Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Pomegranate Juice Fermentation
2.3. Ethanol and Residual Sugar Analysis
2.4. Organic Acid Analysis
2.5. Microbiological Analysis
2.6. Total Phenolics and Antioxidant Activity
2.7. Volatiles Analysis by HS-SPME/GC-MS
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Cell Viability
3.2. Ethanol, Organic Acids and Residual Sugar Concentrations
3.3. Total Phenolics and Antioxidant Activity
3.4. Volatiles Composition and Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brown, L.; Caligiuri, S.P.B.; Brown, D.; Pierce, G.N. Clinical trials using functional foods provide unique challenges. J. Funct. Foods 2018, 45, 233–238. [Google Scholar] [CrossRef]
- Terpou, A.; Bosnea, L.; Kanellaki, M.; Plessas, S.; Bekatorou, A.; Bezirtzoglou, E.; Koutinas, A.A. Growth Capacity of a Novel Potential Probiotic Lactobacillus paracasei K5 Strain Incorporated in Industrial White Brined Cheese as an Adjunct Culture. J. Food Sci. 2018, 83, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Santeramo, F.G.; Carlucci, D.; De Devitiis, B.; Seccia, A.; Stasi, A.; Viscecchia, R.; Nardone, G. Emerging trends in European food, diets and food industry. Food Res. Int. 2018, 104, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menrad, K. Market and marketing of functional food in Europe. J. Food Eng. 2003, 56, 181–188. [Google Scholar] [CrossRef]
- Bogue, J.; Collins, O.; Troy, A.J. Chapter 2—Market analysis and concept development of functional foods A2—Bagchi, Debasis. In Developing New Functional Food and Nutraceutical Products; Nair, S., Ed.; Academic Press: San Diego, CA, USA, 2017; pp. 29–45. [Google Scholar]
- Bhukya, B.; Banoth, S.; Anthappagudem, A. Chapter 5—Saccharomyces cerevisiae as Potential Probiotic: Strategies for Isolation and Selection. In Applied Microbiology and Bioengineering; Shukla, P., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 71–85. [Google Scholar]
- Ghosh, A.R. Chapter 6—Probiotics in the Rescue of Gut Inflammation. In Therapeutic, Probiotic, and Unconventional Foods; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 101–116. [Google Scholar]
- Amara, A.A.; Shibl, A. Role of Probiotics in health improvement, infection control and disease treatment and management. Saudi Pharm. J. 2015, 23, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Plessas, S.; Bosnea, L.; Alexopoulos, A.; Bezirtzoglou, E. Potential effects of probiotics in cheese and yogurt production: A review. Eng. Life Sci. 2012, 12, 433–440. [Google Scholar] [CrossRef]
- Shori, A.B. The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage. Biocatal. Agric. Biotechnol. 2015, 4, 423–431. [Google Scholar] [CrossRef]
- Terpou, A.; Gialleli, A.I.; Bosnea, L.; Kanellaki, M.; Koutinas, A.A.; Castro, G.R. Novel cheese production by incorporation of sea buckthorn berries (Hippophae rhamnoides L.) supported probiotic cells. LWT Food Sci. Technol. 2017, 79, 616–624. [Google Scholar] [CrossRef]
