High Hydrostatic Pressure as a Tool to Reduce Formation of Biogenic Amines in Artisanal Spanish Cheeses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cheese Manufacturing
2.2. High-Hydrostatic Pressure (HHP) Treatments
2.3. Microbiological Analysis of Cheeses
2.4. Assessment of Proteolysis Activity on Cheeses
2.5. Determination of Biogenic Amines in Cheese
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of HHP Treatment on Microbial Counts
3.2. Effect of HHP on the Proteolysis of Cheeses
3.3. Effect of HHP on the Formation of BA on Cheeses
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Naila, A.; Flint, S.; Fletcher, G.; Bremer, P.; Meerdink, G. Control of biogenic amines in food—Existing and emerging approaches. J. Food Sci. 2010, 75, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.J.Q.; Ventura, M.T.M.; Sagués, A.X.R.; Jerez, J.J.R.; Herrero, M.M.H. Aminas biogenas en queso: Riesgo toxicológico y factores que influyen en su formación. Alimentaria 1998, 294, 59–66. [Google Scholar]
- Mariné Font, A. Les Amines Biògenes en els Aliments: Història i Recerca en el Marc de les Ciències de L’alimentació; Institut d’Estudis Catalans, Secció de Ciències Biològiques: Barcelona, Spain, 2005; ISBN 8472837882. [Google Scholar]
- Sumner, S.S.; Taylor, S.L. Detection Method for Histamine-Producing, Dairy-Related Bacteria using Diamine Oxidase and Leucocrystal Violet. J. Food Prot. 1989, 52, 105–108. [Google Scholar] [CrossRef]
- Stratton, J.E.; Hutkins, R.W.; Taylor, S.L. Biogenic Amines in Cheese and other Fermented Foods: A Review. J. Food Prot. 1991, 54, 460–470. [Google Scholar] [CrossRef]
- Daniel Collins, J.; Noerrung, B.; Budka, H.; Andreoletti, O.; Buncic, S.; Griffin, J.; Hald, T.; Havelaar, A.; Hope, J.; Klein, G.; et al. Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, A.R. Significance of biogenic amines to food safety and human health. Food Res. Int. 1996, 29, 675–690. [Google Scholar] [CrossRef]
- Taylor, S.L.; Eitenmiller, R.R. Histamine food poisoning: Toxicology and clinical aspects. CRC Crit. Rev. Toxicol. 1986, 17, 91–128. [Google Scholar] [CrossRef] [PubMed]
- Nordisk Ministerråd; Nordisk Råd. Present Status of Biogenic Amines in Foods in Nordic Countries; Nordisk Ministerråd: Copenhagen, Denmark, 2002; ISBN 9289307730. [Google Scholar]
- Novella-Rodriguez, S.; Veciana-Nogues, M.T.; Izquierdo-Pulido, M.; Vidal-Carou, M.C. Distribution of Biogenic Amines and Polyamines in Cheese. J. Food Sci. 2003, 68, 750–756. [Google Scholar] [CrossRef]
- Joosten, H.M.L.J. Conditions allowing the formation of biogenic amines in cheese. Neth Milk Dairy J. 1988, 4, 329–357. [Google Scholar]
- Roig-Sagués, A.; Molina, A.; Hernández-Herrero, M. Histamine and tyramine-forming microorganisms in Spanish traditional cheeses. Eur. Food Res. Technol. 2002, 215, 96–100. [Google Scholar] [CrossRef]
- Kalac, P.; Abreu Gloria, M.B. Biogenic amine in cheeses, wines, beers and sauerkraut. In Biological Aspects of Biogenic Amines, Poliamines and Conjugates; Dandrifosse, G., Ed.; Transworld Research Network: Kerala, 2009; pp. 267–285. ISBN 9788178952499. [Google Scholar]
- Hoover, D.G.; Metrick, C.; Papineau, A.M.; Farkas, D.F.; Knorr, D. Biological effects of high hydrostatic pressure on food microorganisms. Food Technol.-Chic. 1989, 43, 99–107. [Google Scholar]
- Evert-Arriagada, K.; Hernández-Herrero, M.M.; Juan, B.; Guamis, B.; Trujillo, A.J. Effect of high pressure on fresh cheese shelf-life. J. Food Eng. 2012, 110, 248–253. [Google Scholar] [CrossRef]
- Juan, B.; Ferragut, V.; Guamis, B.; Buffa, M.; Trujillo, A.J. Proteolysis of a high pressure-treated ewe’s milk cheese. Milchwissenschaft 2004, 59, 616–619. [Google Scholar]
- Saldo, J.; McSweeney, P.L.H.; Sendra, E.; Kelly, A.L.; Guamis, B. Proteolysis in caprine milk cheese treated by high pressure to accelerate cheese ripening. Int. Dairy J. 2002, 12, 35–44. [Google Scholar] [CrossRef]
- Delgado, F.J.; González-Crespo, J.; Cava, R.; Ramírez, R. Changes in microbiology, proteolysis, texture and sensory characteristics of raw goat milk cheeses treated by high-pressure at different stages of maturation. LWT—Food Sci. Technol. 2012, 48, 268–275. [Google Scholar] [CrossRef]
- Calzada, J.; Del Olmo, A.; Picon, A.; Gaya, P.; Nuñez, M. Proteolysis and biogenic amine buildup in high-pressure treated ovine milk blue-veined cheese. J. Dairy Sci. 2013, 96, 4816–4829. [Google Scholar] [CrossRef] [PubMed]
- Calzada, J.; del Olmo, A.; Picón, A.; Gaya, P.; Nuñez, M. Reducing Biogenic-Amine-Producing Bacteria, Decarboxylase Activity, and Biogenic Amines in Raw Milk Cheese by High-Pressure Treatments. Appl. Environ. Microbiol. 2013, 79, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Kuchroo, C.N.; Fox, P.F. Soluble nitrogen in Cheddar cheese: Comparison of extraction procedures. Milchwissenschaft 1982, 37, 331–335. [Google Scholar]
- IDF (International Dairy Federation) Standard 185: 2002(E), I; 14891:2002(E) Milk and milk products—Determination of nitrogen content—Routine method using combustion according to the Dumas principle; IDF: Brussels, Belgium, 2002.
