Artificial Intelligence Applied to Flavonoid Data in Food Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conformation of the Data Related to the Food Composition
2.2. Prediction Using ML Algorithms
2.2.1. Selection of Attributes
- Flavonoid value equivalent to the antioxidant capacity of Trolox (TEACexp),
- Flavonoid class (Class_flav),
- Flavonoids (id_flav),
- Amount of flavonoids (mean_flav),
- Total value of polyphenols (TPexp),
- Structural-topological characteristics (spectral moments, μkw, where w is bonding weights)
2.2.2. Obtaining and Validating the Optimal ML Models
- (a)
- (b)
- The Support Vector Machine (SVM) algorithm required the use of the kernlab package and the radial base function of the kernel function, which allows the optimization of sigma parameters according to C (evaluated in an incremental range from smallest to highest).
- (c)
- The MLP algorithm was used optimizing the size parameter, which represents the network size given by the number of internal layers it has. The values were assigned over a wide range to evaluate the trend following the best predictions and, thus, select the appropriate number for the parameter. The defined vector (c (1,4,3,5,7,9,10,11,12,15,20,25,50)) was performed using TuneGrid function.
- (d)
- In the Random Forest (RF) algorithm, mtry and ntree parameters were defined. The optimal value in this case was 3. For a more comprehensive experiment, it was considered that the use of ntree is generally treated with values of 500 or more, depending on the data and vectors seq (3,4,5,6) and seq (500,600,700) for mtry and ntree, respectively.
3. Results and Discussion
3.1. Database Description
3.2. Hierarchy Analysis of Attributes
3.3. Models Obtainment and Validation
3.3.1. Training Model
3.3.2. External Validation
3.3.3. Effectiveness Performance Comparison
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prior, R.L. Oxygen radical absorbance capacity (orac): New horizons in relating dietary antioxidants/bioactives and health benefits. J. Func. Foods 2015, 18, 797–810. [Google Scholar] [CrossRef]
- Scalbert, A.; Andres-Lacueva, C.; Arita, M.; Kroon, P.; Manach, C.; Urpi-Sarda, M.; Wishart, D. Databases on food phytochemicals and their health-promoting effects. J. Agric. Food Chem. 2011, 59, 4331–4348. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. USDA Database for the Flavonoid Content of Selected Foods, Release 3.1.; Beltsville Human Nutrition Research Center: Beltsville, MD, USA, 2013.
- Holden, J.M.; Bhagwat, S.; Haytowitz, D.B.; Gebhardt, S.E.; Dwyerb, J.T.; Peterson, J.; Beecher, G.R.; Eldridge, A.L.; Balentine, D. Development of a database of critically evaluated flavonoids data: Application of usda’s data quality evaluation system. J. Food Compos. Anal. 2005, 18, 829–844. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, A.R.S. USDA Database for the Isoflavone Content of Selected Foods. Release 2.0; 2008. Available online: http://www.ars.usda.gov/Services/docs.htm?docid=6382 (accessed on 24 April 2018).
- Schroeter, H.; Heiss, C.; Spencer, J.P.; Keen, C.L.; Lupton, J.R.; Schmitz, H.H. Recommending flavanols and procyanidins for cardiovascular health: Current knowledge and future needs. Mol. Asp. Med. 2010, 31, 546–557. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture A.R.S. USDA National Nutrient Database for Standard Reference. Available online: http://www.ars.usda.gov/nutrientdata (accessed on 22 April 2018).