- Koutinas, A.A. 1—Fermented Dairy Products. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Perricone, M.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, R.M. Challenges for the Production of Probiotic Fruit Juices. Beverages 2015, 1. [Google Scholar] [CrossRef]
- Da Silva, P.H.F.; Oliveira, V.C.D.; Perin, L.M. Chapter 14—Cow’s Milk Protein Allergy and Lactose Intolerance. In Raw Milk; Nero, L.A., De Carvalho, A.F., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 295–309. [Google Scholar]
- Mantzourani, I.; Nouska, C.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Panayiotidis, M.; Galanis, A.; Plessas, S. Production of a Novel Functional Fruit Beverage Consisting of Cornelian Cherry Juice and Probiotic Bacteria. Antioxidants 2018, 7, 163. [Google Scholar] [CrossRef]
- Fernandes Pereira, A.L.; Rodrigues, S. Chapter 15—Turning Fruit Juice into Probiotic Beverages. In Fruit Juices; Rajauria, G., Tiwari, B.K., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 279–287. [Google Scholar]
- Panghal, A.; Janghu, S.; Virkar, K.; Gat, Y.; Kumar, V.; Chhikara, N. Potential non-dairy probiotic products—A healthy approach. Food Biosci. 2018, 21, 80–89. [Google Scholar] [CrossRef]
- Dias, C.O.; dos Santos Opuski de Almeida, J.; Pinto, S.S.; de Oliveira Santana, F.C.; Verruck, S.; Müller, C.M.O.; Prudêncio, E.S.; de Mello Castanho Amboni, R.D. Development and physico-chemical characterization of microencapsulated bifidobacteria in passion fruit juice: A functional non-dairy product for probiotic delivery. Food Biosci. 2018, 24, 26–36. [Google Scholar] [CrossRef]
- Nakkarach, A.; Withayagiat, U. Comparison of synbiotic beverages produced from riceberry malt extract using selected free and encapsulated probiotic lactic acid bacteria. Agric. Nat. Resour. 2018. [Google Scholar] [CrossRef]
- Priyadarshini, A.; Priyadarshini, A. Chapter 2—Market Dimensions of the Fruit Juice Industry. In Fruit Juices; Rajauria, G., Tiwari, B.K., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 15–32. [Google Scholar]
- Shahbaz, H.M.; Kim, J.U.; Kim, S.-H.; Park, J. Chapter 7—Advances in Nonthermal Processing Technologies for Enhanced Microbiological Safety and Quality of Fresh Fruit and Juice Products. In Food Processing for Increased Quality and Consumption; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 179–217. [Google Scholar]
- Roberts, D.; Reyes, V.; Bonilla, F.; Dzandu, B.; Liu, C.; Chouljenko, A.; Sathivel, S. Viability of Lactobacillus plantarum NCIMB 8826 in fermented apple juice under simulated gastric and intestinal conditions. LWT 2018, 97, 144–150. [Google Scholar] [CrossRef]
- Calabuig-Jiménez, L.; Betoret, E.; Betoret, N.; Patrignani, F.; Barrera, C.; Seguí, L.; Lanciotti, R.; Dalla Rosa, M. High pressures homogenization (HPH) to microencapsulate L. salivarius spp. salivarius in mandarin juice. Probiotic survival and in vitro digestion. J. Food Eng. 2019, 240, 43–48. [Google Scholar] [CrossRef]