- Hernández-Herrero, M.M.; Roig-Sagués, A.X.; López-Sabater, E.I.; Rodríguez-Jerez, J.J.; Mora-Ventura, M.T. Protein hydrolysis and proteinase activity during the ripening of salted anchovy (Engraulis encrasicholus L.). A microassay method for determining the protein hydrolysis. J. Agric. Food Chem. 1999, 47, 3319–3324. [Google Scholar] [CrossRef] [PubMed]
- Folkertsma, B.; Fox, P.F. Use of the Cd-ninhydrin reagent to assess proteolysis in cheese during ripening. J. Dairy Res. 1992, 59, 217–224. [Google Scholar] [CrossRef]
- Eerola, S.; Hinkkanen, R.; Lindfors, E.; Hirvi, T. Liquid chromatographic determination of biogenic amines in dry sausages. J. AOAC Int. 1993, 76, 575–577. [Google Scholar] [PubMed]
- Novella-Rodríguez, S.; Veciana-Nogués, M.T.; Roig-Sagués, A.X.; Trujillo-Mesa, A.J.; Vidal-Carou, M.C. Comparison of biogenic amine profile in cheeses manufactured from fresh and stored (4 degrees C, 48 hours) raw goat’s milk. J. Food Prot. 2004, 67, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Arqués, J.L.; Garde, S.; Gaya, P.; Medina, M.; Nuñez, M. Short Communication: Inactivation of Microbial Contaminants in Raw Milk La Serena Cheese by High-Pressure Treatments. J. Dairy Sci. 2006, 89, 888–891. [Google Scholar] [CrossRef]
- Juan, B.; Ferragut, V.; Buffa, M.; Guamis, B.; Trujillo, A.J. Effects of High Pressure on proteolytic enzymes in cheese: Relationship with the proteolysis of ewe milk cheese. J. Dairy Sci. 2007, 90, 2113–2125. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, L.; Sánchez, I.; Poveda, J.M.; Seseña, S.; Palop, M.L. Comparison of microflora, chemical and sensory characteristics of artisanal Manchego cheeses from two dairies. Food Control 2007, 18, 11–17. [Google Scholar] [CrossRef]
- Calzada, J.; del Olmo, A.; Picon, A.; Gaya, P.; Nuñez, M. Effect of High-Pressure Processing on the Microbiology, Proteolysis, Biogenic Amines and Flavour of Cheese Made from Unpasteurized Milk. Food Bioprocess Technol. 2015, 8, 319–332. [Google Scholar] [CrossRef]
- Novella-Rodriguez, S.; Veciana-Nogues, M.T.; Trujillo-Mesa, A.J.; Vidal-Carou, M.C. Profile of Biogenic Amines in Goat Cheese Made from Pasteurized and Pressurized Milks. J. Food Sci. 2002, 67, 2940–2944. [Google Scholar] [CrossRef]
- Rynne, N.M.; Beresford, T.P.; Guinee, T.P.; Sheehan, E.; Delahunty, C.M.; Kelly, A.L. Effect of high-pressure treatment of 1 day-old full-fat Cheddar cheese on subsequent quality and ripening. Innov. Food Sci. Emerg. Technol. 2008, 9, 429–440. [Google Scholar] [CrossRef]
- Foulquié Moreno, M.R.; Sarantinopoulos, P.; Tsakalidou, E.; De Vuyst, L. The role and application of enterococci in food and health. Int. J. Food Microbiol. 2006, 106, 1–24. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, C.E.; O’Connor, P.M.; Kelly, A.L.; Beresford, T.P.; Murphy, P.M. Use of hydrostatic pressure for inactivation of microbial contaminants in cheese. Appl. Environ. Microbiol. 2000, 66, 4890–4896. [Google Scholar] [CrossRef] [PubMed]
- López-Pedemonte, T.; Roig-Sagués, A.X.; Lamo, S.D.; Gervilla, R.; Guamis, B. High hydrostatic pressure treatment applied to model cheeses made from cow’s milk inoculated with Staphylococcus aureus. Food Control 2007, 18, 441–447. [Google Scholar] [CrossRef]
