Discrimination of Clover and Citrus Honeys from Egypt According to Floral Type Using Easily Assessable Physicochemical Parameters and Discriminant Analysis: An External Validation of the Chemometric Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Samples
2.2. Melissopalynological Analysis
2.3. Reagents and Solutions
2.4. Determination of Conventional Physicochemical Parameters
2.5. Determination of Salinity and Total Dissolved Solids (TDS)
2.6. Determination of Color Parameters (L*, a*, b*) and Browning Index
2.7. Statistical Analysis
3. Results and Discussion
3.1. Melissopalynological Analysis
3.1.1. Physicochemical Parameter Values of Egyptian Honeys
3.1.2. Salinity and TDS Values of Egyptian Honeys
3.1.3. Color and Browning Index Values of Egyptian Honeys
3.1.4. Discrimination of Egyptian Honey According to Floral Type Based on Selected Physicochemical Parameter Values
3.1.5. Summary Regarding the Identification of the Variables with the Highest Discriminatory Power
3.1.6. External Validation of the Developed Statistical Model for the Differentiation of Egyptian Honeys According to Floral Type
3.2. Formatting of Mathematical Components
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Abou-Shaara, H.F. North American Section (NAS) & Central European Section (CES). 2017. Available online: https://pcela.rs/Egyptian_Beekeeping_2.htm (accessed on 10 May 2017).
- White, J.W.; Rudyj, O.N. Proline content of United States honeys. J. Apic. Res. 1978, 17, 89–93. [Google Scholar] [CrossRef]
- Sanz, S.; Perez, C.; Herrera, A.; Sanz, M.; Juan, T. Application of a statistical approach to the classification of honey by geographic origin. J. Sci. Food Agric. 1995, 69, 135–140. [Google Scholar] [CrossRef]
- Terrab, A.; Díez, M.J.; Heredia, F.J. Characterisation of Moroccan unifloral honeys by their physicochemical characteristics. Food Chem. 2002, 79, 373–379. [Google Scholar] [CrossRef]
- Terrab, A.; Díez, M.D.; Heredia, F.J. Palynological, physico-chemical and colour characterization of Moroccan honeys: III. Other unifloral honey types. Int. J. Food Sci. Technol. 2003, 38, 395–402. [Google Scholar] [CrossRef]
- Serrano, S.; Villarejo, M.; Espejo, R.; Jodral, M. Chemical and physical parameters of Andalusian honey: Classification of citrus and eucalyptus honeys by discriminant analysis. Food Chem. 2004, 87, 619–625. [Google Scholar] [CrossRef]
- Malika, N.; Mohamed, F.; Chakib, E.A. Microbiological and physicochemical properties of Moroccan honey. Int. J. Agric. Biol. 2005, 5, 773–776. [Google Scholar]
- Khalil, I.; Moniruzzaman, M.; Boukraâ, L.; Benhanifia, F.; Islam, A.; Islam, N.; Sulaiman, S.A.; Gan, S.H. Physicochemical and antioxidant properties of Algerian honey. Molecules 2012, 17, 11199–11215. [Google Scholar] [CrossRef] [PubMed]
