Effect of Soluble Solids and High Pressure Treatment on Rheological Properties of Protein Enriched Mango Puree
Abstract
:1. Introduction
2. Material
2.1. Mango Puree with Different Solids Content and Protein Concentrations
2.2. High Pressure Equipment and Treatment
2.3. Experimental Design
2.4. Statistical Analyses
2.5. Rheological Measurements
2.6. Sensory Evaluation of HP Treated Protein Enriched Mango Puree
3. Results and Discussion
3.1. HPP Effects on Protein Supplemented Mango Puree with Different Soluble Solids Content
3.1.1. Effect of Treatment Time
3.1.2. Effect of Pressure Level
3.2. HPP Effects on Protein Supplemented Mango Puree with Same Total Solids Content
Effect of Protein Concentration, Pressure and Time on G′, G″ and H*
3.3. Model Development
3.4. Independent Effects of Protein Concentration and Soluble Solids
3.5. Sensory Evaluation of HP Treated Protein Enriched Mango Puree
3.5.1. Comparison of Protein Added Samples
3.5.2. Comparison of Control with Protein Added Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chantrapornchai, W.; McClements, D.J. Influence of glycerol on optical properties and large-strain rheology of heat-induced whey protein isolate gels. Food Hydrocoll. 2002, 16, 461–466. [Google Scholar] [CrossRef]
- Pelegrine, D.H.; Silva, F.C.; Gasparetto, C.A. Rheological behavior of pineapple and mango pulps” Lebensmittel-Wissenschaft und. Technologie 2002, 35, 645–648. [Google Scholar]
- Iordache, M.; Jelen, P. High pressure microfluidization treatment of heat denatured whey proteins for improved functionality. Innov. Food Sci. Emerg. Technol. 2003, 4, 367–376. [Google Scholar] [CrossRef]
- Knorr, D.; Ade-Omowaye, B.I.O.; Heinz, V. Nutritional improvement on plant foods by non-thermal processing. Proc. Nutr. Soc. 2002, 61, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Ngarize, S.; Adams, A.; Howell, N. A comparative study of heat and high pressure induced gels of whey and egg albumen proteins and their binary mixtures. Food Hydrocoll. 2005, 19, 984–996. [Google Scholar] [CrossRef]
- Tedford, L.A.; Kelly, S.M.; Price, N.C.; Schaschke, C.J. Interactive effects of pressure, temperature and time on the molecular structure of 13 lactoglobulin. J. Food Sci. 1999, 64, 396–399. [Google Scholar] [CrossRef]
- Farkas, D.F.; Hoover, D.G. High pressure processing. J. Food Sci. 2000, 65, 47–64. [Google Scholar] [CrossRef]
- Van Mil, P.; Kromkamp, J. The behavior of whey proteins at high pressure. In Proceedings of the ICODRL Meeting, the Application of High Pressure to Milk, Wageningen, The Netherlands, 24–25 April 1997. [Google Scholar]
- Hinrichs, J. Ultrahochdruckbehandlung von Lebensmittelnmit Schwerpunkt Milch und Milchprodukte-Phanomene, Kinetik und Methoden-Karlsruhe; Reihe 3, Nr.656; VDI-Verlag: Düsseldorf, Germany, 2000. [Google Scholar]
- Fertsch, B.; Muller, M.; Hinrichs, J. Firmness of pressure-induced casein and whey protein gels modulated by holding time and rate of pressure release. Innov. Food Sci. Emerg. Technol. 2003, 4, 143–150. [Google Scholar] [CrossRef]