- Capellas, M.; Mor-Mur, M.; Sendra, E.; Pla, R.; Guamis, B. Populations of aerobic mesophils and inoculated E. coli during storage of fresh goat’s milk cheese treated with high pressure. J. Food Prot. 1996, 59, 582–587. [Google Scholar] [CrossRef]
- De Lamo-Castellví, S.; Capellas, M.; Roig-Sagués, A.X.; López-Pedemonte, T.; Hernández-Herrero, M.M.; Guamis, B. Fate of Escherichia coli strains inoculated in model cheese elaborated with or without starter and treated by high hydrostatic pressure. J. Food Prot. 2006, 69, 2856–2864. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F. Proteolysis During Cheese Manufacture and Ripening. J. Dairy Sci. 1989, 72, 1379–1400. [Google Scholar] [CrossRef]
- Messens, W.; Estepar-Garcia, J.; Dewettinck, K.; Huyghebaert, A. Proteolysis of high-pressure-treated Gouda cheese. Int. Dairy J. 1999, 9, 775–782. [Google Scholar] [CrossRef]
- Malone, A.S.; Wick, C.; Shellhammer, T.H.; Courtney, P.D. High Pressure Effects on Proteolytic and Glycolytic Enzymes Involved in Cheese Manufacturing. J. Dairy Sci. 2003, 86, 1139–1146. [Google Scholar] [CrossRef]
- Trujillo, A.; Buffa, M.; Casals, I.; Fernández, P.; Guamis, B. Proteolysis in goat cheese made from raw, pasteurized or pressure-treated milk. Innov. Food Sci. Emerg. Technol. 2002, 3, 309–319. [Google Scholar] [CrossRef]
- Saldo, J.; Sendra, E.; Guamis, B. High Hydrostatic Pressure for Accelerating Ripening of Goat’s Milk Cheese: Proteolysis and Texture. J. Food Sci. 2000, 65, 636–640. [Google Scholar] [CrossRef]
- Thomas, T.D.; Pritchard, G.G. Proteolytic enzymes of dairy starter cultures. FEMS Microbiol. Lett. 1987, 46, 245–268. [Google Scholar] [CrossRef]
- Malone, A.S.; Shellhammer, T.H.; Courtney, P.D. Effects of high pressure on the viability, morphology, lysis, and cell wall hydrolase activity of Lactococcus lactis subsp. cremoris. Appl. Environ. Microbiol. 2002, 68, 4357–4363. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, C.E.; Kelly, A.L.; Oliveira, J.C.; Murphy, P.M.; Auty, M.A.; Beresford, T.P. Effect of varying high-pressure treatment conditions on acceleration of ripening of cheddar cheese. Innov. Food Sci. Emerg. Technol. 2003, 4, 277–284. [Google Scholar] [CrossRef]
- Ordóñez, A.I.; Ibáñez, F.C.; Torre, P.; Barcina, Y. Formation of biogenic amines in Idiazabal ewe’s-milk cheese: Effect of ripening, pasteurization, and starter. J. Food Prot. 1997, 60, 1371–1375. [Google Scholar] [CrossRef]
- Gardini, F.; Martuscelli, M.; Caruso, M.C.; Galgano, F.; Crudele, M.A.; Favati, F.; Guerzoni, M.E.; Suzzi, G. Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int. J. Food Microbiol. 2001, 64, 105–117. [Google Scholar] [CrossRef]
- Galgano, F.; Suzzi, G.; Favati, F.; Caruso, M.; Martuscelli, M.; Gardini, F.; Salzano, G. Biogenic amines during ripening in ‘Semicotto Caprino’ cheese: Role of enterococci. Int. J. Food Sci. Technol. 2001, 36, 153–160. [Google Scholar] [CrossRef]