- Amri, A.; Ladjama, A. Physicochemical characterization of some multifloral honeys from honeybees Apis mellifera collected in the Algerian northeast. Afr. J. Food Sci. 2013, 7, 168–173. [Google Scholar] [CrossRef]
- Mondragón-Cortez, P.; Ulloa, J.A.; Rosas-Ulloa, P.; Rodríguez-Rodríguez, R.; Resendiz-Vázquez, J.A. Physicochemical characterization of honey from the West region of México. CyTA–J. Food 2013, 11, 7–13. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Badeka, A.V.; Kontakos, S.; Karabournioti, S.; Kontominas, M.G. Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses. Food Chem. 2014, 165, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Chakir, A.; Romane, A.; Marcazzan, G.L.; Ferrazi, P. Physicochemical properties of some honeys produced from different plants in Morocco. Arab. J. Chem. 2016, 9, S946–S954. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Louppis, P.A.; Karabournioti, S.; Kontakos, S.; Papastephanou, C.; Kontominas, M.G. Characterization and geographical discrimination of commercial Citrus spp. honeys produced in different Mediterranean countries based on minerals, volatile compounds and physicochemical parameters, using chemometrics. Food Chem. 2017, 217, 445–455. [Google Scholar] [CrossRef] [PubMed]
- El-Haskoury, R.; Kriaa, W.; Lyoussi, B.; Makni, M. Ceratonia siliqua honeys from Morocco: Physicochemical properties, mineral contents, and antioxidant activities. J. Food Drug Anal. 2018, 26, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Petretto, G.L.; Tuberoso, C.I.G.; Fenu, M.A.; Rourke, J.P.; Belhaj, O.; Pintore, G. Antioxidant activity, colour chromatically coordinates and bioactive molecules of monofloral honeys from Morocco. Int. J. Food Prop. 2017, 20, 2016–2027. [Google Scholar] [CrossRef]
- Von Der Ohe, W.; Persano Oddo, L.; Piana, M.L.; Morlot, M.; Martin, P. Harmonized methods of melissopalynology. Apidologie 2004, 35, S18–S25. [Google Scholar] [CrossRef]
- Molan, P.C. Limitations of the methods of identifying the floral source of honeys. Bee World 1998, 79, 59–68. [Google Scholar] [CrossRef]
- IHC. Harmonized Methods of the International Honey Commision; IHC Responsible for the Methods: Stefan Bogdanov; Swiss Bee Research Centre FA: Bern, Switzerland, 1997. [Google Scholar]
- Council Directive 2001/110/EC of 20 December 2001 Relating to Honey. Off. J. Eur. Commun. 2002, 10, 47–52.
- Commision Internationale de l’ Éclairage (CIE). Colorimetry, 3rd ed.; Technical Report CIE 15.2; CIE: Viena, Austria, 2004. [Google Scholar]
- Ciappini, M.C.; Di Vito, M.; Gatti, M.B.; Calviño, A.M. Development of a quantitative descriptive sensory honey analysis: Application to eucalyptus and clover honeys. Adv. J. Food Sci. Technol. 2013, 5, 829–838. [Google Scholar] [CrossRef]
- Kamal, A.; Raza, S.; Rashid, N.; Hameed, T.; Gilani, M.; Qureshi, M.A.; Nasim, K. Comparative study of honey collected from different flora of Pakistan. J. Biol. Sci. 2002, 2, 626–627. [Google Scholar] [CrossRef]