- Halliwell, B. Commentary oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic. Res. 1996, 25, 57–74. [Google Scholar] [CrossRef]
- Greenfield, H.; Southgate, D.A.T. Food Composition Data Production, Management and Use, 2nd ed.; FAO: Rome, Italy, 2003. [Google Scholar]
- Bhagwat, S.; Haytowitz, D.B.; Wasswa-Kintu, S.I.; Holden, J.M. Usda develops a database for flavonoids to assess dietary intakes. Procedia Food Sci. 2013, 2, 81–86. [Google Scholar] [CrossRef]
- Bell, S.; Colombani, P.C.; Pakkala, H.; Christensen, T.; Møller, A.; Finglas, P.M. Food composition data: Identifying new uses, approaching new users. J. Food Compos. Anal. 2011, 24, 727–731. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin c contents of nectarine, peach, and plum cultivars mariäa i. Gil, from california. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (orac) and ferric reducing antioxidant power (frap) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the united states. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef]
- Ou, B.; Chang, T.; Huang, D.; Prior, R.L. Determination of total antioxidant capacity by oxygen radical absorbance capacity (orac) using fluorescein as the fluorescence probe: First action 2012.23. J. AOAC Int. 2013, 96, 1372–1376. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Homayouni, F.; Kashkalani, F.; Shirzadeh, L.; Valipour, G.; Farahnak, Z. The associations between oxygen radical absorbance capacity of dietary intake and hypertension in type 2 diabetic patients. J. Human Hypertens. 2013, 27, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Gifkins, D.; Olson, S.H.; Demissie, K.; Lu, S.E.; Kong, A.N.; Bandera, E.V. Total and individual antioxidant intake and endometrial cancer risk: Results from a population-based case–control study in new jersey. Cancer Causes Control 2012, 23, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Holtan, S.G.; O’Connor, H.M.; Fredericksen, Z.S.; Liebow, M.; Thompson, C.A.; Macon, W.R.; Micallef, I.N.; Wang, A.H.; Slager, S.L.; Habermann, T.M. Food-frequency questionnaire-based estimates of total antioxidant capacity and risk of non-hodgkin lymphoma. Int. J. Cancer 2012, 131, 1158–1168. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Uenishi, K.; Yamasaki, M.; Hayabuchi, H.; Goda, T.; Oka, J.; Baba, K.; Ohki, K.; et al. Dietary total antioxidant capacity from different assays in relation to serum c-reactive protein among young japanese women. Nutr. J. 2012, 11, 1–13. [Google Scholar] [CrossRef]
- Rautiainen, S.; Larsson, S.; Virtamo, J.; Wolk, A. Total antioxidant capacity of diet and risk of stroke a population-based prospective cohort of women. Stroke 2012, 43, 335–340. [Google Scholar] [CrossRef]
- Rautiainen, S.; Levitan, E.B.; Orsini, N.; Åkesson, A.; Morgenstern, R.; Mittleman, M.A.; Wolk, A. Total antioxidant capacity from diet and risk of myocardial infarction: A prospective cohort of women. Am. J. Med. 2012, 125, 974–980. [Google Scholar] [CrossRef]
- Rautiainen, S.; Lindblad, B.; Morgenstern, R.; Wolk, A. Total antioxidant capacity of the diet and risk of age-related cataract: A population-based prospective cohort of women. JAMA Ophthalmol. 2014, 132, 247–252. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Rabassa, M.; Cherubini, A.; Urpí-Sardà, M.; Bandinelli, S.; Ferrucci, L.; Andres-Lacueva, C. High concentrations of a urinary biomarker of polyphenol intake are associated with decreased mortality in older adults. J. Nutr. 2013, 143, 1445–1450. [Google Scholar] [CrossRef]
- Fardet, A. Complex foods versus functional foods, nutraceuticals and dietary supplements: Differential health impact (part 1). Agro Food Ind. Hi Tech 2015, 26, 20–24. [Google Scholar]
- Mitchell, J.B.O. Machine learning methods in chemoinformatics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med. 1997, 22, 749–760. [Google Scholar] [CrossRef]
- Wang, L.; Tu, Y.C.; Lian, T.W.; Hung, J.T.; Yen, J.H.; Wu, M.J. Distinctive antioxidant and antiinflammatory effects of flavonols. J. Agric. Food Chem. 2006, 54, 9798–9804. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G. Flavonoid intake and risk of cvd: A systematic review and meta-analysis of prospective cohort studies. Br. J. Nutr. 2014, 111, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Lugo, A.; Lagiou, P.; Zucchetto, A.; Polesel, J.; Serraino, D.; Negri, E.; Trichopoulos, D.; La Vecchia, C. Proanthocyanidins and other flavonoids in relation to pancreatic cancer: A case–control study in italy. Ann. Oncol. 2011, 23, 1488–1493. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Negri, E.; Parpinel, M.; Lagiou, P.; Bosetti, C.; Talamini, R.; Montella, M.; Giacosa, A.; Franceschi, S.; La Vecchia, C.; et al. Proanthocyanidins and the risk of colorectal cancer in italy. Cancer Causes Control 2010, 21, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Keen, C.L.; Holt, R.R.; Oteiza, P.I.; Fraga, C.G.; Schmitz, H.H. Cocoa antioxidants and cardiovascular health. Am. J. Clin. Nutr. 2005, 81, 298S–303S. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham Ul, H.; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Zhang, Y.; Shen, X.; Cao, Y.; Shi, J.; Ye, X.; Chen, S. Rethinking the mechanism of the health benefits of proanthocyanidins: Absorption, metabolism, and interaction with gut microbiota. Compr. Rev. Food Sci. Food Saf. 2019, 18, 971–985. [Google Scholar] [CrossRef]
- Food Agriculture Organization (FAO). Retos Sobre la Composicion de Alimento. Available online: http//www.fao.org/infoods/infoods/retos (accessed on 13 May 2018).