- Martuscelli, M.; Gardini, F.; Torriani, S.; Mastrocola, D.; Serio, A.; Chaves-López, C.; Schirone, M.; Suzzi, G. Production of biogenic amines during the ripening of Pecorino Abruzzese cheese. Int. Dairy J. 2005, 15, 571–578. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Fernández, D.; Arenas, R.; Diezhandino, I.; Tornadijo, M.E.; Fresno, J.M. Biogenic amines in Zamorano cheese: factors involved in their accumulation. J. Sci. Food Agric. 2016, 96, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J.M.; Molina, G.M.; Gómez-Alonso, S. Variability of biogenic amine and free amino acid concentrations in regionally produced goat milk cheeses. J. Food Compost. Anal. 2016, 51, 85–92. [Google Scholar] [CrossRef]
- Novella-Rodríguez, S.; Veciana-Nogués, M.T.; Saldo, J.; Vidal-Carou, M.C. Effects of high hydrostatic pressure treatments on biogenic amine contents in goat cheeses during ripening. J. Agric. Food Chem. 2002, 50, 7288–7292. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Capillas, C.; Jiménez Colmenero, F.; Carrascosa, A.V.; Muñoz, R. Biogenic amine production in Spanish dry-cured “chorizo” sausage treated with high-pressure and kept in chilled storage. Meat Sci. 2007, 77, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Valsamaki, K.; Michaelidou, A.; Polychroniadou, A. Biogenic amine production in Feta cheese. Food Chem. 2000, 71, 259–266. [Google Scholar] [CrossRef]
- Pinho, O.; Ferreira, I.M.P.L.V.O.; Mendes, E.; Oliveira, B.M.; Ferreira, M. Effect of temperature on evolution of free amino acid and biogenic amine contents during storage of Azeitão cheese. Food Chem. 2001, 75, 287–291. [Google Scholar] [CrossRef]
- Pintado, A.I.E.; Pinho, O.; Ferreira, I.M.P.L.V.O.; Pintado, M.M.E.; Gomes, A.M.P.; Malcata, F.X. Microbiological, biochemical and biogenic amine profiles of Terrincho cheese manufactured in several dairy farms. Int. Dairy J. 2008, 18, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Ladero, V.; Fernandez, M.; Alvarez, M.A. Effect of post-ripening processing on the histamine and histamine-producing bacteria contents of different cheeses. Int. Dairy J. 2009, 19, 759–762. [Google Scholar] [CrossRef]
- Pircher, A.; Bauer, F.; Paulsen, P. Formation of cadaverine, histamine, putrescine and tyramine by bacteria isolated from meat, fermented sausages and cheeses. Eur. Food Res. Technol. 2007, 226, 225–231. [Google Scholar] [CrossRef]
- Leuschner, R.G.K.; Kurihara, R.; Hammes, W.P. Formation of biogenic amines by proteolytic enterococci during cheese ripening. J. Sci. Food Agric. 1999, 79, 1141–1144. [Google Scholar] [CrossRef]
- Perin, L.M.; Belviso, S.; Dal Bello, B.; Nero, L.A.; Cocolin, L. Technological properties and biogenic amines production by bacteriocinogenic lactococci and enterococci strains isolated from raw goat’s milk. J. Food Protect. 2017, 80, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Torracca, B.; Pedonese, F.; Turchi, B.; Fratini, F.; Nuvoloni, R. Qualitative and quantitative evaluation of biogenic amines in vitro production by bacteria isolated from ewes’ milk cheeses. Eur. Food Res. Technol. 2018, 244, 721–728. [Google Scholar] [CrossRef]