- De Godoy Alves Filho, E.; Rodrigues, T.H.S.; Fernandes, F.A.N.; Pereira, A.L.F.; Narain, N.; de Brito, E.S.; Rodrigues, S. Chemometric evaluation of the volatile profile of probiotic melon and probiotic cashew juice. Food Res. Int. 2017, 99, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan, Z.; Ferrante, M.; Tadi, M.; Ansari, F.; Heydari, A.; Hosseini, M.S.; Conti, G.O.; Sadrabad, E.K. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem. Toxicol. 2018, 114, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Plessas, S.; Nouska, C.; Karapetsas, A.; Kazakos, S.; Alexopoulos, A.; Mantzourani, I.; Chondrou, P.; Fournomiti, M.; Galanis, A.; Bezirtzoglou, E. Isolation, characterization and evaluation of the probiotic potential of a novel Lactobacillus strain isolated from Feta-type cheese. Food Chem. 2017, 226, 102–108. [Google Scholar] [CrossRef]
- Murthy, S.N.; Patnaik, A.; Srinivasan, N.; Selvarajan, E.; Nivetha, A.; Mohanasrinivasan, V. Fermentative preparation of functional drink from Punica granatum using lactic acid bacteria and exploring its anti-tumor potential. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017. [Google Scholar]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef]
- Wang, W.; He, J.; Pan, D.; Wu, Z.; Guo, Y.; Zeng, X.; Lian, L. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Plessas, S.; Alexopoulos, A.; Bekatorou, A.; Bezirtzoglou, E. Kefir Immobilized on Corn Grains as Biocatalyst for Lactic Acid Fermentation and Sourdough Bread Making. J. Food Sci. 2012, 77, C1256–C1262. [Google Scholar] [CrossRef] [PubMed]
- Terpou, A.; Nigam, P.S.; Bosnea, L.; Kanellaki, M. Evaluation of Chios mastic gum as antimicrobial agent and matrix forming material targeting probiotic cell encapsulation for functional fermented milk production. LWT 2018. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Miller, N.J.; Rice-Evans, C.A. Spectrophotometric determination of antioxidant activity. Redox Rep. Commun. Free. Radic. Res. 1996, 2, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Gentile, C.; Reig, C.; Corona, O.; Todaro, A.; Mazzaglia, A.; Perrone, A.; Gianguzzi, G.; Agusti, M.; Farina, V. Pomological Traits, Sensory Profile and Nutraceutical Properties of Nine Cultivars of Loquat (Eriobotrya japonica Lindl.) Fruits Grown in Mediterranean Area. Plant Foods Hum. Nutr. 2016, 71, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Araújo, L.; Chambers, E.; Adhikari, K.; Carbonell-Barrachina, A.A. Physico-chemical and sensory properties of pomegranate juices with pomegranate albedo and carpellar membranes homogenate. LWT Food Sci. Technol. 2011, 44, 2119–2125. [Google Scholar] [CrossRef]
- Plessas, S.; Bekatorou, A.; Gallanagh, J.; Nigam, P.; Koutinas, A.A.; Psarianos, C. Evolution of aroma volatiles during storage of sourdough breads made by mixed cultures of Kluyveromyces marxianus and Lactobacillus delbrueckii ssp. bulgaricus or Lactobacillus helveticus. Food Chem. 2008, 107, 883–889. [Google Scholar] [CrossRef]
- Valero-Cases, E.; Nuncio-Jáuregui, N.; Frutos, M.J. Influence of Fermentation with Different Lactic Acid Bacteria and in Vitro Digestion on the Biotransformation of Phenolic Compounds in Fermented Pomegranate Juices. J. Agric. Food Chem. 2017, 65, 6488–6496. [Google Scholar] [CrossRef]