- Bhagwat, S.; Haytowitz, D.B.; Wasswa-Kintu, S.I.; Pehrsson, P.R. Process of formulating usda’s expanded flavonoid database for the assessment of dietary intakes: A new tool for epidemiological research. Br. J. Nutr. 2015, 114, 472–480. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Bhagwat, S.; Holden, J.M. Sources of variability in the flavonoid content of foods. Procedia Food Sci. 2013, 2, 46–51. [Google Scholar] [CrossRef]
- Trujillano, J.; March, J.; Sorribas, A. Aproximación metodológica al uso de redes neuronales artificiales para la predicción de resultados en medicina. Med. Clín. 2004, 122, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Bini, S.A. Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? J. Arthroplast. 2018, 33, 2358–2361. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.W.; Li, H.; Ji, Z.L.; Chen, Y.Z. Regression methods for developing qsar and qspr models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties. Mini Rev. Med. Chem. 2007, 7, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Hontecillas, R.; Tubau-Juni, N.; Abedi, V.; Bassaganya-Riera, J. Challenges in personalized nutrition and health. Front. Nutr. 2018, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filiberto, Y.; Bello, R.; Caballero, Y.; Larrua, R. Una medida de la teoría de los conjuntos aproximados para sistemas de decisión con rasgos de dominio continuo a measure in the rough set theory to decision systems with continuo features. Rev. Fac. Ing. Univ. Antioq. 2011, 60, 141–152. [Google Scholar]
- Filiberto, Y.; Caballero, Y.; Larrua, R.; Bello, R. A method to build similarity relations into extended rough set theory. In Proceedings of the 10th International Conference on Intelligent Systems Design and Applications IEEE, Cairo, Egypt, 29 November–1 December 2010; pp. 1314–1319. [Google Scholar]
- Awika, J.M.; Rooney, L.W.; Wu, X.; Prior, R.L.; Cisneros-Zevallos, L. Screening methods to measure antioxidant activity of sorghum (sorghum bicolor) and sorghum products. J. Agric. Food Chem. 2003, 51, 6657–6662. [Google Scholar] [CrossRef]
- Prior, R.L.; Hoang, H.A.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (oracfl)) of plasma and other biological and food samples. J. Agric. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef]
- Estrada, E.; Molina, E. Novel local (fragment-based) topological molecular descriptors for qspr/qsar and molecular design. J. Mol. Graph. Model. 2001, 20, 54–64. [Google Scholar] [CrossRef]
- Institute of Medicine of the Nation al Academies. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Huang, D.; Tocmo, R. Assays based on competitive measurement of the scavenging ability of reactive oxygen/nitrogen species. In Functional Food Science and Technology; Shahidi, F., Ed.; John Wiley and Sons Ltd.: Oxford, UK, 2018; pp. 21–36. [Google Scholar]
- Dragović-Uzelac, V.; Levaj, B.; Bursać, D.; Pedisić, S.; Radojčić, I.; Biško, A. Total phenolics and antioxidant capacity assays of selected fruits. Agric. Conspec. Sci. 2007, 72, 279–284. [Google Scholar]