- del Rio, B.; Redruello, B.; Ladero, V.; Fernandez, M.; Cruz Martin, M.; Alvarez, M.A. Putrescine production by Lactococcus lactis subsp. cremoris CECT 8666 is reduced by NaCl via a decrease in bacterial growth and the repression of the genes involved in putrescine production. Int. J. Food Microbiol. 2016, 232, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Joosten, H.M.L.J.; Northolt, M.D. Detection, growth, and amine-producing capacity of lactobacilli in cheese. Appl. Environ. Microbiol. 1989, 55, 2356–2359. [Google Scholar] [PubMed]
- Burdychova, R.; Komprda, T. Biogenic amine-forming microbial communities in cheese. FEMS Microbiol. Lett. 2007, 276, 149–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roig-Sagues, A.X.; Hernandez-Herrero, M.; Lopez-Sabater, E.I.; Rodriguez-Jerez, J.J.; Mora-Ventura, M.T. Histidine decarboxylase activity of bacteria isolated from raw and ripened Salchichon, a Spanish cured sausage. J. Food Prot. 1996, 59, 516–520. [Google Scholar] [CrossRef]
- Roig-Sagués, A.X.; Hernàndez-Herrero, M.M.; López-Sabater, E.I.; Rodríguez-Jerez, J.J.; Mora-Ventura, M.T. Evaluation of three decarboxylating agar media to detect histamine and tyramine-producing bacteria in ripened sausages. Lett. Appl. Microbiol. 1997, 25, 309–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silla Santos, M.H. Amino acid decarboxylase capability of microorganisms isolated in Spanish fermented meat products. Int. J. Food Microbiol. 1998, 39, 227–230. [Google Scholar] [CrossRef]
- Hernández-Herrero, M.M.; Roig-Sagués, A.X.; Rodríguez-Jerez, J.J.; Mora-Ventura, T.M. Halotolerant and Halophilic Histamine-Forming Bacteria Isolated during the Ripening of Salted Anchovies (Engraulis encrasicholus). J. Food Prot. 1999, 62, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Özogul, F.; Özogul, Y. The ability of biogenic amines and ammonia production by single bacterial cultures. Eur. Food Res. Technol. 2007, 225, 385–394. [Google Scholar] [CrossRef]
- Tham, W.; Karp, G.; Danielsson-Tham, M.L. Histamine formation by enterococci in goat cheese. Int. J. Food Microbiol. 1990, 11, 225–229. [Google Scholar] [CrossRef]
- Bardócz, S. Polyamines in food and their consequences for food quality and human health. Trends Food Sci. Technol. 1995, 6, 341–346. [Google Scholar] [CrossRef]
- Rauscher-Gabernig, E.; Grossgut, R.; Bauer, F.; Paulsen, P. Assessment of alimentary histamine exposure of consumers in Austria and development of tolerable levels in typical foods. Food Control 2009, 20, 423–429. [Google Scholar] [CrossRef]
- Benkerroum, N. Biogenic Amines in Dairy Products: Origin, Incidence, and Control Means. Compr. Rev. Food Sci. Food Saf. 2016, 15, 801–826. [Google Scholar] [CrossRef] [Green Version]
- Karovicova, J.; Kohajdova, Z. Biogenic Amines in Food. ChemInform 2005, 36, 70–79. [Google Scholar] [CrossRef]
- Vind, S.; Søndergaard, I.; Poulsen, L.K.; Svendsen, U.G.; Weeke, B. Comparison of methods for intestinal histamine application: Histamine in enterosoluble capsules or via a duodeno-jenunal tube. Allergy 1991, 46, 191–195. [Google Scholar] [CrossRef] [PubMed]
Microbial Group | Day of Ripening | Control | HHP1 |
---|---|---|---|
Lactococci | 5 | 9.55 ± 0.27 a,A | 7.30 ± 0.22 B |
15 | 8.75 ± 0.34 b,A | 6.76 ±0.49 B | |
30 | 8.47 ± 0.26 b,A | 7.03 ± 0.64 B | |
45 | 8.26 ± 0.20 b,A | 7.19 ± 0.25 B | |
60 | 7.54 ± 0.51 c,A | 7.05 ± 0.17 A | |