- Van Camp, J.; Huyghebeart, A. High pressure-induced gel formation of a whey protein and haemoglobin protein concentrate. Lebensmittel-Wissenschaft und Technologie 1995, 28, 111–117. [Google Scholar] [CrossRef]
- Van Camp, J.; Huyghebeart, A. A comparative rheological study of heat and high pressure induced whey protein gels. Food Chem. 1995, 54, 357–364. [Google Scholar] [CrossRef]
- Keim, S.; Hinrichs, J. Influence of stabilizing bonds on the texture properties of high-pressure induced whey protein gels. Int. Dairy J. 2004, 14, 355–363. [Google Scholar] [CrossRef]
- HinrichsHinrichs, J.; Rademacher, B. High pressure thermal denaturation kinetics of whey proteins. J. Dairy Res. 2004, 71, 480–488. [Google Scholar] [CrossRef]
- Lim, S.Y.; Swanson, B.G.; Ross, C.F.; Clark, S. High Hydrostatic Pressure Modification of Whey Protein Concentrate for Improved Body and Texture of Lowfat Ice Cream. J. Dairy Sci. 2008, 91, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Mussa, D.M.; Ramaswamy, H.S.; Smith, J.P. High pressure destruction kinetics of Listeria monocytogenes in milk. Food Res. Int. 1999, 31, 343–350. [Google Scholar] [CrossRef]
- Bouaouina, H.; Desrumaux, A.; Loisel, C.; Legrand, J. Functional properties of whey proteins as affected by dynamic high-pressure treatment. Int. Dairy J. 2006, 16, 275–284. [Google Scholar] [CrossRef]
- Alvarez, P.A.; Ramaswamy, H.S.; Ismail, A.A. Effect of High Pressure Treatment on the Electrospray Ionization Mass Spectrometry (ESI-MS) Profile of Whey Proteins. Int. Dairy J. 2007, 17, 881–888. [Google Scholar] [CrossRef]
- Singh, A.; Ramaswamy, H.S. Effect of high-pressure treatment on trypsin hydrolysis and antioxidant activity of egg white proteins. Int. J. Food Sci. Technol. 2014, 49, 269–279. [Google Scholar] [CrossRef]
- Ramaswamy, H.S.; Singh, A.P.; Sharma, M. Back extrusion rheology for evaluating the transition effects of high pressure processing of egg components. J. Texture Stud. 2015, 46, 34–45. [Google Scholar] [CrossRef]
- Iskandar, M.M.; Lands, L.C.; Sabally, K.; Azadi, B.; Meehan, B.; Mawji, N.; Cameron, D.; Skinner, C.D.; Kubow, S. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity. Foods 2015, 20, 184–207. [Google Scholar] [CrossRef]
- He, X.; Mao, L.; Gao, Y.; Yuan, F. Effects of high pressure processing on the structural and functional properties of bovine lactoferrin. Innov. Food Sci. Emerg. Technol. 2016, 38, 221–230. [Google Scholar] [CrossRef]
- Marciniak, A.; Suwal, S.; Brisson, G.; Britten, M.; Pouliot, Y.; Doyen, A. Studying a chaperone-like effect of beta-casein on pressure-induced aggregation of beta-lactoglobulin in the presence of alpha-lactalbumin. Food Hydrocoll. 2018, 84, 9–15. [Google Scholar] [CrossRef]
- Ahmed, J.; Ramaswamy, H.S.; Hiremath, N. The effect of high pressure treatment on rheological characteristics and colour of mango pulp. Int. J. Food Sci. Technol. 2005, 40, 885–895. [Google Scholar] [CrossRef]
- Nagano, T.; Mori, H.; Nishinari, K. Effect of heating and cooling on the gelation kinetics of 7S globulin from soybeans. J. Agric. Food Chem. 1994, 42, 1415–1419. [Google Scholar] [CrossRef]
