Characterization of Nutritional, Physicochemical, and Phytochemical Composition and Antioxidant Capacity of Three Strawberry “Fragaria × ananassa Duch.” Cultivars (“Primoris”, “Endurance”, and “Portola”) from Western Region of Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Analysis of Nutritional Composition
2.2.2. Analysis of Physicochemical Properties
2.2.3. Analysis of Phytochemical Quality
2.2.4. Analysis of Antioxidant Capacity
2.3. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of Nutritional Composition
3.2. Evaluation of Physicochemical Properties
3.2.1. Titratable Acidity
3.2.2. Soluble Solid Content
3.2.3. Colour
3.2.4. Texture
3.3. Evaluation of Phytochemical Quality
3.3.1. Phenolic Content
3.3.2. Anthocyanin Content
3.4. Evaluation of Antioxidant Capacity
3.4.1. DPPH Radical Scavenging Activity
3.4.2. FRAP
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations (FAOSTAT). 2017. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 November 2019).
- Crop Production Yearbook. 2006. Available online: http://www.gpp.pt/images/GPP/O_que_disponibilizamos/Publicacoes/Periodicos/Anuario_Veg_2006.pdf (accessed on 1 June 2019).
- Lan, W.; Zhang, R.; Ahmed, S.; Qin, W.; Liu, Y. Effects of various antimicrobial polyvinyl alcohol/tea polyphenol composite films on the shelf life of packaged strawberries. LWT Food Sci. Technol. 2019, 113, 108297. [Google Scholar] [CrossRef]
- Parra-Palma, C.; Úbeda, C.; Gil, M.; Ramos, P.; Castro, R.I.; Morales-Quintana, L. Comparative study of the volatile organic compounds of four strawberry cultivars and it relation to alcohol acyltransferase enzymatic activity. Sci. Hortic. 2019, 251, 65–72. [Google Scholar] [CrossRef]
- Heinonen, M.; Meyer, A.S.; Frankel, E.N. Antioxidant Activity of Berry Phenolics on Human Low-Density Lipoprotein and Liposome Oxidation. J. Agric. Food Chem. 1998, 46, 4107–4112. [Google Scholar] [CrossRef]
- Amatori, S.; Mazzoni, L.; Alvarez-Suarez, J.M.; Giampieri, F.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Afrin, S.; Errico Provenzano, A.; Persigo, G.; Mezzetti, B.; et al. Polyphenol-rich strawberry extract (PRSE) shows in vitro and in vivo biological activity against invasive breast cancer cell. Sci. Rep. 2016, 6, 30917. [Google Scholar] [CrossRef] [PubMed]
- Ariza, M.T.; Reboredo-Rodriguez, P.; Mazzoni, L.; Forbes-Hernández, T.Y.; Giamperi, F.; Afrin, S.; Gasparrini, M.; Soria, C.; Martínez-Ferri, E.; Baltino, M.; et al. Strawberry achenes are an important source of bioactive compounds for human health. Int. J. Mol. Sci. 2016, 17, 1103. [Google Scholar] [CrossRef] [Green Version]
- Winardiantika, V.; Lee, Y.H.; Park, N.; Yeoung, Y.R. Effects of cultivar and harvest time on the contents of antioxidant phytochemicals in strawberry fruits. Hortic. Environ. Biotechnol. 2015, 56, 732–739. [Google Scholar] [CrossRef]
- Bialasiewicz, P.; Prymont-Przyminska, A.; Zwolinska, A.; Sarniak, A.; Wlodarczyk, A.; Krol, M.; Glusac, J.; Nowak, P.; Markowski, J.; Rutkowski, K.P.; et al. Addition of strawberries to the usual diet decreases resting chemiluminescence of fasting blood in healthy subjects-possible health-promoting effect of these fruits consumption. J. Am. Coll. Nutr. 2014, 33, 274–287. [Google Scholar] [CrossRef]