- Peres, C.M.; Peres, C.; Hernández-Mendoza, A.; Malcata, F.X. Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria—With an emphasis on table olives. Trends Food Sci. Technol. 2012, 26, 31–42. [Google Scholar] [CrossRef]
- Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Madrona, G.S.; Prudencio, S.H. Probiotic clarified apple juice with oligofructose or sucralose as sugar substitutes: Sensory profile and acceptability. LWT Food Sci. Technol. 2015, 62, 838–846. [Google Scholar] [CrossRef]
- Sabokbar, N.; Khodaiyan, F. Total phenolic content and antioxidant activities of pomegranate juice and whey based novel beverage fermented by kefir grains. J. Food Sci. Technol. 2016, 53, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Curiel, J.A.; Pinto, D.; Marzani, B.; Filannino, P.; Farris, G.A.; Gobbetti, M.; Rizzello, C.G. Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries. Microb. Cell Factories 2015, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Coda, R.; Lanera, A.; Trani, A.; Gobbetti, M.; Di Cagno, R. Yogurt-like beverages made of a mixture of cereals, soy and grape must: Microbiology, texture, nutritional and sensory properties. Int. J. Food Microbiol. 2012, 155, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Emam-Djomeh, Z.; Kiani, H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. [Google Scholar] [CrossRef]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Hadinejad, M.; Emam-Djomeh, Z.; Mirzapour, M. Effect of Fermentation of Pomegranate Juice by Lactobacillus plantarum and Lactobacillus acidophilus on the Antioxidant Activity and Metabolism of Sugars, Organic Acids and Phenolic Compounds. Food Biotechnol. 2013, 27, 1–13. [Google Scholar] [CrossRef]
- Filannino, P.; Azzi, L.; Cavoski, I.; Vincentini, O.; Rizzello, C.G.; Gobbetti, M.; Di Cagno, R. Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. Int. J. Food Microbiol. 2013, 163, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.H.; Hung, Y.-H.; Chou, C.-C. Solid-state fermentation with fungi to enhance the antioxidative activity, total phenolic and anthocyanin contents of black bean. Int. J. Food Microbiol. 2008, 121, 150–156. [Google Scholar] [CrossRef]
- Sharma, S.; Kandasamy, S.; Kavitake, D.; Shetty, P.H. Probiotic characterization and antioxidant properties of Weissella confusa KR780676, isolated from an Indian fermented food. LWT 2018, 97, 53–60. [Google Scholar] [CrossRef]
- Erdogan, F.S.; Ozarslan, S.; Guzel-Seydim, Z.B.; Kök Taş, T. The effect of kefir produced from natural kefir grains on the intestinal microbial populations and antioxidant capacities of Balb/c mice. Food Res. Int. 2018. [Google Scholar] [CrossRef]