Run | Independent Variables a (Coded and Real Values) | Dependent Variables b | ||||
---|---|---|---|---|---|---|
X1 | X2 | X3 | Y1 | Y2 | Y3 | |
1 | 3 (−1) | 450 (−1) | 1 (−1) | 14.63 | 20.61 | 89.60 |
2 | 3 (−1) | 450 (−1) | 5 (1) | 12.84 | 17.92 | 78.64 |
3 | 3 (−1) | 550 (1) | 1 (−1) | 16.08 | 22.26 | 98.57 |
4 | 3 (−1) | 550 (1) | 5 (1) | 12.56 | 19.06 | 76.61 |
5 | 7 (1) | 450 (−1) | 1 (−1) | 7.453 | 11.74 | 45.33 |
6 | 7 (1) | 450 (−1) | 5 (1) | 7.279 | 11.63 | 44.24 |
7 | 7 (1) | 550 (1) | 1 (−1) | 7.484 | 11.83 | 45.51 |
8 | 7 (1) | 550 (1) | 5 (1) | 12.19 | 17.22 | 74.66 |
9 | 5 (0) | 500 (0) | 0 (−1.5) | 7.667 | 11.32 | 46.83 |
10 | 5 (0) | 500 (0) | 6 (1.5) | 11.31 | 15.47 | 69.37 |
11 | 2 (−1.5) | 500 (0) | 3 (0) | 16.24 | 22.59 | 99.51 |
12 | 2 (−1.5) | 500 (0) | 5 (1) | 12.48 | 19.89 | 75.87 |
13 | 5 (0) | 575 (1.5) | 3 (0) | 10.95 | 16.92 | 66.72 |
14 | 5 (0) | 575 (1.5) | 5 (1) | 11.3 | 15.32 | 69.31 |
15 | 8 (1.5) | 500 (0) | 3 (0) | 7.718 | 11.92 | 47.01 |
16 | 8 (1.5) | 500 (0) | 1 (1) | 7.911 | 11.98 | 48.24 |
17 | 5 (0) | 425(−1.5) | 3 (0) | 9.811 | 14.17 | 60.00 |
18 | 5 (0) | 425 (−1.5) | 5 (1) | 8.837 | 12.49 | 54.11 |
19(6X) | 5 (0) | 500 (0) | 3 (0) | 9.971 | 14.93 | 60.85 |
Coefficient | Complex Viscosity | Viscous Modulus | Elastic Modulus |
---|---|---|---|
a0 | 10.2 *** | 15.6 *** | 62.2 *** |
Linear | |||
a1 | −2.601 *** | −3.46 *** | −15.9 *** |
a2 | 0.40609 | 0.423 | 3.29 |
a3 | 0.512 | 0.4204 | -0.24 |
Interactions | |||
a12 | 1.0608 ** | 0.361 | 6.6006 ** |
a13 | 1.32 *** | 1.26 * | 8.16 *** |
a23 | 0.311 | 0.377 | 1.92 |
a123 a11 a22 a33 | 1.036 * 0.8024 0.359 0.0516 | 0.391 0.4069 0.112 0.0962 | 6.41 * 4.19 2.25 0.39 |
%Variability explained (R2) | 0.79 | 0.65 | 0.79 |
F-value | |||
Regression | 18.08 | 21.10 | 18.04 |
Lack of fit | 2.76 | 1.85 | 2.83 |
Probability of F | |||
Regression | <0.0001 | 0.0001 | <0.0001 |
Lack of fit | N. S. | N. S. | N. S. |
Control | 2%PC | 5%PC | 8%PC | ||||
---|---|---|---|---|---|---|---|
BPT | APT | BPT | APT | BPT | APT | ||
Color | 8 | 8 | 8 | 8 | 7 | 8 | 5 |
Sweetness | 7 | 7 | 7 | 8 | 8 | 5 | 5 |
Flavor | 8 | 7 | 7 | 6 | 6 | 5 | 5 |
Mouth feel | 7 | 7 | 8 | 6 | 8 | 5 | 7 |
Acceptability | 8 | 8 | 8 | 7 | 6 | 5 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramaswamy, H.S.; Gundurao, A. Effect of Soluble Solids and High Pressure Treatment on Rheological Properties of Protein Enriched Mango Puree. Foods 2019, 8, 39. https://doi.org/10.3390/foods8010039
Ramaswamy HS, Gundurao A. Effect of Soluble Solids and High Pressure Treatment on Rheological Properties of Protein Enriched Mango Puree. Foods. 2019; 8(1):39. https://doi.org/10.3390/foods8010039
Chicago/Turabian StyleRamaswamy, Hosahalli S., and Anuradha Gundurao. 2019. "Effect of Soluble Solids and High Pressure Treatment on Rheological Properties of Protein Enriched Mango Puree" Foods 8, no. 1: 39. https://doi.org/10.3390/foods8010039
APA StyleRamaswamy, H. S., & Gundurao, A. (2019). Effect of Soluble Solids and High Pressure Treatment on Rheological Properties of Protein Enriched Mango Puree. Foods, 8(1), 39. https://doi.org/10.3390/foods8010039