- Maurya, S.; Kushwaha, A.K.; Flamini, G. A study of physicochemical properties, volatile component analysis and antioxidative properties of honey. Int. J. Res. Dev. Pharm. Sci. 2015, 4, 1852–1860. [Google Scholar]
- Escuredo, O.; Míguez, M.; Fernández-González, M.; Carmen Seijo, M. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem. 2013, 138, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Tornuk, F.; Karaman, S.; Ozturk, I.; Toker, O.S.; BilgeTastemur, B.; Sagdic, O.; Dogan, M.; Kayacie, A. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind. Crops Prod. 2013, 46, 124–131. [Google Scholar] [CrossRef]
- Chaikham, P.; Kemsawasd, V.; Apichartsrangkoon, A. Effects of conventional and ultrasound treatments on physicochemical properties and antioxidant capacity of floral honeys from Northern Thailand. Food Biosci. 2016, 15, 19–26. [Google Scholar] [CrossRef]
- Ferrari, C.; Maresca, P.; Ciccarone, R. The application of high hydrostatic pressure for the stabilization of functional foods: Pomegranate juice. J. Food Eng. 2010, 100, 245–253. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Louppis, A.; Kontakos, S.; Drouza, C.; Papastephanou, C. Characterization and botanical differentiation of monofloral and multifloral honeys produced in Cyprus, Greece and Egypt using physicochemical parameter analysis and mineral content, in conjunction with supervised statistical techniques. J. Anal. Methods Chem. 2018, in press. [Google Scholar]
Clover Honeys (N = 15) | Trifolium alexandrinum | Melilotus sp. | Brassica sp. | Helianthus annuus | Umbelliferae | Eucalyptus sp. | Compositae | Labiatea | Nectarless: | Minor Pollen |
---|---|---|---|---|---|---|---|---|---|---|
1 | 41% | 22% | 16% | 6% | 6% | - | 3% | - | Zea mays | Ononis sp. 2% |
2 | 56% | 3% | 26% | 6% | 3% | 3% | - | - | Zea mays, Gramineae | <1% Sesamum sp., Musa sp. Pheonix sp, Punica sp. |
3 | 67% | - | 13% | 6% | 6% | - | 3% | - | Zea mays, Gramineae | <1% Musa sp, Pheonix sp. |
4 | 68% | 9% | 7% | - | 9% | - | 3% | - | Zea mays, Gramineae | <1% Musa sp, Pheonix sp, Eucalyptus sp. |
5 | 79% | 2% | - | - | 9% | 3% | - | Zea mays, Gramineae | Vicia sp. 1%, Phoenix sp.1%, <1% Eucalyptus sp., Labiatea | |
6 | 51% | - | - | 1% | 45% | 2% | Zea mays | <1% Eucalyptus sp., Pheonix sp. | ||
7 | 89% | - | - | 1% | 5% | 1% | - | Zea mays | <1% Citrus sp., Musa sp. | |
8 | 91% | 2% | - | - | - | 2% | - | 1% | Zea mays, Gramineae | |
9 | 56% | - | - | 3% | 40% | - | Zea mays, Gramineae | Vicia sp. 1% | ||
10 | 76% | 1% | - | - | 1% | 12% | 6% | - | Gramineae | Vicia sp. 1% |
11 | 73% | 2% | - | - | 7% | 8% | - | 8% | Zea mays, Gramineae | <1% Musa sp., Sesamum sp., Compositae |
12 | 63% | 3% | - | - | 5% | 18% | - | 6% | Zea mays | Vicia sp. 1%, <1% Musa sp., Sesamum sp., Gossypium |