Lactobacilli | 5 | 6.54 ± 0.31 a,A | 3.13 ± 0.26 a,B |
15 | 8.36 ± 0.42 b,A | 5.23 ± 1.54 b,B | |
30 | 8.28 ± 0.15 b,A | 6.31 ± 0.33 c,B | |
45 | 8.18 ± 0.19 b,A | 6.80 ± 0.50 c,B | |
60 | 7.89 ± 0.45 b,A | 7.03 ± 0.22 c,A | |
Enterococci | 5 | 6.23 ± 0.24 a,A | 4.44 ± 0.44 ab,B |
15 | 6.10 ± 0.70 a,A | 3.99 ± 0.24 ab,B | |
30 | 6.17 ± 0.47 a,A | 4.60 ± 0.96 b,B | |
45 | 6.17 ± 0.48 a,A | 3.45 ± 0.34 a,B | |
60 | 5.32 ± 0.64 a,A | 3.85 ± 0.59 ab,B | |
Enterobacteria | 5 | 6.33 ± 0.26 a,A | 1.92 ± 0.54 a,B |
15 | 3.15 ± 2.75 b,A | 2.49 ± 0.36 a,A | |
30 | 4.54 ± 0.15 b,A | 0.86 ± 1.48 a,B | |
45 | 3.58 ± 0.40 b,A | ND b,B | |
60 | 2.94 ± 0.54 b,A | ND b,B | |
E. coli | 5 | 2.56 ± 0.62 b,A | ND B |
15 | 0.90 ± 0.78 ab,A | ND A | |
30 | 1.60 ± 1.96 ab,A | 0.83 ± 1.44 A | |
45 | 0.77 ± 0.68 ab,A | ND A | |
60 | ND a,A | ND A | |
S. aureus | 5 | 2.64 ± 0.15 a,A | 0.43 ± 0.75 a,B |
15 | 1.06 ± 0.96 b,A | ND A | |
30 | 1.18 ± 0.31 b,A | ND B | |
45 | 0.77 ± 1.33 b,A | 0.33 ± 0.58 B | |
60 | ND b,A | ND A |
Microbial Group | Day of Ripening | Control | HHP1 | HHP15 |
---|---|---|---|---|
Lactococci | 5 | 9.34 ± 0.33 a,A | 7.80 ± 0.31 a,B | |
15 | 9.16 ± 0.20 a,A | 6.87 ± 0.39 b,B | 7.25 ± 0.22 a,B | |
30 | 9.21 ± 0.18 a,A | 8.04 ± 0.74 b,B | 7.67 ± 0.14 ab,B | |
45 | 8.74 ± 0.20 ab,A | 8.07 ± 0.61 b,B | 7.92 ± 0.39 ab,B | |
60 | 8.38 ± 0.16 b,A | 8.32 ± 0.76 b,A | 7.57 ± 0.32 b,B | |
Lactobacilli | 5 | 5.57 ± 0.35 a,A | 4.54 ± 0.64 a,B | |
15 | 7.52 ± 1.07 b,A | 5.60 ± 0.37 b,B | 6.19 ± 0.50 a,B | |
30 | 8.64 ± 0.41 c,A | 6.61 ± 0.82 c,B | 6.78 ± 1.00 ab,B | |
45 | 8.68 ± 0.12 c,A | 8.09 ± 0.55 d,A | 7.82 ± 0.27 bc,A | |
60 | 8.15 ± 0.39 c,A | 8.12 ± 0.51 d,A | 7.53 ± 0.15 c,B | |
Enterococci | 5 | 5.59 ± 0.74 A | 3.16 ± 1.05 A | |
15 | 6.18 ± 2.14 AB | 3.50 ± 1.13 C | 3.90 ± 1.11 B | |
30 | 6.16 ± 1.18 A | 1.76 ± 1.53 B | 3.96 ± 1.32 A | |
45 | 4.63 ± 1.04 A | 2.76 ± 2.26 B | 3.27 ± 0.48 A | |
60 | 4.23 ± 1.40 A | 2.58 ± 1.93 B | 3.88 ± 0.93 A | |
Enterobacteria | 5 | 4.65 ± 0.23 a,A | ND B | |
15 | 4.46 ± 0.30 a,A | 0.29 ± 0.58 B | ND ± ND B | |
30 | 4.42 ± 1.92 a,A | ND B | 1.22 ± 1.11 B | |
45 | 2.87 ± 1.21 b,A | ND B | 0.57 ± 0.98 B | |
60 | 2.35 ± 0.96 b,A | ND B | ND B | |
E. coli | 5 | 1.16 ± 1.01 | ND | |
15 | 1.15 ± 1.37 | ND | ND | |
30 | 0.65 ± 0.79 | ND | ND | |
45 | 0.64 ± 0.73 | ND | 0.78 ± 1.35 | |
60 | 0.73 ± 0.91 | ND | ND | |
S. aureus | 5 | 2.35 ± 0.58 a | 1.07 ± 1.35 | |
15 | 1.74 ± 1.19 ab | 0.50 ± 0.58 | 0.33 ± 0.58 | |
30 | 1.17 ± 0.35 ab | 0.29 ± 0.58 | 0.33 ± 0.58 | |
45 | 0.61 ± 0.71 bc | ND | ND | |
60 | 0.25 ± 0.50 c | ND | ND |
Proteolysis Index | Day of Ripening | Control | HHP1 |
---|---|---|---|
TNBS | 5 | 10.40 ± 2.24 a | 9.41 ± 1.80 a |
15 | 14.90 ± 1.21 ab | 15.33 ± 2.15 ab | |
30 | 22.54 ± 2.50 b | 21.14 ± 4.59 b | |
45 | 44.89 ± 1.19 c,B | 32.65 ± 5.81 c,A | |
60 | 53.66 ± 2.14 d,B | 39.96 ± 4.52 c,A | |
RI | 5 | 10.99 ± 3.05 a | 11.09 ± 2.60 a |
15 | 22.97 ± 1.23 b | 22.97 ± 1.23 b | |
30 | 21.88 ± 0.60 b | 24.39 ± 3.15 bc | |
45 | 22.14 ± 1.78 b | 25.71 ± 2.15 bc | |
60 | 25.07 ± 0.66 b | 28.03 ± 0.35 c | |
FAA | 5 | 2.08 ± 0.57 a | 1.48 ± 0.72 a |
15 | 4.85 ± 1.42 a | 3.71 ± 1.06 ab | |
