrate (corn, grain, cottonseed, soybean meal, sugar beet pulp, yeast mix, molasses and fat) | No Significant Differences | [51] |
Pasture | No Significant Differences | |||
Pasture + grain mix (soybeans, corn, sugar beet pulp and molasses) | No Significant Differences | |||
Pasteurized Milk Cheddar 180 and 270 days | Temperature 21 °C 25 Untrained assessors 20 Attributes | Pasture (rye-grass) at 180 days ripening | Highest colour (p < 0.002) Lowest sweet taste (p < 0.002) | [52] |
Pasture + white clover at 180 days ripening | Lowest crumbly texture (p < 0.026) | |||
Concentrate (grass silage, maize silage, maize, beet pulp, soybean meal, salt, rapeseed meal and megalac) at 180 days ripening | Lowest colour (p < 0.001) Highest fruity estery flavour (p < 0.05) | |||
Pasture (rye-grass) at 270 days ripening | Highest colour (p < 0.001) Highest salty taste (p < 0.001) | |||
Pasture (rye-grass) + white clover at 270 days ripening | Lowest sweet taste (p < 0.013) Highest colour (p < 0.001) | |||
Concentrate (grass silage, maize silage, maize, beet pulp, soybean meal, salt, rapeseed meal and megalac) at 270 days ripening | Lowest colour (p < 0.001) Highest sour taste (p < 0.007) | |||
Raw Milk Montasio 60 days | Temperature 21 °C 10 Trained assessors 26 Attributes | Nutrient rich pasture (poaceae, cyperaceae, ranunculaceae and fabaceae) | Higher colour intensity (p < 0.04) Higher granule texture (p < 0.03) | [70] |
Nutrient poor pasture (poaceae, cyperaceae, asteraceae fabaceae and rosaceae) | Higher cow odour (p < 0.04) Higher cow flavour (p < 0.01) Higher adhesive texture (p < 0.03) Higher creaminess texture (p < 0.03) | |||
Nutrient rich and poor pasture + 3 kg/head of concentrate (maize, barley, beet pulp, soy, wheat) | No Significant Difference | |||
Nutrient rich and poor pasture + 1.5 kg of concentrate (maize, barley, beet pulp, soy, wheat) | No Significant Difference | |||
Raw Milk Montasio 12 months | Temperature 21 °C 12 Trained assessors 28 Attributes | Nutrient rich pasture (poaceae, cyperaceae, ranunculaceae and fabaceae) | Higher colour intensity (p < 0.01) Greater sour odour (p < 0.05) More humid appearance (p < 0.01) Greater pungent odour (p < 0.01) Greater bitterness (p < 0.05) More granular texture (p < 0.01) | [80] |
Nutrient poor pasture (poaceae, cyperaceae, asteraceae fabaceae and rosaceae) | Greater eye distribution (p < 0.05) More rough appearance (p < 0.01) Greater cow odour (p < 0.05) | |||
Nutrient rich and poor pasture + 3 kg/head of concentrate (maize, barley, beet pulp, soy, wheat) | No Significant Differences | |||
Nutrient rich and poor pasture + 1.5 kg of concentrate (maize, barley, beet pulp, soy, wheat) | No Significant Difference | |||
Raw Milk Ragusano 4 months | Temperature 21 °C 11 Trained assessors 26 Attributes | Native pasture + concentrate (rye-grass hay, corn meal, corn silage, cereal grains, oil seeds, sugar by-products, minerals, etossichin) | More yellow colour (p < 0.05) More floral odour (p < 0.05) More green/herbaceous (p < 0.05) | [99] |
Concentrate (rye-grass hay, corn meal, corn silage, cereal grains, oil seeds, sugar by-products, minerals, etossichin) | More oily consistency (p < 0.05) More fracture consistency (p < 0.05) | |||
Raw Milk Nostrano di Primiero 60 days | Temperature 16 °C 8 Trained assessors 35 Attributes | Pasture + low level of concentrates (maize, sugar beet pulp, wheat bran, brewer’s yeast, dried alfalfa, barley, soybean flakes, sunflower meal, minerals and vitamins) 1.6 kg dry matter/day | More irregularity shaped eyes (p < 0.05) More adhesiveness (p < 0.05) | [88] |