- Wilson, D.W.; Nash, P.; Buttar, H.S.; Griffiths, K.; Singh, R.; De Meester, F.; Horiuchi, R.; Takahashi, T. The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: An overview. Antioxidants 2017, 6, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; Du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-explorer: An online comprehensive database on polyphenol contents in foods. Databases 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Carle, R.; Dongowski, G.; Durazzo, A.; Galensa, R.; Kammerer, D.; Maiani, G.; Piskula, M.K. Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Mol. Nutr. Food Res. 2009, 53, S151–S183. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutrition 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.Y.; Chen, C.T.; Sciarappa, W.; Wang, C.Y.; Camp, M.J. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J. Agric. Food Chem. 2008, 56, 5788–5794. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Kevers, C.; Falkowski, M.; Tabart, J.; Defraigne, J.O.; Dommes, J.; Pincemail, J. Evolution of antioxidant capacity during storage of selected fruits and vegetables. J. Agric. Food Chem. 2007, 55, 8596–8603. [Google Scholar] [CrossRef]
- Roy, M.K.; Juneja, L.R.; Isobe, S.; Tsushida, T. Steam processed broccoli (brassica oleracea) has higher antioxidant activity in chemical and cellular assay systems. Food Chem. 2009, 114, 263–269. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of abts, dpph, frap, and orac assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Miller, N.J. The relative antioxidant activities of plant-derived polyphenolic flavonoids. In Natural Antioxidants and Food Quality in Atherosclerosis and Cancer Prevention; Kumpulainen, J.T., Salonen, J.T., Eds.; The Royal Society of Chemistry: Cambridge, UK, 1996; pp. 256–259. [Google Scholar]
- Prior, R.L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G.; et al. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of vaccinium species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (orac) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Kevers, C.; Sipel, A.; Pincemail, J.; Dommes, J. Antioxidant capacity of hydrophilic food matrices: Optimization and validation of orac assay. Food Anal. Methods 2014, 7, 409–416. [Google Scholar] [CrossRef]
- Yordi, E.G.; Koeling, R.; Mota, Y.; Matos, M.J.; Santana, L.; Uriarte, E.; Molina, E. Prediction of the Total Antioxidant Capacity of Food Based on Artificial Intelligence Algorithms. Mol2Net 2015, 1, 1–11. [Google Scholar]
- Hu, Y.; Pan, Z.J.; Liao, W.; Li, J.; Gruget, P.; Kitts, D.D.; Lu, X. Determination of antioxidant capacity and phenolic content of chocolate by attenuated total reflectance-fourier transformed-infrared spectroscopy. Food Chem. 2016, 202, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Leopold, L.F.; Leopold, N.; Diehl, H.A.; Socaciu, C. Prediction of total antioxidant capacity of fruit juices using ftir spectroscopy and pls regression. Food Anal. Methods 2012, 5, 405–407. [Google Scholar] [CrossRef]
- Silva, S.D.; Feliciano, R.P.; Boas, L.V.; Bronze, M.R. Application of ftir-atr to moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem. 2014, 150, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Trakul, P.; Sang Moo, K.; Cheol-Ho, P.; Sang Min, K.; Suthat, S.; Nithiya, R. Prediction of antioxidant capacity of thai indigenous plant extracts by proton nuclear magnetic resonance spectroscopy. CMU J. Nat. Sci. 2015, 14. [Google Scholar] [CrossRef] [Green Version]
- Versari, A.; Parpinello, G.P.; Scazzina, F.; Rio, D.D. Prediction of total antioxidant capacity of red wine by fourier transform infrared spectroscopy. Food Control 2010, 21, 786–789. [Google Scholar] [CrossRef]
- Zhang, M.H.; Luypaert, J.; Fernández Pierna, J.A.; Xu, Q.S.; Massart, D.L. Determination of total antioxidant capacity in green tea by near-infrared spectroscopy and multivariate calibration. Talanta 2004, 62, 25–35. [Google Scholar] [CrossRef]
(NDB No)-ALIMENTARY GROUP a | FOOD a/NDB No. | ATTRIBUTES | CLASS (ORAC EXP) Mean | ||||
---|---|---|---|---|---|---|---|