30 | 10.05 ± 2.06 b,B | 5.90 ± 1.59 bc,A | |
45 | 15.07 ± 3.52 c,B | 8.40 ± 1.43 cd,A | |
60 | 15.71 ± 3.06 c,B | 10.40 ± 1.29 d,A |
Proteolysis Index | Day of Ripening | Control | HHP1 | HHP15 |
---|---|---|---|---|
TNBS | 5 | 7.66 ± 1.65 a | 7.92 ± 0.44 a | |
15 | 13.87 ± 1.37 ab | 13.36 ± 0.82 a | 15.03 ± 0.40 a | |
30 | 22.13 ± 8.22 b,AB | 26.33 ± 17.48 b,BC | 34.31 ± 6.11 b,C | |
45 | 34.93 ± 2.60 c,BC | 28.00 ± 2.84 b,AB | 44.79 ± 4.93 bc,C | |
60 | 47.40 ± 2.74 d,BC | 37.59 ± 6.86 b,A | 52.50 ± 2.21 c,C | |
RI | 5 | 9.70 ± 3.55 a | 10.44 ± 4.39 a | |
15 | 19.38 ± 4.24 b | 18.51 ± 4.23 b | 19.15 ± 2.57 a | |
30 | 24.96 ± 3.64 bc | 23.35 ± 2.38 b | 25.39 ± 3.57 ab | |
45 | 29.59 ± 2.97 c,B | 25.09 ± 2.95 b,A | 30.54 ± 2.46 b,B | |
60 | 31.92 ± 6.63 c,B | 26.38 ± 3.77 b,A | 31.62 ± 2.21 b,B | |
FAA | 5 | 2.36 ± 0.04 a | 2.18 ± 0.22 a | |
15 | 5.01 ± 1.27 a | 3.66 ± 1.79 ab | 5.59 ± 2.94 a | |
30 | 11.66 ± 2.76 b,B | 6.85 ± 3.07 ab,AB | 11.22 ± 1.11 b,B | |
45 | 11.39 ± 2.69 b,B | 6.55 ± 1.10 ab,AB | 14.86 ± 4.89 bc,C | |
60 | 16.56 ± 3.51 c,B | 8.63 ± 1.71 b,A | 16.03 ± 5.14 c,B |
BA | Day of Ripening | Control | HHP1 |
---|---|---|---|
TR | 5 | 8.99 ± 7.94 a | 23.12 ± 5.93 a |
15 | 27.76 ± 15.00 ab | 10.81 ± 9.37 a | |
30 | 95.96 ± 34.38 c | 82.10 ± 26.33 b | |
45 | 68.39 ± 20.42 bc | 70.11 ± 40.01 b | |
60 | 63.69 ± 27.90 bc | 89.08 ± 49.98 b | |
PHE | 5 | 1.40 ± 0.65 a | 0.26 ± 0.45 a |
15 | 14.62 ± 1.42 b | 17.96 ± 4.07 b | |
30 | 17.27 ± 5.94 b | 17.16 ± 4.29 b | |
45 | 20.75 ± 4.20 ab | 14.80 ± 0.45 ab | |
60 | 31.13 ± 14.19 b | 25.56 ± 7.47 b | |
PU | 5 | 4.07 ± 0.51 a | 3.29 ± 0.42 |
15 | 136.56 ± 21.57 ab | 59.09 ± 7.34 | |
30 | 225.16 ± 22.31 b | 67.09 ± 8.50 | |
45 | 463.88 ± 60.73 c,B | 42.69 ± 33.89 A | |
60 | 476.41 ± 126.21 c,B | 79.80 ± 19.51 A | |
CA | 5 | 30.20 ± 16.19 a | 24.07 ± 9.04 |
15 | 29.63 ± 4.35 a | 26.20 ± 3.13 | |
30 | 50.14 ± 10.97 ab | 35.29 ± 12.70 | |
45 | 69.53 ± 16.34 b | 36.22 ± 17.00 | |
60 | 70.45 ± 27.21 b | 44.22 ± 15.61 | |
HIS | 5 | 1.27 ± 0.56 a | 1.00 ± 0.87 |
15 | 3.02 ± 0.43 a | 2.44 ± 0.34 | |
30 | 6.38 ± 3.31 a | 6.27 ± 3.16 | |
45 | 18.04 ± 9.36 b,B | 6.51 ± 1.75 A | |
60 | 15.41 ± 7.05 b,B | 4.85 ± 2.20 A | |
TY | 5 | 10.04 ± 6.80 a | 6.11 ± 6.95 |
15 | 130.51 ± 42.98 ab | 18.96 ± 1.07 | |
30 | 234.74 ± 69.16 b,B | 15.59 ± 3.56 A | |
45 | 443.87 ± 105.10 c,B | 16.17 ± 0.68 A | |
60 | 491.89 ± 67.45 c,B | 28.93 ± 5.91 A |
BA | Day of Ripening | Control | HHP1 | HHP15 |
---|---|---|---|---|
TR | 5 | 1.66 ± 3.31 a | 4.92 ± 5.86 | - |
15 | 4.51 ± 3.32 a | 10.03 ± 7.29 | 8.76 ± 6.98 | |
30 | 9.87 ± 4.43 ab | 9.83 ± 4.66 | 6.25 ± 0.80 | |
45 | 9.51 ± 3.85 ab | 12.49 ± 6.76 | 12.32 ± 8.43 | |
60 | 15.73 ± 2.15 b | 11.06 ± 6.78 | 11.66 ± 6.50 | |
PHE | 5 | 1.02 ± 1.23 a | 0.40 ± 0.48 | - |
15 | 2.78 ± 1.44 a | 2.39 ± 0.56 | 4.39 ± 1.84 | |
30 | 5.67 ± 5.25 a | 3.04 ± 1.01 | 3.71 ± 1.45 | |
45 | 12.69 ± 5.08 ab | 4.37 ± 1.52 | 5.78 ± 1.53 | |
60 | 12.74 ± 2.62 b | 4.43 ± 2.37 | 13.31 ± 15.37 | |
PU | 5 | 3.62 ± 0.40 a | 5.20 ± 2.41 | - |
15 | 42.42 ± 23.00 ab | 11.25 ± 9.80 | 15.14 ± 11.99 | |
30 | 65.89 ± 30.90 bc,B | 5.45 ± 1.38 A | 22.33 ± 14.49 AB | |
45 | 87.89 ± 76.10 c,B | 7.81 ± 3.03 A | 22.92 ± 17.51 A | |