Pasture + high level of concentrates (maize, sugar beet pulp, wheat bran, brewer’s yeast, dried alfalfa, barley, soybean flakes, sunflower meal, minerals and vitamins) 4.8 kg dry matter/day | Greater bitterness (p < 0.05) Greater solubility (p < 0.05) Greater firmness (p < 0.05) Greater granules (p < 0.05) More adhesive (p < 0.05) | |||
Raw Milk Caciocavallo Palermitano 1 month | Temperature 20 °C 12 Trained assessors 14 Attributes | Pasture + hay supplements (Cinisara cow breed) | More smooth texture (p < 0.001) More sweet taste (p < 0.01) More acid taste (p < 0.001) | [100] |
Hay + concentrate + little pasture (Brown cow breed) | More bitterness taste (p < 0.001) More salty taste (p < 0.05) | |||
Raw Milk Caciocavallo 90 days | 12 Trained assessors 17 Attributes | Pasture (grasses, legumes and other species) | Highest yellow appearance (p < 0.0001) Highest spicy taste (p < 0.002) Highest seasoned taste (p < 0.003) Highest friability texture (p < 0.0001) Highest grainy texture (p < 0.0002) | [101] |
Grains (wheat, oats, barley) and hay (clover and meadow) | Highest uniform appearance (p < 0.0001) Highest butter odour/flavour (p < 0.05) Highest smoked odour/flavour (p < 0.002) Highest bitter taste (p < 0.003) |
Cheese and Age | Difference Analysis | Diet | Results | Reference |
---|---|---|---|---|
Raw Milk Nostrano di Primiero 60 days | Temperature 16 °C 13 Trained assessors Triangle Test | Pasture + low level of concentrates (maize, sugar beet pulp, wheat bran, brewer’s yeast, dried alfalfa, barley, soybean flakes, sunflower meal, minerals and vitamins) 1.6 kg dry matter/day | No significant difference | [88] |
Pasture + high level of concentrates (maize, sugar beet pulp, wheat bran, brewer’s yeast, dried alfalfa, barley, soybean flakes, sunflower meal, minerals and vitamins) 4.8 kg dry matter/day | No significant difference | |||
Cheese and Age | Consumer Analysis | Diet | Results | Reference |
Raw Milk St-Nectaire 8 weeks | 8 Trained assessors 3 Attributes | Native mountain grassland hay + concentrate (cereal and soybean) | Highest appearance score (p < 0.01) Highest taste score (p < 0.01) | [49] |
Cocksfoot hay + concentrate (cereal and soybean) | No significant difference | |||
Rye-grass rich hay + concentrate (cereal and soybean) | Highest texture score (p < 0.01) Highest taste score (p < 0.01) | |||
Pasteurized Cheddar 40 days | Temperature 21 °C 73–83 Untrained assessors 4 Attributes | Pasture | No significant difference | [51] |
Pasture + grain mix (soybeans, corn, sugar beet pulp and molasses) | No significant difference | |||
Alfalfa hay + corn silage + concentrate (corn, grain, cottonseed, soybean meal, sugar beet pulp, yeast mix, molasses and fat) | No significant difference | |||
Raw Milk Caciocavallo 90 days | 100 Untrained assessors | Pasture (grasses, legumes and other species) | No significant difference | [101] |
Grains (wheat, oats, barley) and hay (clover and meadow) | No significant difference | |||
Raw Milk Montasio 60 and 180 days | 280 Untrained assessors | Mountain Pasture + concentrate (maize, barley, beet pulp, soybean and wheat) at 60 days ripening | Colour much too dark (p < 0.01) Colour too dark (p < 0.01) Holes too few (p < 0.05) Holes much too few (p < 0.01) | [50] |
Alfalfa hay, meadow hay + concentrate (maize, barley, beet pulp, soybean and wheat) at 60 days ripening | Colour about right (p < 0.01) Colour too light (p < 0.01) Holes too numerous (p < 0.01) Holes about right (p < 0.01) | |||
Mountain Pasture + concentrate (maize, barley, beet pulp, soybean and wheat) at 180 days ripening | Colour much too dark (p < 0.01) Colour too dark (p < 0.01) Holes too few (p < 0.01) Holes much too few (p < 0.01) | |||