- Tiwari, B.K.; O´Donnell, C.P.; Patras, A.; Brunton, N.; Cullen, P.J. Stability of anthocyanins and ascorbic acid in sonicated strawberry juice during storage. Eur. Food Res. Technol. 2009, 228, 717–724. [Google Scholar] [CrossRef]
- Joubran, A.M.; Katz, I.H.; Okun, Z.; Davidovich-Pinhas, M.; Shpigelman, A. The effect of pressure level and cycling in high-pressure homogenization on physicochemical, structural and functional properties of filtered and non-filtered strawberry nectar. Innov. Food Sci. Emerg. Technol. 2019, 57, 102203. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. Volume 1—The scheme—standard and implementation infrastructure. In A Scheme and Training Manual on Good Agricultural Practices (GAP) for Fruits and Vegetables; Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific: Bangkok, Thailand, 2016; ISBN 978-92-5-109277. [Google Scholar]
- Wang, S.Y.; Zheng, W.; Galletta, G.J. Cultural system affects fruit quality and antioxidant capacity in strawberries. J. Agric. Food Chem. 2002, 50, 6534–6542. [Google Scholar] [CrossRef]
- Diário da República. Portaria n.° 90/88 de 9 de Fevereiro. In Alargamento da Aplicação das Normas ou Especificações de Qualidade a Mais Algumas Espécies de Fruta, Designadamente Ameixa, Damasco e Morango; Official Journal of Diário da República I Série n.° 33 de 9–2; Diário da República: Lisbon, Portugal, 1988; pp. 457–461. [Google Scholar]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the Association of the Analytical Chemists; AOAC: Rockville, VA, USA, 2016. [Google Scholar]
- ISO 750. Fruit and Vegetable Products—Determination of Titratable Acidity; ISO: Vernier, Geneva, Switzerland, 1998. [Google Scholar]
- Tylewicz, U.; Tappi, S.; Genovese, J.; Mozzon, M.; Rocculi, P. Metabolic response of organic strawberries and kiwifruit subjected to PEF assisted-osmotic dehydration. Innov. Food Sci. Emerg. Technol. 2019, 56, 102190. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Tonutare, T.; Moor, U.; Szajdak, L. Strawberry anthocyanin determination by pH differential spectroscopic method—How to get true results. Acta Sci. Pol. Hortorum Cultus 2014, 13, 35–47. [Google Scholar]
- Custódio, L.; Justo, T.; Silvestre, L.; Barradas, A.; Duarte, C.V.; Pereira, H.; Barreira, L.; Rauter, A.P.; Alberício, F.; Varela, J. Microalgae of diferente phyla display antioxidant, metal chelating and acetylcholinesterase inhibitory activities. Food Chem. 2012, 339, 69–72. [Google Scholar]
- Benzie, I.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power: The FRAP Assay”. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolanos de la Torre, A.A.S.; Henderson, T.; Nigam, P.S.; Owusu-Apenten, R.K. A universally calibrated microplate ferric reducing antioxidant power (FRAP) assay for foods and applications to Manuka honey. Short communication. Food Chem. 2015, 174, 119–123. [Google Scholar] [CrossRef]
- StatSoft Inc. STATISTICA (data analysis software system), version 8; StatSoft Inc.: Tulsa, OK, USA, 2007. [Google Scholar]
- Platform of Food Information in Portugal. Portfir. Available online: http://portfir.insa.pt/foodcomp/food?11708/ (accessed on 12 August 2019).
