Development of a Breadfruit Flour Pasta Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Harvest and Preparation of the Breadfruit Flour
2.2. Preparation of the Breadfruit Pasta Product
2.3. Chemical and Nutritional Analyses of the Breadfruit Pasta Product
2.4. Sensory Evaluation of the Breadfruit Pasta Product
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
Appendix A
References
- Ragone, D. Breadfruit for food and nutritional security in the 21st century. Trop. Agric. 2016, Tropical Agriculture (Trinidad) Special Issue, 18–29. [Google Scholar]
- Ragone, D.; Cavaletto, C. Sensory evaluation of fruit quality and nutritional composition of 20 breadfruit (Artocarpu, Moraceae) cultivars. Econ. Bot. 2006, 60, 335–346. [Google Scholar] [CrossRef]
- Graham, H.D.; Negron de Bravo, E. Composition of the breadfruit. J. Food Sci. 1981, 46, 535–539. [Google Scholar] [CrossRef]
- Ragone, D. Breadfruit: Artocarpus altilis (Parkinson) Fosberg; International Plant Genetic Resources Institute: Rome, Italy, 1997. [Google Scholar]
- Rincon, A.M.; Padilla, F.C. Physicochemical properties of Venezuelan breadfruit (Artocarpus altilis) starch. Arch. Latinoam. Nutr. 2004, 54, 449–456. [Google Scholar] [PubMed]
- Ijarotimi, S.O.; Aroge, F. Evaluation of the nutritional composition, sensory, and physical properties of a potential weaning food from locally available food materials-breadfruit (Artocarpus altilis) and soybean (Glycene max). Pol. J. Food Nutr. Sci. 2005, 14, 411–415. [Google Scholar]
- Jones, A.M.P.; Ragone, D.; Aiona, K.; Lane, W.A.; Murch, S.J. Nutritional and morphological diversity of breadfruit (Artocarpus, Moraceae): Identification of elite cultivars for food security. J. Food Comp. Anal. 2011, 24, 1091–1102. [Google Scholar] [CrossRef]
- Jones, A.M.P.; Ragone, D.; Tavana, N.G.; Bernotas, D.W.; Murch, S.J. Beyond the Bounty: Breadfruit (Artocarpus altilis) for food security and novel foods in the 21st century. Ethnobot. Res. Appl. 2011, 9, 129–150. [Google Scholar] [CrossRef]
- Jones, A.M.P.; Baker, R.; Ragone, D.; Murch, S.J. Identification of pro-vitamin A carotenoid-rich cultivars of breadfruit (Artocarpus, Moraceae). J. Food Comp. Anal. 2013, 31, 51–61. [Google Scholar] [CrossRef]
- Turi, C.E.; Liu, Y.; Ragone, D.; Murch, S.J. Breadfruit (Artocarpus altilis and hybrids): A traditional crop with the potential to prevent hunger and mitigate diabetes in Oceania. Trends Food Sci. Technol. 2015, 45, 264–272. [Google Scholar] [CrossRef]
- Liu, Y.; Ragone, D.; Murch, S. Breadfruit (Artocarpus altilis): A source of high-quality protein for food security and novel food products. Amino Acids 2015, 47, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Loos, P.J.; Hood, L.F.; Graham, H.D. Isolation and characterization of starch from breadfruit. Cereal Chem. 1981, 58, 282–286. [Google Scholar]
- Arcelay, A.; Graham, H.D. Chemical evaluation and acceptance of food products containing breadfruit artocarpus communis flour. Caribb. J. Sci. 1984, 20, 35–41. [Google Scholar]
- Nochera, C.L.; Caldwell, M. Nutritional evaluation of breadfruit composite products. J. Food Sci. 1992, 57, 1420–1422. [Google Scholar] [CrossRef]
- Nochera, C.; Moore, G. Properties of extruded products from breadfruit flour. J. Cereal Foods World 2001, 46, 488–491. [Google Scholar]
- Nochera, C.L.; Ragone, D. Preparation of a breadfruit flour bar. Foods 2016, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- Olaoye, O.A.; Onilude, A.A.; Oladoye, C.O. Breadfruit flour in biscuit making: Effects on product quality. Afr. J. Food Sci. 2007, 1, 20–23. [Google Scholar]
- Olaoye, O.A.; Onilude, A.A. Microbiological, proximate analysis and sensory evaluation of baked products from blends of wheat-breadfruit flours. Afr. J. Food Agric. Nutr. Dev. 2008, 8, 192–203. [Google Scholar] [CrossRef]
- Malomo, S.A.; Eleyinmi, A.F.; Fashakin, J.B. Chemical composition, rheological properties and bread making potentials of composite flours from breadfruit, breadnut and wheat. Afr. J. Food Sci. 2011, 5, 400–404. [Google Scholar]
- Bakare, A.H.; Osundahunsi, O.F.; Olusanya, J.O. Rheological, baking, and sensory properties of composite bread dough with breadfruit (Artocarpus communis Forst) and wheat flours. Food Sci. Nutr. 2016, 4, 573–587. [Google Scholar] [CrossRef] [PubMed]
- FDA. Agency Response Letter GRAS Notice No. GRN 000596. 2016. Available online: https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm495765.htm (accessed on 20 December 2018).