Alfalfa hay, meadow hay + concentrate (maize, barley, beet pulp, soybean and wheat) at 180 days ripening | Colour about right (p < 0.05) Colour too light (p < 0.01) Holes too numerous (p < 0.01) Holes about right (p < 0.01) | |||
Pasteurized Milk Cheddar 180 and 270 days | Temperature 21 °C 24 Untrained assessors 5 Attributes | Pasture (rye-grass) at 180 days ripening | No significant difference | [52] |
Pasture (ryegrass) + white clover at 180 days ripening | Highest liking of appearance (p = 0.002) Highest overall acceptability (p = 0.048) | |||
Concentrate (grass silage, maize silage, maize, beet pulp, soybean meal, salt, rapeseed meal and megalac) at 180 days ripening | Highest liking of texture (p = 0.027) Highest overall acceptability (p = 0.052) | |||
Pasture (rye-grass) at 270 days ripening | Lowest liking of appearance (p = 0.013) Lowest liking of texture (p = 0.018) | |||
Pasture (ryegrass) + white clover at 270 days ripening | No significant difference | |||
Concentrate (grass silage, maize silage, maize, beet pulp, soybean meal, salt, rapeseed meal and megalac) at 270 days ripening | No significant difference |
Cheese and Age | Aroma Analysis | Diet | Results | Reference |
---|---|---|---|---|
Raw Milk St-Nectaire 8 weeks | 11 Untrained assessors 13 Odour attributes | Native mountain grassland hay + concentrate (cereal and soybean) | Higher cabbage odour (p < 0.05) | [49] |
Cocksfoot hay + concentrate (cereal and soybean) | No significant difference | |||
Rye-grass rich hay + concentrate (cereal and soybean) | No significant difference | |||
Raw and Pasteurized Milk Cantal-Type at 3 and 6 months | 17–18 untrained assessors 9 Odour attributes | Hay + concentrate (flattened barley and soybean meal) at 3 months ripening | Higher hazelnut (p < 0.03) | [44] |
Raw milk cheese at 3 months ripening | Greater intensity (p < 0.002) Greater rancidity (p < 0.0005) Greater musty (p < 0.0001) Greater pungent (p < 0.0001) | |||
Pasteurized milk cheese at 3 months ripening | Greater cream (p < 0.003) Greater hazelnut (p < 0.02) | |||
Pasture + concentrate (flattened barley and soybean meal) at 6 months ripening | Greater musty (p < 0.01) | |||
Hay + concentrate (flattened barley and soybean meal) at 6 months ripening | Greater butter (p < 0.02) Greater cream (p < 0.01) Greater hazelnut (p < 0.02) | |||
Raw milk cheese at 6 months ripening | Greater intensity (p < 0.008) Greater rennet (p < 0.03) Greater musty (p < 0.03) | |||
Pasteurized milk cheese at 6 months ripening | Greater cream (p < 0.009) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilcawley, K.N.; Faulkner, H.; Clarke, H.J.; O’Sullivan, M.G.; Kerry, J.P. Factors Influencing the Flavour of Bovine Milk and Cheese from Grass Based versus Non-Grass Based Milk Production Systems. Foods 2018, 7, 37. https://doi.org/10.3390/foods7030037
Kilcawley KN, Faulkner H, Clarke HJ, O’Sullivan MG, Kerry JP. Factors Influencing the Flavour of Bovine Milk and Cheese from Grass Based versus Non-Grass Based Milk Production Systems. Foods. 2018; 7(3):37. https://doi.org/10.3390/foods7030037
Chicago/Turabian StyleKilcawley, Kieran N., Hope Faulkner, Holly J. Clarke, Maurice G. O’Sullivan, and Joseph P. Kerry. 2018. "Factors Influencing the Flavour of Bovine Milk and Cheese from Grass Based versus Non-Grass Based Milk Production Systems" Foods 7, no. 3: 37. https://doi.org/10.3390/foods7030037
APA StyleKilcawley, K. N., Faulkner, H., Clarke, H. J., O’Sullivan, M. G., & Kerry, J. P. (2018). Factors Influencing the Flavour of Bovine Milk and Cheese from Grass Based versus Non-Grass Based Milk Production Systems. Foods, 7(3), 37. https://doi.org/10.3390/foods7030037