- Adewumi, G.A. Health-Promoting Fermented Foods. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Di Cagno, R.; Filannino, P.; Gobbetti, M. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice. Int. J. Food Microbiol. 2017, 248, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Allam, H. Impact of Processing on Flavor Volatiles and Physicochemical Properties of Pomegranate Juice. Suez Canal Univ. J. Food Sci. 2016, 3, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.C.; Obando-Ulloa, J.M. Not-from-concentrate pilot plant ‘Wonderful’ cultivar pomegranate juice changes: Volatiles. Food Chem. 2017, 229, 553–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.S. Analysis of volatile compounds in the root peel, stem peel, and fruit peel of pomegranate (Punica granatum) by TD GC/MS. Int. J. Bio-Sci. Bio-Technol. 2014, 6, 169–181. [Google Scholar] [CrossRef]
- Andreu-Sevilla, A.J.; Mena, P.; Martí, N.; García Viguera, C.; Carbonell-Barrachina, Á.A. Volatile composition and descriptive sensory analysis of pomegranate juice and wine. Food Res. Int. 2013, 54, 246–254. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Martínez, J.J.; Vázquez-Araújo, L.; Burló, F.; Melgarejo, P.; Carbonell-Barrachina, Á.A. Volatile composition and sensory quality of Spanish pomegranates (Punica granatum L.). J. Sci. Food Agric. 2011, 91, 586–592. [Google Scholar] [CrossRef] [PubMed]
- De Sousa Galvão, M.; Narain, N.; do Socorro Porto dos Santos, M.; Nunes, M.L. Volatile compounds and descriptive odor attributes in umbu (Spondias tuberosa) fruits during maturation. Food Res. Int. 2011, 44, 1919–1926. [Google Scholar] [CrossRef]
- Servili, M.; Selvaggini, R.; Taticchi, A.; Begliomini, A.L.; Montedoro, G. Relationships between the volatile compounds evaluated by solid phase microextraction and the thermal treatment of tomato juice: Optimization of the blanching parameters. Food Chem. 2000, 71, 407–415. [Google Scholar] [CrossRef]
- Luna, G.; Morales, M.T.; Aparicio, R. Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem. 2006, 98, 243–252. [Google Scholar] [CrossRef]
- Tripathi, J.; Chatterjee, S.; Gamre, S.; Chattopadhyay, S.; Variyar, P.S.; Sharma, A. Analysis of free and bound aroma compounds of pomegranate (Punica granatum L.). LWT Food Sci. Technol. 2014, 59, 461–466. [Google Scholar] [CrossRef]
Temperature (°C) | Time | Viability (log cfu/mL) | ||
---|---|---|---|---|
Lactobacillus Plantarum ATCC 14917 | Yeasts & Fungi | Coliforms | ||
30 | 0 | 11.42 ± 0.16 a | 0 | 0 |
30 | 24 h | 10.51 ± 0.15 a | 0 | 0 |
4 | Week 1 | 10.23 ± 0.94 a | 0 | 0 |
4 | Week 2 | 10.54 ± 0.26 a | 0 | 0 |
4 | Week 3 | 10.28 ± 0.27 a | 0 | 0 |
4 | Week 4 | 8.83 ± 0.58 b | 0 | 0 |
Time | Sugars (g/L) | Lactic Acid (g/L) | Acetic Acid (g/L) | Ethanol (% v/v) |
---|---|---|---|---|
24 h | 82.6 ± 0.5 a | 1.26 ± 0.07 a | <0.1 | 0.3 ± 0.1 a |
Week 1 | 75.3 ± 0.9 b | 2.86 ± 0.08 b | <0.1 | 0.43 ± 0.06 a |
Week 2 | 75.2 ± 2.1 b | 2.87 ± 0.06 b | 0.30 ± 0.10 a | 0.73 ± 0.06 b |
Week 3 | 65.0 ± 0.8 c | 3.12 ± 0.07 c | 0.43 ± 0.05 b | 1.0 ± 0.1 c |
Week 4 | 62.9 ± 0.8 c | 3.75 ± 0.09 d | 0.86 ± 0.05 c | 1.0 ± 0.1 c |
Compound | RI 1 | Normalized Peak Area % | Identification 2 | ||||
---|---|---|---|---|---|---|---|
0 h | 24 h | 4th week | |||||
F | NF | F | NF | ||||
Alcohols | |||||||
Ethyl alcohol | 467 | 0.4 ± 0.1 | 10.0 ± 0.8 a | 6.0 ± 0.1 b | 44.6 ± 1.2 a | 19.8 ± 0.8 b | MS, RI, ref |
1-Butanol | 633 | 3.4 ± 0.1 | 6.1 ± 0.2 a | 2.0 ± 0.3 b | 2.5 ± 0.7 b | 10.8 ± 0.1 a | MS, RI, ref |