13 | 79% | - | - | - | 1% | 18% | - | - | Zea mays | <1% Musa sp., Sesamum sp. Vicia sp., Melilotus sp., Labiatea |
14 | 68% | - | 1% | - | 1% | 27% | - | - | Zea mays | <1% Musa sp., Sesamum sp. Vicia sp., Melilotus, Labiatea |
15 | 70% | - | 6% | - | 7% | 12% | - | - | Zea mays | Vicia sp. 2%, <1% Musa sp., Sesamum sp, Melilotus, Labiatea |
Citrus honeys (N = 7) | Umbelliferae | Citrus sp. | Eucalyptus sp. | Trifolium alexandrinum | Pheonix sp. | Brassica sp. | Compositae | Labiatea | Nectarless | |
1 | 36% | 28% | 22% | 8% | 3% | - | - | - | Gramineae | <1% Casuaria sp., Ephorbia sp. |
2 | 36% | 36% | 24% | 1% | 1% | 12% | - | - | Gramineae | |
3 | 29% | 18% | 14% | 18% | <1% | 3% | Zea mays | <1% Compositae, Brassica sp., Diplotaxis sp. | ||
4 | 32% | 38% | - | 6% | - | 3% | 18% | - | Zea mays, Gramineae | |
5 | 12% | 42% | 28% | 3% | 1% | 1% | 8% | - | Zea mays, Gramineae | <1% Sesamum sp., Diplotaxis sp. |
6 | 8% | 32% | - | 3% | 1% | 1% | 6% | - | Zea mays, Gramineae | - |
7 | 33% | 32% | 22% | 1% | 1% | 1% | 6% | - | Zea mays, Gramineae | - |
Botanical Origin | L* | a* | b* | TDS (mg/L) | Salinity (g/L) | pH | EC (mS/cm) | Ash (g/100g) | Moisture (g/100g) | FA (meq/kg) | LA (meq/kg) | TA (meq/kg) | L/FA | BI | TDS/TA | Total Sugars (°Bx) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clover | 76.14 | −2.65 | 7.56 | 112.2 | 0.108 | 3.38 | 0.224 | 0.048 | 15.50 | 6.50 | 7.35 | 13.85 | 1.13 | 7.53 | 8.10 | 82.60 |
Clover | 75.88 | −2.85 | 7.76 | 126.2 | 0.120 | 3.61 | 0.252 | 0.064 | 15.95 | 8.00 | 6.05 | 14.05 | 0.76 | 7.64 | 8.98 | 82.55 |
Clover | 76.05 | −3.07 | 8.34 | 129.4 | 0.124 | 3.49 | 0.259 | 0.068 | 15.55 | 6.50 | 5.95 | 12.45 | 0.92 | 8.22 | 10.39 | 82.85 |
Clover | 76.72 | −2.79 | 6.93 | 132.6 | 0.126 | 3.46 | 0.265 | 0.072 | 16.25 | 8.00 | 6.15 | 14.15 | 0.77 | 6.46 | 9.37 | 82.20 |
Clover | 75.7 | −3.06 | 9.42 | 131.0 | 0.124 | 3.4 | 0.263 | 0.071 | 15.50 | 7.00 | 5.85 | 12.85 | 0.84 | 9.82 | 10.19 | 83.00 |
Clover | 76.69 | −3.65 | 5.88 | 127.2 | 0.120 | 3.31 | 0.254 | 0.066 | 17.05 | 7.50 | 5.90 | 13.40 | 0.79 | 4.20 | 9.49 | 81.10 |
Clover | 76.45 | −3.9 | 6.98 | 117.6 | 0.112 | 3.27 | 0.235 | 0.055 | 16.75 | 8.00 | 5.75 | 13.75 | 0.72 | 5.48 | 8.55 | 81.60 |
Clover | 75.88 | −3.14 | 4.83 | 114.7 | 0.109 | 3.26 | 0.228 | 0.051 | 16.80 | 7.00 | 5.95 | 12.95 | 0.85 | 3.32 | 8.86 | 81.55 |
Clover | 74.28 | −2.55 | 8.90 | 146.0 | 0.140 | 3.78 | 0.298 | 0.091 | 17.45 | 9.50 | 6.45 | 15.95 | 0.68 | 9.77 | 9.15 | 81.00 |
Clover | 76.45 | −2.26 | 5.40 | 137.7 | 0.127 | 3.5 | 0.275 | 0.078 | 15.55 | 7.00 | 5.75 | 12.75 | 0.82 | 4.91 | 10.80 | 80.75 |
Clover | 76.68 | −2.29 | 5.40 | 138.4 | 0.129 | 3.41 | 0.276 | 0.078 | 18.00 | 7.50 | 6.95 | 14.45 | 0.93 | 4.86 | 9.58 | 80.20 |
Clover | 73.82 | −2.61 | 10.96 | 148.6 | 0.140 | 3.48 | 0.296 | 0.090 | 17.35 | 8.50 | 4.65 | 13.15 | 0.55 | 12.87 | 11.30 | 81.10 |