- Wang, J.; Wang, J.; Ye, J.; Vang, S.K.; Raghavan, V. Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control 2019, 96, 128–136. [Google Scholar] [CrossRef]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.; Quiles, J.L.; Mezzetti, B.; Battino, M. Review—The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef]
- Akhatou, I.; Recamales, A.F. Influence of cultivar and culture system on nutritional and organoleptic quality of strawberry. J. Sci. Food Agric. 2014, 30, 866–875. [Google Scholar] [CrossRef]
- Taghavi, T.; Siddiqui, R.; Rutto, L.K. The effect of preharvest factors on fruit and nutritional quality in strawberry. In Strawberry—Pre- and Post-Harvest Management Techniques for Higher Fruit Quality; Asao, T., Asaduzzaman, M.D., Eds.; Intech Open: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.C.N. Impact of environmental conditions on fruit and vegetable quality. Stewart Postharvest Rev. 2008, 4, 1–14. [Google Scholar] [CrossRef]
- Wang, S. Effect of pre-harvest conditions on antioxidant capacity in fruits. Acta Hortic. 2006, 712, 299–305. [Google Scholar] [CrossRef]
- Octavia, L.; Choo, W.S. Folate, ascorbic acid, anthocyanin and colour changes in strawberry (Fragaria × annanasa) during refrigerated storage. LWT-Food Sci. Technol. 2017, 86, 652–659. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; O’Donnell, C.P.; Nunes, M.C.N. Modelling the biochemical and sensory changes of strawberries during storage under diverse relative humidity conditions. Postharvest Biol. Technol. 2019, 154, 148–158. [Google Scholar] [CrossRef]
- Ganhão, R.; Estévez, M.; Kylli, P.; Heinonen, M.; Morcuende, D. Characterization of selected wild mediterranean fruits and comparative efficacy as inhibitors of oxidative reactions in emulsified raw pork burger patties. J. Agric. Food Chem. 2010, 58, 8854–8861. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, M. Antioxidant activity and antimicrobial effect of berry phenolics-a Finnish perspective. Mol. Nutr. Food Res. 2007, 51, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Jouquand, C.; Chandler, C.; Plotto, A.; Goodner, K. A sensory and chemical analysis of fresh strawberries over harvest dates and seasons reveals factors that affect eating quality. J. Am. Soc. Hortic. Sci. 2008, 133, 859–867. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Guan, C.; Dai, H.; Li, X.; Zhang, Z. Soluble solids content is positively correlated with phosphorus content in ripening strawberry fruits. Sci. Hortic. 2015, 195, 183–187. [Google Scholar] [CrossRef]
- Wold, A.B.; Opstad, N. Fruit quality in strawberry (Fragaria x ananassa Duch. Cv: Korona) at three times during the season and with two fertilizer strategies. J. Appl. Bot. Food Qual. 2007, 81, 36–40. [Google Scholar]
- Garrido-Bigotes, A.; Figueroa, P.M.; Figueroa, C.R. Jasmonate metabolism and its relationship with abscisic acid during strawberry fruit development and ripening. J. Plant Growth Regul. 2018, 37, 101–103. [Google Scholar] [CrossRef]
- Ramos, P.; Parra-Palma, C.; Figueroa, C.R.; Zuniga, P.E.; Valenzuela-Riffo, F.; Gonzalez, J.; Gaete-Eastman, C.; Morales-Quintana, L. Cell wall-related enzymatic activities and transcriptional profiles in four strawberry (Fragaria x ananassa) cultivars during fruit development and ripening. Sci. Hortic. 2008, 238, 325–332. [Google Scholar] [CrossRef]
- Maas, J.L.; Wang, S.Y.; Galletta, G.J. Health enhancing properties of strawberry fruit. In Proceedings of the IV North American Strawberry Conference, Florida, Orlando, FL, USA, 15–17 February 1996; Pritts, M.P., Chandler, C.K., Crocker, T.E., Eds.; University of Florida, Horticultural Sciences Department: Gainesville, FL, USA, 2013; pp. 11–18. [Google Scholar]