Flavonoid a | Class of Flavonoid a | Amount of Flavonoid (Mean) a | TEACexp b | TPexp Mean | |||
(11)—Vegetables and Vegetable Products | Broccoli, raw (Brassica oleracea var. italica)/11090 | (+)-Catechin | Flavan-3-ols | 0 | 2.4 | 316 c | 1510 [13,14,55,56] |
(-)-Epigallocatechin 3-gallate | Flavan-3-ols | 0 | 4.93 | ||||
Hesperetin | Flavanones | 0 | 1.37 | ||||
Naringenin | Flavanones | 0 | 1.53 | ||||
Apigenin | Flavones | 0 | 1.45 | ||||
Luteolin | Flavones | 0.8 | 2.09 | ||||
Kaempferol | Flavonols | 7.84 | 1.34 | ||||
Myricetin | Flavonols | 0.06 | 3.1 | ||||
Quercetin | Flavonols | 3.26 | 4.7 | ||||
(02)—Spices and Herbs | Guava, red-fleshed/99428 | Apigenin | Flavones | 0 | 1.45 | 247 d | 1990 [57] |
Luteolin | Flavones | 0.8 | 2.09 | ||||
Kaempferol | Flavonols | 0 | 1.34 | ||||
Myricetin | Flavonols | 0 | 3.1 | ||||
Quercetin | Flavonols | 1 | 4.7 |
FLAVONOIDS | STRUCTURE | SMILE | NAME FOOD | NDB No. a |
---|---|---|---|---|
(-)-Epicatechin 3-gallate | C1C(C(OC2=CC(=CC(=C21)O)O)C3=CC(=C(C=C3)O)O)OC(=O)C4=CC(=C(C(=C4)O)O)O | Apples, Fuji, raw, with skin | 09504 | |
(+)-Catechin | OC1CC2=C(O)C=C(O)C=C2OC1C3=CC=C(O)C(=C3)O | Bananas, raw (Musa acuminata Colla) | 09040 | |
Hesperetin | O=C(CC(C3=CC(O)=C(OC)C=C3)O2)C1=C2C=C(O)C=C1O | Juice, orange, raw | 09206 | |
Naringenin | OC1=CC=C(C=C1)C2CC(=O)C3=C(O2)C=C(O)C=C3O | Melons, honeydew, raw (Cucumis melo) | 09184 | |
Apigenin | O=C(C=C(C3=CC=C(O)C=C3)O2)C1=C2C=C(O)C=C1O | Pineapple, raw, all varieties (Ananas comosus) | 09266 | |
Luteolin | O=C(C=C(C3=CC(O)=C(O)C=C3)O2)C1=C2C=C(O)C=C1O | Pomegranates, raw (Punica granatum) | 09286 | |
Kaempferol | O=C(C(O)=C(C3=CC=C(O)C=C3)O2)C1=C2C=C(O)C=C1O | Broccoli, cooked, boiled, drained, without salt | 11091 | |
Quercetin | O=C(C(O)=C(C3=CC(O)=C(O)C=C3)O2)C1=C2C=C(O)C=C1O | Mushrooms, white, raw (Agaricus bisporus) | 11260 | |
Myricetin | O=C(C(O)=C(C3=CC(O)=C(O)C(O)=C3)O2)C1=C2C=C(O)C=C1O | Potatoes, red, flesh and skin, raw (Solanum tuberosum) | 11355 |
Order | Attributes | Correlation Value f | Set of Attributes for the Model |
---|---|---|---|
1 | TPexp a | 0.1551576 | A2 |
2 | µ8 H | 0.1483031 | A2 |
3 | µ12 H | 0.1349679 | A2 |
4 | µ11 H | 0.1213032 | A2 |
5 | µ10 H | 0.1206462 | A2 |
6 | µ13 H | 0.1096691 | A2 |
7 | id_flav b | 0.1018874 | (-) |
8 | mean_flav c | 0.0341301 | (-) |
9 | TEACexp d | 0.0108586 | (-) |
10 | Class_flav e | 0.0094634 | (-) |
Algorithm | RMSE | Rsquared |
---|---|---|
KNN | 1851.174 | 0.905 |
RF | 1271.060 | 0.957 |
MLP | 6582.955 | 0.284 |
SVM | 1790.536 | 0.901 |
Algorithm | RMSE | Rsquared |
---|---|---|
KNN | 1956.810 | 0.880 |
SVM | 1622.627 | 0.917 |
RF | 1557.108 | 0.925 |
MLP | 6429.185 | 0.007 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guardado Yordi, E.; Koelig, R.; Matos, M.J.; Pérez Martínez, A.; Caballero, Y.; Santana, L.; Pérez Quintana, M.; Molina, E.; Uriarte, E. Artificial Intelligence Applied to Flavonoid Data in Food Matrices. Foods 2019, 8, 573. https://doi.org/10.3390/foods8110573
Guardado Yordi E, Koelig R, Matos MJ, Pérez Martínez A, Caballero Y, Santana L, Pérez Quintana M, Molina E, Uriarte E. Artificial Intelligence Applied to Flavonoid Data in Food Matrices. Foods. 2019; 8(11):573. https://doi.org/10.3390/foods8110573
Chicago/Turabian StyleGuardado Yordi, Estela, Raúl Koelig, Maria J. Matos, Amaury Pérez Martínez, Yailé Caballero, Lourdes Santana, Manuel Pérez Quintana, Enrique Molina, and Eugenio Uriarte. 2019. "Artificial Intelligence Applied to Flavonoid Data in Food Matrices" Foods 8, no. 11: 573. https://doi.org/10.3390/foods8110573