Clover | 74.15 | −2.71 | 9.33 | 158.2 | 0.150 | 3.51 | 0.314 | 0.100 | 17.25 | 9.00 | 6.10 | 15.10 | 0.68 | 10.26 | 10.48 | 81.10 |
Clover | 75.13 | −2.85 | 8.51 | 157.4 | 0.144 | 3.50 | 0.307 | 0.096 | 17.35 | 11.00 | 6.00 | 17.00 | 0.55 | 8.79 | 9.26 | 81.00 |
Clover | 73.23 | −2.23 | 10.22 | 150.5 | 0.142 | 3.46 | 0.300 | 0.092 | 17.85 | 9.00 | 7.05 | 16.05 | 0.78 | 12.24 | 9.38 | 80.55 |
Average | 75.55 | −2.84 | 7.76 | 135.2 | 0.13 | 3.45 | 0.270 | 0.075 | 16.68 | 8.00 | 6.13 | 14.13 | 0.78 | 7.76 | 9.59 | 81.54 |
±SD | 1.15 | 0.48 | 1.86 | 14.71 | 0.01 | 0.13 | 0.029 | 0.017 | 0.89 | 1.24 | 0.64 | 1.36 | 0.15 | 2.90 | 0.88 | 0.89 |
Citrus | 74.98 | −4.5 | 11.63 | 134.2 | 0.128 | 3.61 | 0.267 | 0.073 | 17.45 | 8.50 | 5.85 | 14.35 | 0.69 | 11.75 | 9.35 | 80.95 |
Citrus | 76.1 | −4.85 | 11.78 | 132.6 | 0.127 | 3.48 | 0.253 | 0.065 | 17.55 | 8.50 | 6.70 | 15.20 | 0.79 | 11.44 | 8.72 | 81.55 |
Citrus | 76.84 | −3.23 | 4.37 | 95.20 | 0.091 | 3.4 | 0.193 | 0.030 | 18.00 | 6.50 | 6.20 | 12.70 | 0.95 | 2.58 | 7.50 | 82.05 |
Citrus | 77.49 | −3.4 | 4.00 | 90.10 | 0.088 | 3.39 | 0.187 | 0.027 | 17.35 | 7.00 | 5.55 | 12.55 | 0.79 | 1.92 | 7.18 | 82.15 |
Citrus | 77.79 | −3.56 | 4.18 | 82.10 | 0.078 | 3.43 | 0.164 | 0.014 | 17.25 | 5.00 | 6.15 | 11.15 | 1.23 | 1.99 | 7.36 | 81.80 |
Citrus | 76.9 | −3.22 | 4.36 | 81.20 | 0.078 | 3.31 | 0.159 | 0.011 | 17.35 | 5.50 | 5.35 | 10.85 | 0.97 | 2.58 | 7.48 | 81.95 |
Citrus | 77.7 | −3.36 | 3.90 | 94.00 | 0.090 | 3.36 | 0.185 | 0.026 | 17.85 | 6.50 | 5.20 | 11.70 | 0.80 | 1.82 | 8.03 | 82.35 |
Average | 76.83 | −3.73 | 6.32 | 101.3 | 0.10 | 3.43 | 0.201 | 0.035 | 17.54 | 6.79 | 5.86 | 12.64 | 0.89 | 4.87 | 7.95 | 81.83 |
±SD | 1.01 | 0.66 | 3.68 | 22.55 | 0.02 | 0.10 | 0.042 | 0.024 | 0.28 | 1.35 | 0.53 | 1.62 | 0.18 | 4.61 | 0.81 | 0.46 |
Physicochemical Parameters | Wilks’ Lambda | F | df1 | df2 | p |
---|---|---|---|---|---|
L* | 0.759 | 6.343 | 1 | 20 | 0.020 |
a* | 0.605 | 13.043 | 1 | 20 | 0.002 |
b* | 0.929 | 1.534 | 1 | 20 | 0.230 ns |
TDS | 0.527 | 17.972 | 1 | 20 | 0.000 |
Salinity | 0.537 | 17.255 | 1 | 20 | 0.000 |
EC | 0.498 | 20.126 | 1 | 20 | 0.000 |
Moisture | 0.706 | 8.320 | 1 | 20 | 0.009 |
FA | 0.822 | 4.340 | 1 | 20 | 0.050 |
LA | 0.956 | 0.924 | 1 | 20 | 0.348 ns |
TA | 0.798 | 5.057 | 1 | 20 | 0.036 |
L/FA | 0.903 | 2.159 | 1 | 20 | 0.157 ns |
BI | 0.860 | 3.250 | 1 | 20 | 0.086 ns |
TDS/TA | 0.533 | 17.549 | 1 | 20 | 0.000 |
Total sugars (°Bx) | 0.969 | 0.632 | 1 | 20 | 0.436 ns |
pH | 0.987 | 0.267 | 1 | 20 | 0.611 ns |
Ash | 0.498 | 20.126 | 1 | 20 | 0.000 |
Physicochemical Parameters | Discriminant Function 1 |
---|---|
L* | 0.128 |
a* | 0.818 |
TDS | −3.362 |
Salinity | 0.221 |
Moisture | −0.693 |
FA | 0.101 |
TA | 3.041 |
TDS/TA | 2.565 |