- Singh, R.; Sharma, R.R.; Tyagi, S.K. Pre-harvest foliar application of calcium and boron influences physiological disorders, fruit yield and quality of strawberry. Sci. Hortic. 2007, 112, 215–220. [Google Scholar] [CrossRef]
- Nowicka, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Fecksa, I. Comparison of polyphenol content and antioxidant capacity of strawberry fruit from 90 cultivars of Fragaria × ananassa Duch. Food Chem. 2019, 270, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lester, G.E.; Lewers, K.S.; Medina, M.B.; Saftner, R.A. Comparative analysis of strawberry total phenolics via fast Blue BB vs. Folin-Ciocalteu: Assay interference by ascorbic acid. J. Food Compos. Anal. 2012, 27, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Panico, A.M.; Garufi, E.; Nitto, S.; Di Mauro, R.; Longhitano, R.C.; Magri, G. Antioxidant activity and phenolic content of strawberry genotypes from Fragaria x ananassa. Pharm. Biol. 2009, 47, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Hakkinen, S.; Auriola, S. High-performance liquid chromatography with electrospray ionization mass spectrometry and diode array ultraviolet detection in the identification of flavonolaglycines and glycosides in berries. J. Chromatogr. A 1998, 829, 91–200. [Google Scholar] [CrossRef]
- Määttä-Riihinen, K.; Kamal-Eldin, A.; Törrönen, A.R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J. Agric. Food Chem. 2004, 52, 6178–6187. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins; colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutrit. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, G.M.; Figueroa, N.E.; Poblete, L.A.; Cherian, S.; Figueroa, C.R. Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of Fragaria chiloensis fruit. Food Chem. 2016, 448–453. [Google Scholar] [CrossRef]
- Elisia, I.; Hu, C.; Popovich, D.G.; Kitts, D.D. Antioxidant assessment of an anthocyanin-enriched blackberry extract. Food Chem. 2007, 101, 1052–1058. [Google Scholar] [CrossRef]
- Viljanen, K.; Kylli, P.; Halmos, A.; Sinclair, A.; Heinonen, M. Effect of blackberries and raspberries on different whey protein emulsion stability. Eur. Food Res. Technol. 2005, 221, 602–609. [Google Scholar] [CrossRef]
- Macheix, J.J.; Fleuriet, A.; Billot, J. Fruit Phenolics; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Petersen, C.; Wankhade, U.D.; Bharat, D.; Wong, K.; Mueller, J.E.; Chintapalli, S.V.; Piccolo, B.D.; Jalili, T.; Jia, Z.; Symons, D.; et al. Dietary supplementation with strawberry induces marked changes in the composition and functional potential of the gut microbiome in diabetic mice. J. Nutr. Biochem. 2019, 66, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, D.B.; Putnik, P.; Dragović-Uzelac, V.; Vahčić, N.; Babojelić, M.S.; Levaj, B. Influences of organically and conventionally grown strawberry cultivars on anthocyanins content and color in purees and low-sugar jams. Food Chem. 2015, 181, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N.; Meyer, A.S. Review. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric. 2000, 80, 1925–1941. [Google Scholar] [CrossRef]
- Almeida, M.M.B.; Sousa, P.H.M.; Arriaga, A.M.C.; Prado, G.M.; Magalhães, C.E.C.; Maia, G.A.; Lemos, T.L.G. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011, 44, 2155–2159. [Google Scholar] [CrossRef] [Green Version]
- Olsson, M.E.; Ekvall, J.; Gustavsson, K.E.; Nilsson, J.; Pillai, D.; Sjoholm, I.; Svensson, U.; Akesson, B.; Nyman, M.G.L. Antioxidants, low molecular weight carbohydrates, and total antioxidant capacity in strawberries (Fragaria x ananassa): Effects of cultivar, ripening, and storage. J. Agric. Food Chem. 2004, 52, 2490–2498. [Google Scholar] [CrossRef]
- Moretti, C.L.; Mattos, L.M.; Calbo, A.G.; Sargent, S.A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 2010, 43, 1824–1832. [Google Scholar] [CrossRef]