- Ragone, D. Artocarpus altilis (breadfruit). In Traditional Trees of Pacific Islands; Elevitch, C.R., Ed.; Permanent Agriculture Resources (PAR): Holualoa, HI, USA, 2006; pp. 85–100. Available online: www.traditionaltree.org (accessed on 20 December 2018).
- Murch, S.J.; Ragone, D.; Shi, W.L.; Alan, A.R.; Saxena, P.K. In vitro conservation and sustained production of breadfruit (Artocarpus altilis, Moraceae): Modern technologies for a traditional tropical crop. Naturwissenschaften 2008, 95, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.P.; Murch, S.J.; Ragone, D. Diversity of breadfruit (Artocarpus altilis, Moraceae) seasonality: A resource for year round nutrition. Econ. Bot. 2010, 64, 340–351. [Google Scholar] [CrossRef]
- Liu, Y.; Jones, A.M.P.; Murch, S.J.; Ragone, D. Crop productivity yield and seasonality of breadfruit (Artocarpus spp., Moraceae). Fruits 2014, 69, 345–361. [Google Scholar] [CrossRef]
- Lincoln, N.K.; Ragone, D.; Zerega, N.J.C.; Roberts-Nkrumah, L.B.; Merlin, M.; Jones, A.M.P. Grow us our daily bread: A review of breadfruit cultivation in traditional and contemporary systems. In Horticultural Reviews; Warrington, I., Ed.; John Wiley & Sons: West Sussex, UK, 2019; Volume 46, pp. 299–384. [Google Scholar]
- Ngemakwe, P.H.; Roes-Hill, M.; Jideani, V.A. Advances in gluten-free bread technology. Food Sci. Technol. Int. 2014, 21, 256–276. [Google Scholar] [CrossRef]
- DiCairano, M.; Galgano, F.; Tolve, R.; Caruso, M.C.; Condelli, N. Focus on gluten free biscuits: Ingredients and issues. Trends Food Sci. Technol. 2018, 81, 203–212. [Google Scholar]
- Oduro, I.; Ellis, W.O.; Narth, S.T. Expanding breadfruit utilization and its potential for pasta production. Discov. Innov. 2007, 19, 243–247. [Google Scholar]
- Akanbi, T.O.; Nazamid, S.; Adebowale, A.A.; Farooq, A.; Olaove, A.O. Breadfruit starch-wheat flour noodles: Preparation, proximate compositions and culinary properties. Int. Food Res. J. 2011, 18, 1283–1287. [Google Scholar]
- Adebowale, O.J.; Salaam, H.A.; Komolafe, O.M.; Adebiyi, T.A.; Ilesanmi, I.O. Quality characteristics of noodles produced from wheat flour and modified starch of African breadfruit (Artocarpus altilis) blends. J. Culin. Sci. Technol. 2017, 15, 75–88. [Google Scholar] [CrossRef]
- Purwandari, U.; Khoiri, A.; Muchlis, M.; Noriandita, B.; Zeni, N.F.; Lisdayana, N.; Fauziyah, E. Textural, cooking quality, and sensory evaluation of gluten-free noodle made from breadfruit, konjac, or pumpkin flour. Int. Food Res. J. 2014, 21, 1623–1627. [Google Scholar]
- Elevitch, C.R.; Ragone, D.; Cole, I. Breadfruit Production Guide: Recommended Practices for Growing, Harvesting, and Handling, 2nd ed.; Breadfruit Institute, NTBG & Hawaii Homegrown Food Network, Captain Cook Hawaii: Holualoa, HI, USA, 2014. [Google Scholar]
- Elevitch, C.R.; Ragone, D. Breadfruit Agroforestry Guide: Planning and Implementation of Regenerative Organic Methods; Breadfruit Institute, NTBG, Kalaheo, Hawaii, & Pacific Agriculture Resources: Holualoa, HI, USA, 2018. [Google Scholar]
- Official Methods of Analysis of AOAC International, 18th ed.; Method 2005, 08; AOAC International: Gaithersburg, MD, USA, 2005.
- Official Methods of Analysis of AOAC International, 18th ed.; Method IR061201, 2006, 08; AOAC International: Gaithersburg, MD, USA, 2006.
- Larmond, E. Laboratory Methods for Sensory Evaluation of Food; Research Branch, Publication No. 1864; Agriculture Canada: Ottawa, ON, Canada, 1992.