60 | 74.89 ± 54.74 bc,B | 5.24 ± 0.76 A | 26.08 ± 6.26 A | |
CA | 5 | 62.13 ± 33.00 a | 55.55 ± 28.54 | - |
15 | 159.07 ± 37.23 b,B | 48.75 ± 44.16 A | 87.50 ± 70.43 AB | |
30 | 141.63 ± 79.34 ab,B | 48.40 ± 16.94 A | 80.65 ± 76.20 AB | |
45 | 129.82 ± 67.03 ab,B | 41.91 ± 22.89 A | 72.47 ± 29.78 AB | |
60 | 105.90 ± 21.87 ab,B | 28.51 ± 17.32 A | 80.28 ± 71.97 AB | |
HIS | 5 | 4.81 ± 4.54 a | 5.33 ± 3.79 | - |
15 | 39.98 ± 11.42 b | 12.71 ± 10.97 | 29.14 ± 22.84 a | |
30 | 74.34 ± 29.42 c,B | 6.38 ± 2.77 A | 47.52 ± 31.34 ab,B | |
45 | 81.66 ± 46.30 c,B | 5.94 ± 1.25 A | 58.99 ± 3.14 b,B | |
60 | 91.02 ± 5.73 c,C | 7.07 ± 4.30 A | 57.65 ± 13.16 ab,B | |
TY | 5 | 4.37 ± 0.71 a | 3.15 ± 1.94 a | - |
15 | 123.72 ± 40.62 ab,B | 13.79 ± 5.28 b,A | 115.79 ± 55.44 B | |
30 | 222.32 ± 84.26 bc,B | 22.16 ± 10.34 b,A | 162.64 ± 36.21 A | |
45 | 268.02 ± 130.91 c,B | 80.49 ± 126.16 ab,A | 147.73 ± 30.57 AB | |
60 | 277.30 ± 114.08 c,B | 32.69 ± 16.54 b,A | 147.62 ± 26.64 AB |
Day of Ripening | Control | HHP1 | HHP15 | |
---|---|---|---|---|
Goats’ milk chesses | ||||
SD | 5 | 1.13 ± 0.51 a | 0.32 ± 0.50 a | - |
15 | 1.92 ± 0.18 aA | 4.34 ± 0.21 b,B | - | |
30 | 2.09 ± 0.24 abA | 3.70 ± 0.89 b,B | - | |
45 | 4.32 ± 1.75 c | 3.28 ± 1.30 b | - | |
60 | 3.92 ± 1.49 bcA | 6.53 ± 1.99 c,B | - | |
SM | 5 | 2.25 ± 2.07 a | 1.47 ± 1.48 a | - |
15 | 4.35 ± 1.25 ab,A | 7.80 ± 0.60 bc,B | - | |
30 | 3.03 ± 0.75 ab,A | 6.83 ± 0.46 b,B | - | |
45 | 5.57 ± 3.91 b,B | 2.16 ± 0.30 a,A | - | |
60 | 3.90 ± 0.75 ab,A | 10.46 ± 2.18 c,B | - | |
Ewes’ milk cheeses | ||||
SD | 5 | 0.73 ± 0.65 a | 0.51 ± 0.90 a | - |
15 | 55.94 ± 29.00 ab | 90.23 ± 67.99 bc | 73.15 ± 38.57 b | |
30 | 64.22 ± 8.22 b,A | 122.25 ± 48.16 c,B | 65.61 ± 10.97 b,A | |
45 | 14.74 ± 14.76 ab | 52.04 ± 36.91 ab | 34.49 ± 19.56 ab | |
60 | 30.14 ± 23.04 ab | 19.49 ± 33.57 a | 17.36 ± 9.35 a | |
SM | 5 | 6.76 ± 5.17 | 5.94 ± 4.03 a | |
15 | 14.13 ± 12.84 | 18.69 ± 14.57 a | 8.00 ± 6.99 a | |
30 | 25.18 ± 18.41 | 28.39 ± 7.52 b | 39.50 ± 32.16 b | |
45 | 17.57 ± 9.32 | 13.13 ± 7.26 ab | 20.08 ± 21.91 ab | |
60 | 14.66 ± 17.02 | 15.27 ± 17.76 a | 26.92 ± 17.93 ab |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Pesqueira, D.; Hernández-Herrero, M.M.; Roig-Sagués, A.X. High Hydrostatic Pressure as a Tool to Reduce Formation of Biogenic Amines in Artisanal Spanish Cheeses. Foods 2018, 7, 137. https://doi.org/10.3390/foods7090137
Espinosa-Pesqueira D, Hernández-Herrero MM, Roig-Sagués AX. High Hydrostatic Pressure as a Tool to Reduce Formation of Biogenic Amines in Artisanal Spanish Cheeses. Foods. 2018; 7(9):137. https://doi.org/10.3390/foods7090137
Chicago/Turabian StyleEspinosa-Pesqueira, Diana, Maria Manuela Hernández-Herrero, and Artur X. Roig-Sagués. 2018. "High Hydrostatic Pressure as a Tool to Reduce Formation of Biogenic Amines in Artisanal Spanish Cheeses" Foods 7, no. 9: 137. https://doi.org/10.3390/foods7090137
APA StyleEspinosa-Pesqueira, D., Hernández-Herrero, M. M., & Roig-Sagués, A. X. (2018). High Hydrostatic Pressure as a Tool to Reduce Formation of Biogenic Amines in Artisanal Spanish Cheeses. Foods, 7(9), 137. https://doi.org/10.3390/foods7090137