- Rekika, D.; Khanizadeh, S.; Deschênes, M.; Levasseur, A.; Charles, M.T. Antioxidant capacity and phenolic content of selected strawberry genotypes. HortScience 2005, 40, 1777–1781. [Google Scholar] [CrossRef] [Green Version]
Cultivar | Calibre (mm) | Height (mm) |
“Primoris” | 48.9 ± 5.3 | 34.9 ± 2.9 |
“Endurance” | 41.7 ± 4.8 | 36.9 ± 3.7 |
“Portola” | 42.2 ± 5.4 | 46.4 ± 4.8 |
Component (%) | cv. “Primoris” | cv. “Endurance” | cv. “Portola” |
Moisture | 86.3 ± 2.0 a | 88.2 ± 1.1 a | 89.8 ± 2.1 a |
Crude Protein | 0.730 ± 0.057 a | 0.720 ± 0.041 a | 0.570 ± 0.033 b |
Crude Fat | 0.130 ± 0.008 a | 0.150 ± 0.024 a | 0.140 ± 0.024 a |
Carbohydrate | 12.4 ± 1.7 a | 10.5 ± 1.0 a | 9.11 ± 1.79 a |
Ash | 0.430 ± 0.016 a | 0.460 ± 0.024 a | 0.430 ± 0.024 a |
Energy (kcal) | 53.8 | 46.0 | 40.0 |
Physicochemical Properties | cv. “Primoris” | cv. “Endurance” | cv. “Portola” |
Titratable acidity (g citric acid/100 g) | 0.809 ± 0.011 a | 0.739 ± 0.009 a | 0.572 ± 0.047 c |
Soluble solid content (°Brix) | 6.82 ± 0.37 b | 8.51 ± 0.34 a | 4.89 ± 0.25 c |
Colour | |||
Superficial zone (surface) | |||
L* | 42.3 ± 3.6 a | 36.0 ± 3.5 c | 38.5 ± 2.7 b |
a* | 33.3 ± 1.8 a | 34.5 ± 2.1 a | 32.8 ± 1.7 a |
b* | 28.8 ± 5.1 a | 24.1 ± 3.2 b | 30.4 ± 3.7 a |
°h | 40.5 ± 5.2 a | 34.8 ± 2.8 b | 42.7 ± 3.7 a |
Internal zone (interior) | |||
L* | 32.5 ± 0.3 b | 37.2 ± 1.8 a | 36.4 ± 1.2 a |
a* | 21.6 ± 0.7 a | 21.7 ± 1.1 a | 18.6 ± 0.6 b |
b* | 17.6 ± 0.4 b | 17.2 ± 1.1 b | 18.9 ± 0.7 a |
°h | 39.2 ± 0.9 b | 38.5 ± 1.2 c | 45.5 ± 0.9 a |
Texture | |||
Superficial zone (surface) | |||
Hardness (N) | 1.23 ± 0.39 a | 0.612 ± 0.270 b | 1.26 ± 0.43 a |
Adhesiveness (N/s) | 1.80 ± 0.58 a | 0.871 ± 0.321b | 1.87 ± 0.69 a |
Internal zone (interior) | |||
Hardness (N) | 0.950 ± 0.299 a | 0.431 ± 0.240 b | 0.998 ± 0.306 a |
Adhesiveness (N/s) | 1.69 ± 0.48 a | 0.748 ± 0.419 b | 1.73 ± 0.50 a |
cv. “Primoris” | cv. “Endurance” | cv. “Portola” | |
Phytochemical | |||
Total phenolic content (mg gallic acid equivalent GAE/100 g) | 942 ± 96 b | 1314 ± 89 a | 607 ± 28 c |
Anthocyanin content (mg/100 g) | 2.09 ± 0.01 b | 2.41 ± 0.01 a | 2.18 ± 0.02 b |
Antioxidant Capacity | |||
DPPH radical scavenging activity (RSA, %) | 51.8 ± 5.1 a | 51.1 ± 5.2 a | 42.0 ± 2.3 a |
FRAP (Eq mM FeSO4/100 g) | 58.8 ± 0.9 b | 72.4 ± 8.1 a | 38.2 ± 1.4 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganhão, R.; Pinheiro, J.; Tino, C.; Faria, H.; Gil, M.M. Characterization of Nutritional, Physicochemical, and Phytochemical Composition and Antioxidant Capacity of Three Strawberry “Fragaria × ananassa Duch.” Cultivars (“Primoris”, “Endurance”, and “Portola”) from Western Region of Portugal. Foods 2019, 8, 682. https://doi.org/10.3390/foods8120682
Ganhão R, Pinheiro J, Tino C, Faria H, Gil MM. Characterization of Nutritional, Physicochemical, and Phytochemical Composition and Antioxidant Capacity of Three Strawberry “Fragaria × ananassa Duch.” Cultivars (“Primoris”, “Endurance”, and “Portola”) from Western Region of Portugal. Foods. 2019; 8(12):682. https://doi.org/10.3390/foods8120682
Chicago/Turabian StyleGanhão, Rui, Joaquina Pinheiro, Clara Tino, Hugo Faria, and Maria M. Gil. 2019. "Characterization of Nutritional, Physicochemical, and Phytochemical Composition and Antioxidant Capacity of Three Strawberry “Fragaria × ananassa Duch.” Cultivars (“Primoris”, “Endurance”, and “Portola”) from Western Region of Portugal" Foods 8, no. 12: 682. https://doi.org/10.3390/foods8120682
APA StyleGanhão, R., Pinheiro, J., Tino, C., Faria, H., & Gil, M. M. (2019). Characterization of Nutritional, Physicochemical, and Phytochemical Composition and Antioxidant Capacity of Three Strawberry “Fragaria × ananassa Duch.” Cultivars (“Primoris”, “Endurance”, and “Portola”) from Western Region of Portugal. Foods, 8(12), 682. https://doi.org/10.3390/foods8120682