Botanical Origin | L* | a* | b* | pH | FA (meq/kg) | TDS (mg/L) | Salinity (g/L) | EC (mS/cm) | Ash (g/100g) | Moisture (g/100g) | Total Sugars (°Bx) | BI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unknown honeys | 68.11 | −3.60 | 26.79 | 4.20 | 25.00 | 389.0 | 0.378 | 0.974 | 0.479 | 15.55 | 85.25 | 43.64 |
Unknown honeys | 70.07 | −3.80 | 18.30 | 4.90 | 21.50 | 1055.0 | 0.456 | 1.200 | 0.609 | 15.78 | 85.50 | 24.99 |
Unknown honeys | 72.23 | −4.96 | 21.53 | 4.58 | 20.50 | 976.0 | 0.819 | 1.190 | 0.603 | 16.38 | 82.25 | 28.70 |
Unknown honeys | 68.30 | −3.27 | 29.18 | 4.99 | 36.00 | 856.0 | 1.173 | 1.000 | 0.494 | 15.40 | 83.13 | 49.37 |
Unknown honeys | 72.96 | −4.03 | 19.11 | 4.23 | 15.73 | 771.0 | 1.048 | 1.885 | 1.003 | 16.32 | 82.30 | 25.01 |
Unknown honeys | 72.96 | −4.04 | 18.89 | 4.46 | 24.00 | 789.2 | 0.833 | 1.010 | 0.500 | 12.00 | 86.38 | 24.61 |
Average | 70.77 | −3.95 | 22.30 | 4.56 | 23.79 | 806.0 | 0.785 | 1.210 | 0.615 | 15.24 | 84.14 | 32.72 |
±SD | 2.25 | 0.57 | 4.60 | 0.33 | 6.81 | 231.9 | 0.315 | 0.345 | 0.198 | 1.64 | 1.79 | 10.93 |
Classification Results | ||||||
---|---|---|---|---|---|---|
Botanical Origin | Predicted Group Membership c | Total Honey Samples (N = 28) | ||||
Clover | Citrus | Unknown | ||||
Original a | Count | Clover | 15 | 0 | 0 | 15 |
Citrus | 0 | 7 | 0 | 7 | ||
Unknown | 0 | 0 | 6 | 6 | ||
% | Clover | 100.0 | 0 | 0 | 100.0 | |
Citrus | 0 | 100.0 | 0 | 100.0 | ||
Unknown | 0 | 0 | 100.0 | 100.0 | ||
Cross-validated b | Count | Clover | 14 | 1 | 0 | 15 |
Citrus | 0 | 7 | 0 | 7 | ||
Unknown | 1 | 0 | 5 | 6 | ||
% | Clover | 93.3 | 6.7 | 0 | 100.0 | |
Citrus | 0 | 100.0 | 0 | 100.0 | ||
Unknown | 16.7 | 0 | 83.3 | 100.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karabagias, I.K.; Karabournioti, S. Discrimination of Clover and Citrus Honeys from Egypt According to Floral Type Using Easily Assessable Physicochemical Parameters and Discriminant Analysis: An External Validation of the Chemometric Approach. Foods 2018, 7, 70. https://doi.org/10.3390/foods7050070
Karabagias IK, Karabournioti S. Discrimination of Clover and Citrus Honeys from Egypt According to Floral Type Using Easily Assessable Physicochemical Parameters and Discriminant Analysis: An External Validation of the Chemometric Approach. Foods. 2018; 7(5):70. https://doi.org/10.3390/foods7050070
Chicago/Turabian StyleKarabagias, Ioannis K., and Sofia Karabournioti. 2018. "Discrimination of Clover and Citrus Honeys from Egypt According to Floral Type Using Easily Assessable Physicochemical Parameters and Discriminant Analysis: An External Validation of the Chemometric Approach" Foods 7, no. 5: 70. https://doi.org/10.3390/foods7050070
APA StyleKarabagias, I. K., & Karabournioti, S. (2018). Discrimination of Clover and Citrus Honeys from Egypt According to Floral Type Using Easily Assessable Physicochemical Parameters and Discriminant Analysis: An External Validation of the Chemometric Approach. Foods, 7(5), 70. https://doi.org/10.3390/foods7050070