3-Methyl-1-butanol | 726 | 2.2 ± 0.4 | 3.0 ± 0.3 a | 1.0 ± 0.3 b | 3.8 ± 0.6 | nd | MS, RI, ref |
2-Methyl-1-butanol | 728 | 0.9 ± 0.1 | <0.1 | 0.6 ± 0.1 a | 1.0 ± 0.1 b | 1.7 ± 0.1 a | MS, RI, ref |
3-Methyl-3-buten-1-ol | 724 | 1.2 ± 0.1 | 7.0 ± 0.5 a | 2.0 ± 0.3 b | 0.7 ± 0.1 | nd | MS, RI, ref |
(E)-3-Hexen-1-ol | 854 | 3.9 ± 0.1 | 3.4 ± 0.3 | nd | 5.4 ± 0.2 | nd | MS, RI, ref |
(Z)-3-Hexen-1-ol | 864 | <0.1 | 0.8 ± 0.2 b | 6.5 ± 0.3 a | 1.6 ± 0.2 | nd | MS, RI, ref |
1-Hexanol | 869 | 15 ± 1.2 | 4.8 ± 0.2 a | 1.5 ± 0.2 b | 6.1 ± 0.3 | nd | MS, RI, ref |
2-Heptanol | 903 | 0.4 ± 0.1 | <0.1 | 1.8 ± 0.1 a | nd | nd | MS, RI, ref |
2-Ethyl-1-hexanol | 1032 | 0.9 ± 0.2 | 1.3 ± 0.1 | nd | 2.4 ± 0.2 | nd | MS, RI, ref |
1-Nonanol | 1177 | 1.5 ± 0.2 | 1.0 ± 0.1 | nd | nd | nd | MS, RI, ref |
1-Decanol | 1413 | 0.3 ± 0.1 | 0.5 ± 0.1 ab | 0.5 ± 0.1 ab | nd | nd | MS, RI, ref |
1-Dodecanol | 1480 | 0.3 ± 0.1 | 0.5 ± 0.1 ab | 0.5 ± 0.1 ab | nd | nd | MS, RI, ref |
Aldehydes | |||||||
Acetaldehyde | 459 | 0.4 ± 0.1 | 0.8 ± 0.1 | <0.1 | <0.1 | nd | MS, RI |
3-Methyl-butanal | 615 | 1.0 ± 0.1 | 0.6 ± 0.2 b | 2.8 ± 0.2 a | <0.1 | 6.1 ± 0.3 | MS, RI |
2-Methyl-butanal | 630 | 0.7 ± 0.1 | 0.5 ± 0.1 b | 3.9 ± 0.1 a | <0.1 | 5.1 ± 0.2 | MS, RI |
Hexanal | 795 | 1.1 ± 0.3 | 0.6 ± 0.1 a | 0.3 ± 0.1 b | <0.1 | 2.9 ± 0.1 | MS, RI, ref |
Heptanal | 903 | 0.4 ± 0.1 | <0.1 | 6.5 ± 0.8 | <0.1 | 11.2 ± 0.1 | MS, RI |
Benzaldehyde | 957 | <0.1 | <0.1 | 13.2 ± 1.1 | <0.1 | 1.2 ± 0.1 | MS, RI, ref |
Octanal | 1004 | <0.1 | <0.1 | 2.7 ± 0.4 | <0.1 | 7.5 ± 0.8 | MS, RI, ref |
Benzeneacetaldehyde | 1042 | <0.1 | 1.3 ± 0.1 b | 12.4 ± 0.8 a | 0.9 ± 0.1 b | 11.5 ± 0.9 a | MS, RI |
Nonanal | 1105 | 0.5 ± 0.2 | 11.7 ± 0.9 a | 9.0 ± 0.4 b | 2.0 ± 0.1 b | 8.0 ± 0.4 a | MS, RI |
Undecanal | 1310 | <0.1 | <0.1 | 2.4 ± 0.4 a | nd | 4.5 ± 0.5 | MS, RI |
Dodecanal | 1412 | <0.1 | <0.1 | 5.0 ± 0.3 a | nd | 2.1 ± 0.2 | MS, RI |
Ketones | |||||||
2,3-Butanedione | 533 | 0.7 ± 0.1 | <0.1 | <0.1 | <0.1 | nd | MS, RI, ref |
2-Butanone | 542 | 1.9 ± 0.3 | 0.7 ± 0.1 b | 1.5 ± 0.2 a | 1.1 ± 0.1 | nd | MS, RI |
2-Pentanone | 678 | 2.9 ± 0.3 | 0.9 ± 0.1 a | 0.5 ± 0.1 b | 0.9 ± 0.1 | nd | MS, RI |
3-Pentanone | 700 | 2.5 ± 0.1 | 1.9 ± 0.1 a | <0.1 | 8.1 ± 0.1 | nd | MS, RI |
3-Hexanone | 777 | 1.1 ± 0.2 | 1.6 ± 0.1 a | 0.8 ± 0.1 b | 0.8 ± 0.1 | nd | MS, RI |
2-Hexanone | 784 | 1.1 ± 0.1 | 2.8 ± 0.3 a | 1.6 ± 0.1 b | 1.1 ± 0.1 | nd | MS, RI |
2-Heptanone | 893 | 0.4 ± 0.1 | 1.6 ± 0.1 ab | 0.6 ± 0.1 ab | 2.5 ± 0.1 | <0.1 | MS, RI |
3-Heptanone | 887 | 0.3 ± 0.1 | 2.3 ± 0.1 ab | 0.6 ± 0.1 a | 2.5 ± 0.1 | <0.1 | MS, RI |
4-Methyl-2-heptanone | 939 | 14.5 ± 1.4 | 9.1 ± 0.3 a | 1.2 ± 0.1 a | 8.4 ± 0.4 | nd | MS, RI |
6-Methyl-5-hepten-2-one | 990 | 0.4 ± 0.1 | <0.1 | 0.8 ± 0.1 a | nd | 0.6 ± 0.1 | MS, RI |
2-Nonanone | 1094 | <0.1 | 1.1 ± 0.1 b | 0.5 ± 0.1 a | nd | 0.8 ± 0.1 | MS, RI |
Esters | |||||||
Methyl acetate | 494 | 1.9 ± 0.2 | 1.5 ± 0.1 ab | 1.3 ± 0.1 ab | 0.8 ± 0.1 ab | 0.4 ± 0.1 ab | MS, RI, ref |
Ethyl acetate | 560 | 1.9 ± 0.1 | 1.4 ± 0.2 a | 1.8 ± 0.1 b | 1.0 ± 0.2 a | 1.5 ± 0.1 b | MS, RI, ref |