- Meilgaard, M.C.; Thomas Carr, B.; Van Civille, G. Sensory Evaluation Techniques; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Katzbauer, B. Properties and applications of xanthan gum. Polym. Degrad. Stab. 1998, 59, 81–84. [Google Scholar] [CrossRef]
- Mishra, S.; Rai, T. Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocoll. 2006, 20, 557–566. [Google Scholar] [CrossRef]
- Saedi, M.; Morteza-Semnani, K.; Ansoroudi, F.; Fallah, S.; Amin, G. Evaluation of binding properties of Plantago psyllium. Acta Pharm. 2010, 60, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Riehm, M.; Defelice, C.; Cui, S.W. Formulation optimization of psyllium-based binding product by response surface methodology. J. Food Agric. Environ. 2010, 8, 882–889. [Google Scholar]
- Pejcz, E.; Spychaj, R.; Wojciechowicz-Budzisz, A.; Gil, Z. The effect of Plantago seeds and husk on wheat dough and bread functional properties. LWT-Food Sci. Technol. 2018, 96, 371–377. [Google Scholar] [CrossRef]
- Scibilia, J.; Pastorello, E.A.; Zisa, G.; Ottolenghi, A.; Ballmer-Weber, B.; Pravettoni, V.; Scovena, E.; Robino, A.; Ortolani, C. Maize food allergy: A double-blind placebo-controlled study. Clin. Exp. Allergy 2008, 38, 1943–1949. [Google Scholar] [CrossRef] [PubMed]
- Sun-Waterhouse, D.; Teoh, A.; Massarotto, C.; Wibisono, R.; Wadhwa, S. Comparative analysis of fruit-based functional snack bars. Food Chem. 2010, 119, 1369–1379. [Google Scholar] [CrossRef]
- Food Labeling; Gluten-Free Labeling of Foods. Available online: https://www.federalregister.gov/documents/2013/08/05/2013-18813/food-labeling-gluten-free-labeling-of-foods (accessed on 25 March 2019).
- Lafiandra, D.; Riccardi, G.; Shewry, P.R. Improving cereal grain carbohydrates for diet and health. J. Cereal Sci. 2014, 90, 312–326. [Google Scholar] [CrossRef]
- Ramdath, D.D.; Issacs, C.L.R.; Teelucksingh, S.; Wolever, S.M.T. Glycaemic index of selected staples commonly eaten in the Caribbean and the effects of boiling v crushing. Br. J. Nutr. 2004, 91, 971–977. [Google Scholar] [CrossRef]
- Bahado-Singh, P.S.; Wheatley, A.O.; Ahmad, M.H.; Morrisson, E.Y.; Asemota, H.N. Food processing methods influence the glycaemic indices of some commonly eaten West Indian carbohydrate-rich foods. Br. J. Nutr. 2006, 96, 476–481. [Google Scholar]
Ingredients | Grams (g) | Source |
---|---|---|
Breadfruit Flour | 275 | McBryde Garden, NTBG, Kauai, Hawaii |
Tapioca Starch | 178 | Harvest Foods, West Michigan |
Salt | 14 | Harvest Foods, West Michigan |
Psyllium Powder | 9 | Harvest Foods, West Michigan |
Xanthan Gum | 9 | Harvest Foods, West Michigan |
Water | 295 | Tap water |
Coconut Oil | 28.3 | Harvest Foods, West Michigan |
Analysis | Unit | Result per 100 g | Result per Serving Size 2 oz. Dry (40 g) | Label Declaration | % Daily Value |
---|---|---|---|---|---|
Calories | - | 378 | 151 | 150 | |
Total Fat | g | 8.33 | 3.33 | 3.5 | 4 |
Saturated Fat | g | 6.9 | 2.8 | 3 | 14 |
Trans Fat | g | <0.1 | <0.1 | 0 | |
Polyunsaturated Fat 1 | g | 0.3 | 0.1 | 0 | |
Monounsaturated Fat 1 | g | 1.2 | 0.5 | 0 | |
Sodium | mg | 12 | 5 | 0 | 0 |
Cholesterol | mg | <1 | <1 | 0 | 0 |
Total Carbohydrate | g | 73.3 | 29.3 | 29 | 11 |
Dietary Fiber | g | 9.3 | 3.7 | 4 | 13 |
Sugars | g | 1.26 | 0.5 | Less than 1 | |
Protein | g | 2.32 | 0.93 | Less than 1 | |
Vitamin D | mcg | <0.1 | <0.1 | 0 | 0 |
Calcium | mg | 86 | 34 | 30 | 2 |
Iron | mg | 1.48 | 0.59 | 0.06 | 4 |
Potassium | mg | 826 | 330 | 330 | 8 |
Ash 1 | % | 4.58 | |||
Moisture 1 | % | 11.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nochera, C.L.; Ragone, D. Development of a Breadfruit Flour Pasta Product. Foods 2019, 8, 110. https://doi.org/10.3390/foods8030110
Nochera CL, Ragone D. Development of a Breadfruit Flour Pasta Product. Foods. 2019; 8(3):110. https://doi.org/10.3390/foods8030110
Chicago/Turabian StyleNochera, Carmen L., and Diane Ragone. 2019. "Development of a Breadfruit Flour Pasta Product" Foods 8, no. 3: 110. https://doi.org/10.3390/foods8030110