n-Propyl acetate | 711 | 0.6 ± 0.1 | 0.9 ± 0.1 | nd | 0.9 ± 0.1 | nd | MS, RI, ref |
Ethyl propanoate | 709 | 0.4 ± 0.1 | 1.0 ± 0.1 | <0.1 | 0.9 ± 0.1 | nd | MS, RI, ref |
Isobutyl acetate | 765 | 1..0 ± 0.3 | 1.3 ± 0.1 a | 0.6 ± 0.1 b | 1.2 ± 0.1 | nd | MS, RI, ref |
2-Methyl-2-butyl acetate | 805 | 2.0 ± 0.3 | 1.4 ± 0.8 a | 0.5 ± 0.1 b | 1.3 ± 0.1 | nd | MS, RI, ref |
3-Methyl-1-butyl acetate | 877 | 0.8 ± 0.2 | 1.3 ± 0.1 b | 0.9 ± 0.1 a | nd | nd | MS, RI, ref |
Methyl benzoate | 1093 | 0.8 ± 0.2 | 1.2 ± 0.3 | nd | 1.4 ± 0.7 | nd | MS, RI |
Ethyl octanoate | 1201 | <0.1 | 1.2 ± 0.1 | nd | nd | nd | MS, RI |
Ethyl decanoate | 1400 | 0.6 ± 0.1 | 0.9 ± 0.1a | nd | <0.1 | nd | MS, RI |
Terpenoids | |||||||
p-Cymene | 1021 | 1.4 ± 0.1 | 2.2 ± 0.3 | <0.1 | 1.0 ± 0.1 a | 0.7 ± 0.1 b | MS, RI, ref |
d-Limonene | 1025 | 0.6 ± 0.1 | 2.4 ± 0.7 a | 0.3 ± 0.1 b | 1.8 ± 0.1 a | 0.9 ± 0.1 b | MS, RI, ref |
Eucalyptol | 1027 | 0.6 ± 0.1 | 1.1 ± 0.1 | <0.1 | 1.4 ± 0.3 a | 0.9 ± 0.1 b | MS, RI, ref |
Linalool | 1100 | 0.4 ± 0.1 | 1.6 ± 0.2 a | 0.4 ± 0.1 b | <0.1 | <0.1 | MS, RI, ref |
Camphor | 1139 | 0.5 ± 0.1 | 1.5 ± 0.1 ab | 0.8 ± 0.1 ab | 0.8 ± 0.1 a | 0.3 ± 0.1 b | MS, RI, ref |
Terpinen-4-ol | 1174 | 0.4 ± 0.1 | 1.0 ± 0.1 a | 0.7 ± 0.1 b | <0.1 | 0.6 ± 0.1 | MS, RI, ref |
a-Terpineol | 1189 | 2.3 ± 0.1 | 2.0 ± 0.1 a | 1.5 ± 0.1 b | 1.1 ± 0.1 | <0.1 | MS, RI |
Others | |||||||
Furfural | 705 | 12.6 ± 0.1 | 0.2 ± 0.1 b | 2.0 ± 0.1 a | <0.1 | 0.9 ± 0.1 | MS, RI, ref |
Storage Time | Substrate | Aroma | Taste | Overall Quality |
---|---|---|---|---|
24 h | Non-fermented | 8.6 ± 0.1 a | 8.5 ± 0.1 a | 8.1 ± 0.1 a |
Fermented | 8.6 ± 0.1 a | 8.5 ± 0.1 a | 8.2 ± 0.1 a | |
Week 1 | Non-fermented | 7.7 ± 0.1 b | 7.6 ± 0.1 b | 7.8 ± 0.1 b |
Fermented | 7.6 ± 0.1 b | 7.7 ± 0.06 b | 7.8 ± 0.1 b | |
Week 2 | Non-fermented | 7.2 ± 0.1 c | 7.1 ± 0.06 c | 7.2 ± 0.1 c |
Fermented | 7.3 ± 0.1 b | 7.2 ± 0.1 c | 7.2 ± 0.1 c | |
Week 3 | Non-fermented | 6.7 ± 0.1 c | 6.4 ± 0.1 d | 6.4 ± 0.1 d |
Fermented | 6.9 ± 0.1 c | 6.5 ± 0.1 d | 6.4 ± 0.1 d | |
Week 4 | Non-fermented | 5.6 ± 0.1 f | 5.3 ± 0.15 f | 5.2 ± 0.1 f |
Fermented | 6.2 ± 0.1 d | 6.2 ± 0.1 d | 6.2 ± 0.1 d |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantzourani, I.; Kazakos, S.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods 2019, 8, 4. https://doi.org/10.3390/foods8010004
Mantzourani I, Kazakos S, Terpou A, Alexopoulos A, Bezirtzoglou E, Bekatorou A, Plessas S. Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods. 2019; 8(1):4. https://doi.org/10.3390/foods8010004
Chicago/Turabian StyleMantzourani, Ioanna, Stavros Kazakos, Antonia Terpou, Athanasios Alexopoulos, Eugenia Bezirtzoglou, Argyro Bekatorou, and Stavros Plessas. 2019. "Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice" Foods 8, no. 1: 4. https://doi.org/10.3390/foods8010004
APA StyleMantzourani, I., Kazakos, S., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. (2019). Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods, 8(1), 4. https://doi.org/10.3390/foods8010004